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Motivation
Locating elements on a network

The problem

Given
@ a set of nodes,
@ a set of links connecting them,
@ a set of service requests, one for each node of the network,
°

a set of devices, able to provide service, to be installed in the
network,

| want to
@ decide where to place the service provider devices,
@ decide how to satisfy service requests,
@ maximizing the quality of service (e.g. minimizing delay time)
—
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Locating devices on a network

It is not a single problem, but a class of problems, known as
Facility Location.
Several modeling issues arise:
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It is not a single problem, but a class of problems, known as
Facility Location.
Several modeling issues arise:

@ is the capacity of a service provider finite?
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Locating devices on a network

It is not a single problem, but a class of problems, known as
Facility Location.
Several modeling issues arise:

@ is the capacity of a service provider finite?

@ is it possible to answer to the same service request using
(fracionally) different providers?
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Locating devices on a network

It is not a single problem, but a class of problems, known as
Facility Location.
Several modeling issues arise:

@ is the capacity of a service provider finite?

@ is it possible to answer to the same service request using
(fracionally) different providers?

@ is there a limit on the number of service requests that can be
served by the same provider (e.g. devices with limited number
of ports)?
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Locating devices on a network

It is not a single problem, but a class of problems, known as
Facility Location.
Several modeling issues arise:

@ is the capacity of a service provider finite?

@ is it possible to answer to the same service request using
(fracionally) different providers?

@ is there a limit on the number of service requests that can be
served by the same provider (e.g. devices with limited number
of ports)?

@ is the problem single or multi commodity?
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Locating devices on a network

It is not a single problem, but a class of problems, known as
Facility Location.
Several modeling issues arise:

@ is the capacity of a service provider finite?
@ is it possible to answer to the same service request using
(fracionally) different providers?

@ is there a limit on the number of service requests that can be
served by the same provider (e.g. devices with limited number
of ports)?

@ is the problem single or multi commodity?

@ how to measure the overall quality of service?
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Assumptions

Let us begin with a basic location problem:

@ providers with very large resources (capacity and number of
ports are not an issue),

@ possibility of splitting service requests,
© single commodity,
@ minimize the average connection cost.

In this case we talk about a Uncapacitated Facility Location
Problem.
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Visually:
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Modeling Mathematical models

Problem features:

Given:

e A graph G(V, E) (telecomunication network: V = sites, E =
links).
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Modeling Mathematical models

Problem features:

Given:
e A graph G(V, E) (telecomunication network: V = sites, E =
links).
@ A subset | of vertices of the graph, which correspond to sites
in which servers can be installed.
@ A subset J of vertices of the graph, in which terminals are
placed.
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Modeling Mathematical models

Problem features:

Given:
e A graph G(V, E) (telecomunication network: V = sites, E =
links).
@ A subset | of vertices of the graph, which correspond to sites
in which servers can be installed.

@ A subset J of vertices of the graph, in which terminals are
placed.

@ Installing a server in each site / € | has a cost f;.

@ Connecting a terminal in site j € J to a server in i € | has a

cost Cij-
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Modeling Mathematical models

Problem features:

Given:
e A graph G(V, E) (telecomunication network: V = sites, E =
links).
@ A subset | of vertices of the graph, which correspond to sites
in which servers can be installed.
@ A subset J of vertices of the graph, in which terminals are
placed.

@ Installing a server in each site / € | has a cost f;.
@ Connecting a terminal in site j € J to a server in i € | has a
cost cjj.

@ Choose if and where to intall the servers (binary variables y;)
and how to connect terminals to servers (variables xj). ..
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Modeling Mathematical models

Problem features:

Given:
e A graph G(V, E) (telecomunication network: V = sites, E =
links).
@ A subset | of vertices of the graph, which correspond to sites
in which servers can be installed.
@ A subset J of vertices of the graph, in which terminals are
placed.

@ Installing a server in each site / € | has a cost f;.
@ Connecting a terminal in site j € J to a server in i € | has a
cost cjj.

@ Choose if and where to intall the servers (binary variables y;)
and how to connect terminals to servers (variables xj). ..
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Modeling Mathematical models

Uncapacitated Facility Location Problem (UFLP)

min Z fiyi + Z Z CijXij

i€l icl jeJ

s.t. Zx,-jzl Vjied
iel
x,-jgy,- Viel,VjeJ
xj >0 Viel,VjeJ
yi € {0,1} viel

N.B. Without additional conditions, variables x;; take integer
values.
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Solving UFLP

@ The problem is “difficult” (NP-Hard);

UNIVERSITA
DEGLI STUDI
D1 MiLANO

A. Ceselli, DI = Univ. of Milan i Analysis and Optimization of Networks (Part



A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Solving UFLP

@ The problem is “difficult” (NP-Hard);

@ we try to use the Lagrangean Relaxation technique in order to
get lower (dual) bounds to the problem;
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Solving UFLP

@ The problem is “difficult” (NP-Hard);
@ we try to use the Lagrangean Relaxation technique in order to
get lower (dual) bounds to the problem;

@ we try to repair a (generally infeasible) solution of the
relaxation to obtain a feasible solution to the problem;
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Solving UFLP

@ The problem is “difficult” (NP-Hard);

@ we try to use the Lagrangean Relaxation technique in order to
get lower (dual) bounds to the problem;

@ we try to repair a (generally infeasible) solution of the
relaxation to obtain a feasible solution to the problem;

@ this solution provides an upper (primal) bound: might not be
optimal, but in general good enough;
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Solving UFLP A primal-dual algorithm for UFLP

Solving UFLP

@ The problem is “difficult” (NP-Hard);
@ we try to use the Lagrangean Relaxation technique in order to
get lower (dual) bounds to the problem;

@ we try to repair a (generally infeasible) solution of the
relaxation to obtain a feasible solution to the problem;

@ this solution provides an upper (primal) bound: might not be
optimal, but in general good enough;

@ the difference between upper and lower bound gives a quality
estimation of our solution;
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Solving UFLP

@ The problem is “difficult” (NP-Hard);

@ we try to use the Lagrangean Relaxation technique in order to
get lower (dual) bounds to the problem;

@ we try to repair a (generally infeasible) solution of the
relaxation to obtain a feasible solution to the problem;

@ this solution provides an upper (primal) bound: might not be
optimal, but in general good enough;

@ the difference between upper and lower bound gives a quality
estimation of our solution;

o if the quality is not enough, we resort to branch-and-bound
(enumeration).
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Solving UFLP A primal-dual algorithm for UFLP

UFLP: Lagrangean Relaxation

minz = Zﬁy;—i—ZZc,-jx,-j

iel iel jed

s.t. Zx,-jzl Vjed

iel

Yi 2 Xjj Viel,VjeJ
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Solving UFLP A primal-dual algorithm for UFLP

UFLP: Lagrangean Relaxation

minz = Zﬁy;—i—ZZc,-jx,-j

iel iel jed

s.t. Zx,-j -1>0 Vjed

iel

Vi —X,'J'ZO Viel,VjeJ
xj >0 VielVjed
yi € {0,1} Viel
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UFLP: Lagrangean Relaxation

minz = Zﬁy;—i—ZZc,-jx,-j

iel iel jed
=2 M % -1
jed el
=22 milyi =)
iel jed
s.t. Zx,-j —-1>0 Vj e J(x)
i€l
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UFLP: Lagrangean Relaxation

s.t.

x;j >0 Viel,VjeJ
yi € {0,1} Vi e | &R nem

D1 MiLANO

A. Ceselli, DI = Univ. of Milan Modeling, Analysis and Optimization of Networks (Part 2: des



A Lower Bound for UFLP
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Solving UFLP A primal-dual algorithm for UFLP

UFLP: Lagrangean Relaxation

D mO o xi=1) =D i — xy)

jes el icl jeJ
L(z,n) =min w(x,y,m,1n)
- 7y
s.t. 0 < x;(< 1) Viel,VjeJ
yi €{0,1} Viel
uj >0 Viel,vjeJ

w(x,y,m,n) is called the Lagrangean Function and e
maxy , L(m,n) is called the Lagrangean Dual Problem. i
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Solving UFLP A primal-dual algorithm for UFLP

Solving the Relaxation

@ For any choice of 7 and 7, L(z,7) gives a valid lower (dual)
bound bound to the value of z*.
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Solving UFLP A primal-dual algorithm for UFLP

Solving the Relaxation

@ For any choice of 7 and 7, L(z,7) gives a valid lower (dual)
bound bound to the value of z*.

@ In order to obtain the tightest lower bound we had to solve
the Lagrangean Dual Problem to optimality
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Solving the Relaxation

e For any choice of = and 7, L(x,n) gives a valid lower (dual)
bound bound to the value of z*.

@ In order to obtain the tightest lower bound we had to solve
the Lagrangean Dual Problem to optimality

@ Possible from a theoretical point of view, very hard from a
computational point of view.
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Solving UFLP A primal-dual algorithm for UFLP

Solving the Relaxation

e For any choice of = and 7, L(x,n) gives a valid lower (dual)
bound bound to the value of z*.

@ In order to obtain the tightest lower bound we had to solve
the Lagrangean Dual Problem to optimality

@ Possible from a theoretical point of view, very hard from a
computational point of view.

@ We resort to approximate solutions for the Lagrangean Dual
Problem.
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Solving UFLP A primal-dual algorithm for UFLP

Solving the Relaxation

@ Lagrangean Relaxation was first devised to solve nonlinear
(continuous) problems.
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Solving UFLP A primal-dual algorithm for UFLP

Solving the Relaxation

@ Lagrangean Relaxation was first devised to solve nonlinear
(continuous) problems.

@ There are many iterative algorithms (update variables and
multipliers until convergence).
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Solving UFLP A primal-dual algorithm for UFLP

Solving the Relaxation

@ Lagrangean Relaxation was first devised to solve nonlinear
(continuous) problems.

@ There are many iterative algorithms (update variables and
multipliers until convergence).
@ The most simple choice is the gradient algorithm. Iteratively:
o fix the multipliers and find a (local) optimum with respect to
the remaining variables,
e compute the gradient of the Lagrangean Dual Function with
respect to the multipliers,
e update the multipliers according to these gradients

until the gradients are 0 (or early termination criteria).
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Solving UFLP A primal-dual algorithm for UFLP

Solving the Relaxation

@ Lagrangean Relaxation was first devised to solve nonlinear
(continuous) problems.

@ There are many iterative algorithms (update variables and
multipliers until convergence).
@ The most simple choice is the gradient algorithm. Iteratively:

o fix the multipliers and find a (local) optimum with respect to
the remaining variables,

e compute the gradient of the Lagrangean Dual Function with
respect to the multipliers,

e update the multipliers according to these gradients

until the gradients are 0 (or early termination criteria).

@ Our Lagrangean Dual Function is nondifferentiable (piecewise
linear), hence we use subgradients instead of gradients. D) becrzrom
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A Lower Bound for UFLP
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Solving UFLP A primal-dual algorithm for UFLP

Subgradient algorithm for UFLP (1)

@ Choose an initial value for the multipliers 70 e ﬂo_
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Subgradient algorithm for UFLP (1)

@ Choose an initial value for the multipliers 70 e ﬂo_

o lteratively (k=1...)

o Solve the Lagrangean Subproblem in x e y, getting a solution

(x¥, y¥) of value wk.

e Compute the subgradients:
o Vhf =1-3,,x}
o gk =t~ 5t
e Choose a step length .
e Update the multipliers:
° Wf“ = 7rj-‘ —ak. th’-‘
o nft =nf— ok Ve
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Solving UFLP A primal-dual algorithm for UFLP

Subgradient algorithm for UFLP (2)

A popular choice is
@ to set the step length o according to the rule:
k k UB — wk
a =p k)2 hkY2
it jes(VEE)? + X e, (V)
where UB is an upper bound to the optimal value of
w(x,y,m,1n).
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Solving UFLP A primal-dual algorithm for UFLP

Subgradient algorithm for UFLP (2)

A popular choice is

@ to set the step length o according to the rule:
k k UB — wk
a =p k)2 hkY2
it jes(VEE)? + X e, (V)
where UB is an upper bound to the optimal value of
w(x,y,m,1n).

e to (maybe) reduce the parameter p* at some iteration
according to the rule:

pk-‘rl —05- pk
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Subgradient algorithm for UFLP (2)

A popular choice is

@ to set the step length o according to the rule:

k k UB — wk
a=p k)2 k)2
it jes(VEE)? + X e, (V)

where UB is an upper bound to the optimal value of
w(x,y,m,n).

e to (maybe) reduce the parameter p* at some iteration
according to the rule:

pk-‘rl —05- pk

@ Moreover, if for some (i, ) nkH < 0, in order to fulfil
UNIVERSITA

p
constraints on the sign of multipliers 7, set nffl =0. 7
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Subgradient algorithm for UFLP (3)

o lterate until
o Vgj =0and Vh =0 for each i € /,j € J (optimum
reached), or

e a maximum number of iterations is performed, or

o the value wX is sufficiently near to UB, or

e the value p is sufficiently small
In the first case, the Lagrangean Dual Problem has been
solved to optimality, otherwise we have no guarantee on the
quality of the (dual) solution.
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (1)

fgiyn Z fiyi + Z Z CijXjj+

= el icl jeJ
> om0 - = > milyi—xp)
jed el ieljed
st. 0<x; <1 Viel,VjeJ
yi € {0,1} Viel
uj >0 Viel,VjeJ
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A Lower Bound for UFLP
. An Upper Bound for UFLP
Solving UFLP A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (2)

min SE=D npyit DY (e —m+ up)xi — >

icl j€Jd icl jeJ jed
st. 0<x; <1 Viel,VjeJ

yi € {0,1} Viel

uj >0 Viel,vjeJ
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A Lower Bound for UFLP
. An Upper Bound for UFLP
Solving UFLP A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (2)

min SE=D npyit DY (e —m+ up)xi — >

icl j€Jd icl jeJ jed
st. 0<x; <1 Viel,VjeJ

yi € {0,1} Viel

uj >0 Viel,vjeJ

o Set f: = (fi = Y my) and & = (e — m; + my).

A. Ceselli, DI — Univ. of Milan
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A Lower Bound for UFLP
. An Upper Bound for UFLP
Solving UFLP A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (2)

min SE=D npyit DY (e —m+ up)xi — >

icl j€Jd icl jeJ jed
st. 0<x; <1 Viel,VjeJ

yi € {0,1} Viel

uj >0 Viel,vjeJ

@ Set ?, = (f, — Zje_/nfj) and E‘,‘j = (C,'j — T ‘|’77ij)-
o If /i >0 set yi = 0, otherwise set y; = 1;

o If ¢ > 0 set xj =0, otherwise set xj =1

A. Ceselli, DI — Univ. of Milan
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (3)

@ Question: what is changing by relaxing constraints y; € {0, 1}
to 0 < yi < 17
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (3)

@ Question: what is changing by relaxing constraints y; € {0, 1}
to0<y; < 17
@ Answer: nothing!
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A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (3)

@ Question: what is changing by relaxing constraints y; € {0, 1}
to0<y; < 17

@ Answer: nothing!

@ The Lagrangean Subproblems has the intergality property:
there exist optimal solutions to its continuous relaxation in
which all the variables take integer values.
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Solving the Lagrangean Subproblem (3)

@ Question: what is changing by relaxing constraints y; € {0, 1}
to0<y; < 17

@ Answer: nothing!

@ The Lagrangean Subproblems has the intergality property:
there exist optimal solutions to its continuous relaxation in
which all the variables take integer values.

@ In this case, computing a lower bound to the integer problem
or computing a lower bound to its continuous relaxation is the
same.
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Solving the Lagrangean Subproblem (3)

@ Question: what is changing by relaxing constraints y; € {0, 1}
to0<y; < 17

@ Answer: nothing!

@ The Lagrangean Subproblems has the intergality property:
there exist optimal solutions to its continuous relaxation in
which all the variables take integer values.

@ In this case, computing a lower bound to the integer problem
or computing a lower bound to its continuous relaxation is the
same.

@ Result: the lower bound given by Lagrangean Relaxation in
not tighter than the lower bound given by the continuous
relaxation of the problem.
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Solving the Lagrangean Subproblem (3)

@ Question: what is changing by relaxing constraints y; € {0, 1}
to0<y; < 17

@ Answer: nothing!

@ The Lagrangean Subproblems has the intergality property:
there exist optimal solutions to its continuous relaxation in
which all the variables take integer values.

@ In this case, computing a lower bound to the integer problem
or computing a lower bound to its continuous relaxation is the
same.

@ Result: the lower bound given by Lagrangean Relaxation in
not tighter than the lower bound given by the continuous
relaxation of the problem.

@ When the problem is continuous, by solving the LD Problem. ...
we obtain the optimum of the original problem. s
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Solving UFLP A primal-dual algorithm for UFLP

Remarks

@ If the Lagrangean Subproblem has the integrality property, the
corresponding lower bound is not tighter than the continuous
relaxation lower bound ...
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An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Remarks

@ If the Lagrangean Subproblem has the integrality property, the
corresponding lower bound is not tighter than the continuous
relaxation lower bound ...

@ ...but might provide useful information for finding good
integer solutions!
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Finding a feasible solution

Let us look at the Lagrangean Subproblem:

n;iyn Z fiyi + Z Z CijXij+

= el il jeJ
> mQ _xi =)= > nilyi —x3)
jed el il jed
st. 0<x; <1 Viel,VjeJ
yi €{0,1} Viel
uj >0 Viel,vjeJ
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Solving UFLP A primal-dual algorithm for UFLP

Finding a feasible solution

The original problem is:

min Z fiyi + Z Z Cij Xij

iel iel jeJ

st. » xj=1 vjeJ
iel
xij < Yi Viel,VjeJ
xjj >0 Viel,vjeJ
yi € {0,1} Viel

and therefore, the Lagrangean Subproblem solution might violate

@ assignment constraints
@ (consistency) constraints linking x and y variables [ Usvagem
how to build a feasible UFLP solution?

Modeling, Analysis and Optimization of Networks (Part 2: des
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Solving UFLP A primal-dual algorithm for UFLP

Finding a feasible solution

Some observations:
@ once the y variables are fixed, optimizing over x is easy ...

@ ... let's keep the values of y variables found in the Lagrangean
Subproblem, and re-optimize over x.

(but we could do the other way round as well).
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The idea of dual ascent

o If the Lagrangean subproblem has the integrality property, the
corresponding lower bound is not tighter than that given by
the continuous relaxation ...
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The idea of dual ascent

o If the Lagrangean subproblem has the integrality property, the
corresponding lower bound is not tighter than that given by
the continuous relaxation ...

@ ...but might be easier to compute!
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The idea of dual ascent

o If the Lagrangean subproblem has the integrality property, the
corresponding lower bound is not tighter than that given by
the continuous relaxation ...

@ ...but might be easier to compute!

@ Subgradient algorithm is generic (not exploiting the structure
of the problem).
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Solving UFLP A primal-dual algorithm for UFLP

The idea of dual ascent

o If the Lagrangean subproblem has the integrality property, the
corresponding lower bound is not tighter than that given by
the continuous relaxation ...

@ ...but might be easier to compute!

@ Subgradient algorithm is generic (not exploiting the structure
of the problem).

@ We can exploit LP theory and problem features to find a good
set of multipliers.
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Dual UFLP

@ Let us consider the continuous relaxation of the inital UFLP formulation:

min > fiyi + > > ciixg

icl icl jeJ

st > x=1 vjeJ
iel
yi —xj =0 Viel,VjeJ
xj >0 viel,vjeJ
yi 20 viel
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Dual UFLP

@ Let us consider the continuous relaxation of the inital UFLP formulation:

min > fiyi + > > ciixg

iel i€l jed
st > x=1 vjeJ
il
yi —xj =0 Viel,VjeJ
xj >0 viel,vjeJ
yi >0 viel

@ the corresponding dual problem is:

max E vj

jeJ
st > wup < f; viel
Jjed
vi —uj < ¢ Viel,vjeJ
uj >0 viel,vjeJ
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Dual UFLP

@ Dual problem:

max E vj

jed
st. > u < f; viel

Jjed

vi — uj < cj viel,vjeJ

uj >0 Yiel,vjeJ
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Dual UFLP

@ Dual problem:

max E vj

jed
st. > u < f; viel

Jjed

vi — uj < cj viel,vjeJ

uj >0 Yiel,vjeJ

@ For each choice of the dual variables vj, fix uj; to the maximum possible value (keep feasibility and leave
objective function unchanged). Hence

ujj = max{0, v; — ¢;j}
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Dual UFLP

@ Dual problem:

max E vj

jed
st. > u < f; viel

Jjed

vi — uj < cj viel,vjeJ

uj >0 Yiel,vjeJ

@ For each choice of the dual variables vj, fix uj; to the maximum possible value (keep feasibility and leave
objective function unchanged). Hence

ujj = max{0, v; — ¢;j}

@ In this way we obtain a “condensed dual” problem:

max Z Vj

j€J

s.t. E max{0, v; — ¢;j} < f; viel
jed [, UNIVERSITA
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Solving UFLP

@ Condensed dual problem:

maxgvj

jed
s.t. Z max{0, v; — ¢;} < f; Viel
Jjed
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Solving UFLP

@ Condensed dual problem:

max Z vj
jed

s.t. Z max{0, v; — ¢;} < f; Viel
Jjed

e The DUALOC algorithm (Erlenkotter '78)
o Inizialize v; = minje;{c;}
o Inizialize s; = f; — >, ;max{0, v; — ¢;}
o lteratively:
e For each j € J:
o let Aj = minje/{si|lv; — ¢j > 0}
@ decrease s; of A for each i with v; — ¢; > 0; increase v; of A; | ...

. . . ‘" DEGLI STUDI
e Until there are no more changes in the dual solution.

D1 MiLANO

A. Ceselli, DI = Univ. of Milan Modeling, Analysis and Optimization of Networks (Part 2: des



A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Rebuild a primal solution

@ Condensed dual problem:

max 3 v;
j€J

s.t. Zmax{o, vi —cj} < f; viel
j€d
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Solving UFLP A primal-dual algorithm for UFLP

Rebuild a primal solution

@ Condensed dual problem:

max ZVJ

jed

s.t. Zmax{o, vi —cj} < f; viel
j€d

@ Complementary slackness conditions:
yi(fi — Z max{0, v; — ¢;}) =0Vi € |

j€J
(vi — xij) max{0, v; — c;} = 0QVi € I,Vj € J
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Solving UFLP A primal-dual algorithm for UFLP

Rebuild a primal solution

@ Condensed dual problem:

max ZVJ

j€J
s.t. Zmax{o, vi —cj} < f; viel
j€d

@ Complementary slackness conditions:

yi(fi — Z max{0, v; — ¢;}) =0Vi € |
j€Jd
(vi — xij) max{0, v; — c;} = 0QVi € I,Vj € J

@ First, if s; > Othenlety; =0, else let y; = 1
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Solving UFLP A primal-dual algorithm for UFLP

Rebuild a primal solution

@ Condensed dual problem:

max ZVJ

jed

s.t. Zmax{o, vi —cj} < f; viel
j€d

@ Complementary slackness conditions:
yi(fi — Z max{0, v; — ¢;}) =0Vi € |
j€d
(vi — xij) max{0, v; — c;} = 0QVi € I,Vj € J

@ First, if s; > Othenlety; =0, else let y; = 1

@ Second, assign each terminal j to a server in argmin; ¢ |y, =1Cjj

UNIVERSITA
DEGLI STUDI
D1 MiLANO

A. Ceselli, DI = Univ. of Milan i Analysis and Optimization of Networks (Part 2: des



A Lower Bound for UFLP
An Upper Bound for UFLP

Solving UFLP A primal-dual algorithm for UFLP

Rebuild a primal solution

@ Condensed dual problem:

max 3 v;
j€J

s.t. Zmax{o, vi —cj} < f; viel
j€d

@ Complementary slackness conditions:

yi(fi — Z max{0, v; — ¢;}) =0Vi € |
j€Jd
(vi — xij) max{0, v; — c;} = 0QVi € I,Vj € J

@ First, if s; > Othenlety; =0, else let y; = 1

@ Second, assign each terminal j to a server in argmin; ¢ |y, =1Cjj

@ This condition might violate complementary slackness conditions, but is feasible, and therefore a valid
upper bound.
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Location problems taxonomy

Location Lab

Experimenting on Location Modeling variants, Lagrangean
Relaxation and Column Generation algorithms in AMPL.
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