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The problem

Given

a set of nodes,

a set of links connecting them,

a set of service requests, one for each node of the network,

a set of devices, able to provide service, to be installed in the
network,

I want to

decide where to place the service provider devices,

decide how to satisfy service requests,

maximizing the quality of service (e.g. minimizing delay time)
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Locating devices on a network

It is not a single problem, but a class of problems, known as
Facility Location.
Several modeling issues arise:

is the capacity of a service provider finite?

is it possible to answer to the same service request using
(fracionally) different providers?

is there a limit on the number of service requests that can be
served by the same provider (e.g. devices with limited number
of ports)?

is the problem single or multi commodity?

how to measure the overall quality of service?
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Assumptions

Let us begin with a basic location problem:

1 providers with very large resources (capacity and number of
ports are not an issue),

2 possibility of splitting service requests,

3 single commodity,

4 minimize the average connection cost.

In this case we talk about a Uncapacitated Facility Location
Problem.
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Visually:
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Mathematical models

Problem features:

Given:

A graph G (V ,E ) (telecomunication network: V = sites, E =
links).

A subset I of vertices of the graph, which correspond to sites
in which servers can be installed.

A subset J of vertices of the graph, in which terminals are
placed.

Installing a server in each site i ∈ I has a cost fi .

Connecting a terminal in site j ∈ J to a server in i ∈ I has a
cost cij .

Choose if and where to intall the servers (binary variables yi )
and how to connect terminals to servers (variables xij). . .

. . . in such a way that each terminal is connected to a server.
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Uncapacitated Facility Location Problem (UFLP)

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij = 1 ∀j ∈ J

xij ≤ yi ∀i ∈ I , ∀j ∈ J

xij ≥ 0 ∀i ∈ I , ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

N.B. Without additional conditions, variables xij take integer
values.
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A Lower Bound for UFLP
An Upper Bound for UFLP
A primal-dual algorithm for UFLP

Solving UFLP

The problem is “difficult” (NP-Hard);

we try to use the Lagrangean Relaxation technique in order to
get lower (dual) bounds to the problem;

we try to repair a (generally infeasible) solution of the
relaxation to obtain a feasible solution to the problem;

this solution provides an upper (primal) bound: might not be
optimal, but in general good enough;

the difference between upper and lower bound gives a quality
estimation of our solution;

if the quality is not enough, we resort to branch-and-bound
(enumeration).
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UFLP: Lagrangean Relaxation

w(x , y , π, η) =

min z =
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij

−
∑
j∈J

πj(
∑
i∈I

xij − 1)

−
∑
i∈I

∑
j∈J

ηij(yi − xij)

s.t.
∑
i∈I

xij = 1

− 1 ≥ 0

∀j ∈ J

(π)

yi ≥ xij

− xij ≥ 0

∀i ∈ I , ∀j ∈ J

(η)

xij ≥ 0 ∀i ∈ I , ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I
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UFLP: Lagrangean Relaxation

w(x , y , π, η) =
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij+

−
∑
j∈J

πj(
∑
i∈I

xij − 1) −
∑
i∈I

∑
j∈J

ηij(yi − xij)

L(π, η) = min
x ,y

w(x , y , π, η)

s.t. 0 ≤ xij(≤ 1) ∀i ∈ I ,∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

uij ≥ 0 ∀i ∈ I ,∀j ∈ J

w(x , y , π, η) is called the Lagrangean Function and
maxπ,η L(π, η) is called the Lagrangean Dual Problem.
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Solving the Relaxation

For any choice of π and η, L(π, η) gives a valid lower (dual)
bound bound to the value of z∗.

In order to obtain the tightest lower bound we had to solve
the Lagrangean Dual Problem to optimality

Possible from a theoretical point of view, very hard from a
computational point of view.

We resort to approximate solutions for the Lagrangean Dual
Problem.
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Solving the Relaxation

Lagrangean Relaxation was first devised to solve nonlinear
(continuous) problems.

There are many iterative algorithms (update variables and
multipliers until convergence).

The most simple choice is the gradient algorithm. Iteratively:

fix the multipliers and find a (local) optimum with respect to
the remaining variables,
compute the gradient of the Lagrangean Dual Function with
respect to the multipliers,
update the multipliers according to these gradients

until the gradients are 0 (or early termination criteria).

Our Lagrangean Dual Function is nondifferentiable (piecewise
linear), hence we use subgradients instead of gradients.
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Subgradient algorithm for UFLP (1)

Choose an initial value for the multipliers π0 e η0.

Iteratively (k = 1 . . .)

Solve the Lagrangean Subproblem in x e y , getting a solution

(xk , yk) of value ωk .
Compute the subgradients:

∇hk
j = 1−

∑
i∈I x

k
ij

∇g k
ij = xk

ij − y k
i

Choose a step length αk .
Update the multipliers:

πk+1
j = πk

j − αk · ∇hk
j

ηk+1
ij = ηk

ij − αk · ∇g k
ij
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Subgradient algorithm for UFLP (2)

A popular choice is

to set the step length αk according to the rule:

αk = ρk · UB− ωk∑
i∈I ,j∈J(∇gk

ij )2 +
∑

j∈J(∇hk
j )2

where UB is an upper bound to the optimal value of
w(x , y , π, η).

to (maybe) reduce the parameter ρk at some iteration
according to the rule:

ρk+1 = 0.5 · ρk

Moreover, if for some (i , j) ηk+1
ij ≤ 0, in order to fulfil

constraints on the sign of multipliers η, set ηk+1
ij = 0.
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Subgradient algorithm for UFLP (3)

Iterate until

∇gk
ij = 0 and ∇hk

j = 0 for each i ∈ I , j ∈ J (optimum
reached), or
a maximum number of iterations is performed, or
the value ωk is sufficiently near to UB, or
the value ρ is sufficiently small

In the first case, the Lagrangean Dual Problem has been
solved to optimality, otherwise we have no guarantee on the
quality of the (dual) solution.
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Solving the Lagrangean Subproblem (1)

min
x ,y

∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij+

−
∑
j∈J

πj(
∑
i∈I

xij − 1)−
∑

i∈I ,j∈J
ηij(yi − xij)

s.t. 0 ≤ xij ≤ 1 ∀i ∈ I ,∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

uij ≥ 0 ∀i ∈ I ,∀j ∈ J
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Solving the Lagrangean Subproblem (2)

min
x ,y

∑
i∈I

(fi −
∑
j∈J

ηij)yi+
∑
i∈I

∑
j∈J

(cij − πj + uij)xij −
∑
j∈J

πj

s.t. 0 ≤ xij ≤ 1 ∀i ∈ I ,∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

uij ≥ 0 ∀i ∈ I ,∀j ∈ J

Set f̃i = (fi −
∑

j∈J ηij) and c̃ij = (cij − πj + ηij).

If f̃i ≥ 0 set yi = 0, otherwise set yi = 1;

If c̃ij ≥ 0 set xij = 0, otherwise set xij = 1

A. Ceselli, DI – Univ. of Milan Modeling, Analysis and Optimization of Networks (Part 2: design)



Advanced design problems
Modeling

Solving UFLP
Location problems taxonomy

A Lower Bound for UFLP
An Upper Bound for UFLP
A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (2)

min
x ,y

∑
i∈I

(fi −
∑
j∈J

ηij)yi+
∑
i∈I

∑
j∈J

(cij − πj + uij)xij −
∑
j∈J

πj

s.t. 0 ≤ xij ≤ 1 ∀i ∈ I ,∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

uij ≥ 0 ∀i ∈ I ,∀j ∈ J

Set f̃i = (fi −
∑

j∈J ηij) and c̃ij = (cij − πj + ηij).

If f̃i ≥ 0 set yi = 0, otherwise set yi = 1;

If c̃ij ≥ 0 set xij = 0, otherwise set xij = 1

A. Ceselli, DI – Univ. of Milan Modeling, Analysis and Optimization of Networks (Part 2: design)



Advanced design problems
Modeling

Solving UFLP
Location problems taxonomy

A Lower Bound for UFLP
An Upper Bound for UFLP
A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (2)

min
x ,y

∑
i∈I

(fi −
∑
j∈J

ηij)yi+
∑
i∈I

∑
j∈J

(cij − πj + uij)xij −
∑
j∈J

πj

s.t. 0 ≤ xij ≤ 1 ∀i ∈ I ,∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

uij ≥ 0 ∀i ∈ I ,∀j ∈ J

Set f̃i = (fi −
∑

j∈J ηij) and c̃ij = (cij − πj + ηij).

If f̃i ≥ 0 set yi = 0, otherwise set yi = 1;

If c̃ij ≥ 0 set xij = 0, otherwise set xij = 1

A. Ceselli, DI – Univ. of Milan Modeling, Analysis and Optimization of Networks (Part 2: design)



Advanced design problems
Modeling

Solving UFLP
Location problems taxonomy

A Lower Bound for UFLP
An Upper Bound for UFLP
A primal-dual algorithm for UFLP

Solving the Lagrangean Subproblem (3)

Question: what is changing by relaxing constraints yi ∈ {0, 1}
to 0 ≤ yi ≤ 1?

Answer: nothing!

The Lagrangean Subproblems has the intergality property:
there exist optimal solutions to its continuous relaxation in
which all the variables take integer values.

In this case, computing a lower bound to the integer problem
or computing a lower bound to its continuous relaxation is the
same.

Result: the lower bound given by Lagrangean Relaxation in
not tighter than the lower bound given by the continuous
relaxation of the problem.

When the problem is continuous, by solving the LD Problem
we obtain the optimum of the original problem.
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Remarks

If the Lagrangean Subproblem has the integrality property, the
corresponding lower bound is not tighter than the continuous
relaxation lower bound . . .

. . . but might provide useful information for finding good
integer solutions!
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Finding a feasible solution

Let us look at the Lagrangean Subproblem:

min
x ,y

∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij+

−
∑
j∈J

πj(
∑
i∈I

xij − 1)−
∑

i∈I ,j∈J
ηij(yi − xij)

s.t. 0 ≤ xij ≤ 1 ∀i ∈ I ,∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

uij ≥ 0 ∀i ∈ I ,∀j ∈ J
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Finding a feasible solution

The original problem is:

min
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
i∈I

xij = 1 ∀j ∈ J

xij ≤ yi ∀i ∈ I , ∀j ∈ J

xij ≥ 0 ∀i ∈ I , ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I

and therefore, the Lagrangean Subproblem solution might violate

assignment constraints

(consistency) constraints linking x and y variables

how to build a feasible UFLP solution?
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Finding a feasible solution

Some observations:

once the y variables are fixed, optimizing over x is easy ...

... let’s keep the values of y variables found in the Lagrangean
Subproblem, and re-optimize over x .

(but we could do the other way round as well).
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The idea of dual ascent

If the Lagrangean subproblem has the integrality property, the
corresponding lower bound is not tighter than that given by
the continuous relaxation . . .

. . . but might be easier to compute!

Subgradient algorithm is generic (not exploiting the structure
of the problem).

We can exploit LP theory and problem features to find a good
set of multipliers.
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Dual UFLP

Let us consider the continuous relaxation of the inital UFLP formulation:

min
∑
i∈I

fi yi +
∑
i∈I

∑
j∈J

cij xij

s.t.
∑
i∈I

xij = 1 ∀j ∈ J

yi − xij ≥ 0 ∀i ∈ I , ∀j ∈ J

xij ≥ 0 ∀i ∈ I , ∀j ∈ J

yi ≥ 0 ∀i ∈ I

the corresponding dual problem is:

max
∑
j∈J

vj

s.t.
∑
j∈J

uij ≤ fi ∀i ∈ I

vj − uij ≤ cij ∀i ∈ I , ∀j ∈ J

uij ≥ 0 ∀i ∈ I , ∀j ∈ J
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Dual UFLP

Dual problem:

max
∑
j∈J

vj

s.t.
∑
j∈J

uij ≤ fi ∀i ∈ I

vj − uij ≤ cij ∀i ∈ I , ∀j ∈ J

uij ≥ 0 ∀i ∈ I , ∀j ∈ J

For each choice of the dual variables vj , fix uij to the maximum possible value (keep feasibility and leave
objective function unchanged). Hence

uij = max{0, vj − cij}

In this way we obtain a “condensed dual” problem:

max
∑
j∈J

vj

s.t.
∑
j∈J

max{0, vj − cij} ≤ fi ∀i ∈ I

A. Ceselli, DI – Univ. of Milan Modeling, Analysis and Optimization of Networks (Part 2: design)



Advanced design problems
Modeling

Solving UFLP
Location problems taxonomy

A Lower Bound for UFLP
An Upper Bound for UFLP
A primal-dual algorithm for UFLP

Dual UFLP

Dual problem:

max
∑
j∈J

vj

s.t.
∑
j∈J

uij ≤ fi ∀i ∈ I

vj − uij ≤ cij ∀i ∈ I , ∀j ∈ J

uij ≥ 0 ∀i ∈ I , ∀j ∈ J

For each choice of the dual variables vj , fix uij to the maximum possible value (keep feasibility and leave
objective function unchanged). Hence

uij = max{0, vj − cij}

In this way we obtain a “condensed dual” problem:

max
∑
j∈J

vj

s.t.
∑
j∈J

max{0, vj − cij} ≤ fi ∀i ∈ I

A. Ceselli, DI – Univ. of Milan Modeling, Analysis and Optimization of Networks (Part 2: design)



Advanced design problems
Modeling

Solving UFLP
Location problems taxonomy

A Lower Bound for UFLP
An Upper Bound for UFLP
A primal-dual algorithm for UFLP

Dual UFLP

Dual problem:

max
∑
j∈J

vj

s.t.
∑
j∈J

uij ≤ fi ∀i ∈ I

vj − uij ≤ cij ∀i ∈ I , ∀j ∈ J

uij ≥ 0 ∀i ∈ I , ∀j ∈ J

For each choice of the dual variables vj , fix uij to the maximum possible value (keep feasibility and leave
objective function unchanged). Hence

uij = max{0, vj − cij}

In this way we obtain a “condensed dual” problem:

max
∑
j∈J

vj

s.t.
∑
j∈J

max{0, vj − cij} ≤ fi ∀i ∈ I

A. Ceselli, DI – Univ. of Milan Modeling, Analysis and Optimization of Networks (Part 2: design)



Advanced design problems
Modeling

Solving UFLP
Location problems taxonomy

A Lower Bound for UFLP
An Upper Bound for UFLP
A primal-dual algorithm for UFLP

DuaLoc

Condensed dual problem:

max
∑
j∈J

vj

s.t.
∑
j∈J

max{0, vj − cij} ≤ fi ∀i ∈ I

The DUALOC algorithm (Erlenkotter ’78)
Inizialize vj = mini∈I{cij}
Inizialize si = fi −

∑
j∈J max{0, vj − cij}

Iteratively:
For each j ∈ J:

let ∆j = mini∈I{si |vj − cij ≥ 0}
decrease si of ∆j for each i with vj − cij ≥ 0; increase vj of ∆j

Until there are no more changes in the dual solution.
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Rebuild a primal solution

Condensed dual problem:

max
∑
j∈J

vj

s.t.
∑
j∈J

max{0, vj − cij} ≤ fi ∀i ∈ I

Complementary slackness conditions:

yi (fi −
∑
j∈J

max{0, vj − cij}) = 0∀i ∈ I

(yi − xij ) max{0, vj − cij} = 0∀i ∈ I , ∀j ∈ J

First, if si > 0 then let yi = 0, else let yi = 1

Second, assign each terminal j to a server in argmini∈I|yi =1cij

This condition might violate complementary slackness conditions, but is feasible, and therefore a valid
upper bound.
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Location Lab

Experimenting on Location Modeling variants, Lagrangean
Relaxation and Column Generation algorithms in AMPL.
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