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What's a Network ?

Dictionary.com:
any netlike combination of filaments, lines, 
veins, passages, or the like

Wikipedia:
disambiguation page with 30 entries in 4 
categories

Let's try images !



  

First image in Google :



  

A few images after: artistic ones



  

A few images after: artistic ones



  

… and very different domains



  

… only rank 26!



  

Trivia: how many networks do you 
see?



  

To remember:

1.1 - Networks are pervasive !

2.2 - by « network » we mean far more than 
computers connected by cables;



  

And what about computer 
networks?

Samuel Morse (1791 – 1872)

professor of arts and design at New York 
University

in 1835, proved that signals could be 
transmitted by wire …



  

Alexander Graham Bell (1847 - 1922), and 
Thomas Watson

initially working on multi-tone telegraphy 
(many signals on the same line at the same 
time)

multi-tone then became the telephone!

patented during 1876 ...



  

The Advanced Research Projects Agency 
Network (ARPANet),

J. C. R. Licklider, articulated the ideas in his 
January 1960 paper, Man-Computer 
Symbiosis,

First operational packet switching network 
between computers

actually deployed in 1969

the first message « LO(G) » yielded a system 
crash!



  



  

WWW: a system of interlinked hypertext documents

Tim Berners-Lee wrote a proposal in March 1989

Robert Cailliau proposed in 1990 to use hypertexts …

Google (Larry Page and Sergey Brin in 1998):

over 1 million servers, at least 12 data centers located 
only in the U.S.A. (in 2012);

internet search: about 24 PB of user data daily (in 2012);

cloud computing: managing and balancing distributed

resources.

Facebook (Mark Zuckerberg et al. in 2004):

handling social networks of billion users (1.6 x 10 ?)⁹



  

To remember:

1.1 - Networks are pervasive !

2.2 - by « network » we mean far more than 
computers connected by cables;

3.3 - network problems moved from 
technologies to applications, and now to 
services;

4 - networks are in general too complex 4 - networks are in general too complex 
to be managed by humans without to be managed by humans without 
decision support systems. decision support systems. 



  

Modeling, Analysis and Optimization 
of Networks

Either « transverse » or « specialization » 
course offered by D.I.

(Far) More on modeling and structural 
properties than on specific techniques and 
technologies

Different editions cover different sub-topics

This year: network design



  

Course objectives

finding network (design) structures in 
applications

modeling as design problems on networks

main theoretical results on trees and 
location algorithms

overview of tools for solving network 
design problems



  

PART I: Finding 
components and designing 

components



  

Example 1 : finding micells

We are performing molecular dynamics 
simulations

We are given a set of proteins, each 
composed by several atoms

These proteins interact, and during 
simulation, tend to form clusters

How to find, at a certain point in time, 
which clusters are there ? 



  

Example 2 : detecting block 
structure in matrices

We are given a certain matrix

We would like to understand if it has a 
block diagonal structure …

… in order to exploit decomposition in 
linear algebra algorithms



  

What's the common factor among 
the two problems ?

Search for connected components in a suitable 
graph !

Recall : search in a graph G(V,E) …

Find connected components :

For each i in V, set c[i] = 0

Set k = 0, set R = V

While R is not empty

Pick a vertex i in R

Set c[i] = k

Perform a search  in R starting from i: mark every visited node j 
by setting c[j] = k

Set R = R \ {j | c[j] == k}



  

Notation

An undirected graph G(V,E)



  

Designing components

What if components are not just given, but 
need to be designed ?

Given a graph G(V,E)

Given a weight function c:E →ℝ+ 

Find a subgraph

Forming a single connected component

Of minimum overall weight

i.e. a spanning tree !



  

Notation

An undirected graph G(V,E)

A function c: E → ℝ (edge costs)
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Notation : a spanning tree

An undirected graph G(V,E)

A function c: E → ℝ (edge costs) 
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Notation : not a spanning tree 
(disconnected)

An undirected graph G(V,E)

A function c: E → ℝ (edge costs) 
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Notation : not a spanning tree
(non spanning)

An undirected graph G(V,E)

A function c: E → ℝ (edge costs) 
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Notation : not a spanning tree
(loops) 

An undirected graph G(V,E)

A function c: E → ℝ (edge costs) 
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Observations

a - How many vertices are included in a 
spanning tree ?

b - How many edges ?

c - How many loops ?

→ (a) |V| vertices, (b) |V|-1 edges, (c) 0 loops !

(b) + (c) → (a)



  

Example 3 : message passing
(Ahuja, Magnanti, Orlin « Network Flows ») 

An intelligence service has n agents in a 
nonfriendly country. Each agent knows some of the 
other agents and has in place procedures for 
arranging a rendezvous with anyone he knows.

For each such possible rendezvous, say between 
agent i and agent j, any message passed between 
these agents will fall into hostile hands with a 
certain probability pij. 

The group leader wants to transmit a confidential 
message among all the agents while minimizing 
the total probability that the message is 
intercepted.



  

Example 4 : reducing data storage 
(Ahuja, Magnanti, Orlin « Network Flows ») 

In several different application contexts, we wish to store 
data specified in the form of a two-dimensional array more 
efficiently than storing all the elements of the array (to save 
memory space). 

We assume that the rows of the array have many similar 
entries and differ only at a few places. One such situation 
arises in the sequence of amino acids in a protein found in 
the mitochondria of different animals and higher plants.

Since the entities in the rows are similar, one approach for 
saving memory is to store one row, called the reference row, 
completely, and to store only the differences between some 
of the rows so that we can derive each row from these 
differences and the reference row.

How to choose the reference rows ?



  

The « roots » of spanning trees

Cut Optimality Conditions

Path Optimality Conditions

Kruskal Algorithm

Prim Algorithm

Boruvka Algorithm



  

Cut optimality conditions

Remove any edge from a spanning tree, and 
the tree disconnects in two components [S,T]

The edges of G connecting S with T form a 
cut

Cut Optimality Conditions (COC) : a 
spanning tree P* is minimum if and only if

For every tree edge (i,j) in P*, 

c(i,j) ≤ c(k,l) for every edge (k,l) in the cut [S,T] 
induced by the removal of (i,j)

(proof on the blackboard)



  

Path optimality conditions

Take any pair of vertices (i,j) and a 
spanning tree P : there is a single path in 
P connecting them (otherwise → loop)

Path Optimality Conditions (POC) : a 
spanning tree P* is minimum if and only if

For every non-tree edge (k,l) in G, 

c(i,j) ≤ c(k,l) for every edge (i,j) in the path from 
from k to l in P*

(proof on the blackboard)



  

A comment on optimality conditions

Cut optimality conditions yield an 
« external » representation of a minimum 
spanning tree (i.e. look to non-tree edges)

Cut optimality conditions yield an 
« internal » representation of a minimum 
spanning tree (i.e. look to tree edges)

Similar conditions hold for the maximum 
spanning tree problem



  

Straightforward path-based 
algorithm

Start with a random spanning tree P

Iteratively, 

check if POC are respected

If they are, then P is optimal → stop

else, find a pair of edges violating them and 
swap, obtaining a new P

Drawback : not polynomially bounded.



  

Kruskal's algorithm

Build an optimal spanning tree P* from scratch, adding one 
edge at a time

Sort edges by non-decreasing cost

Set L = empty set

For t = 1 .. |V|-1

Pick the minimum cost edge (i,j) from E \ L that is not forming 
loops with edges in L

Add (i,j) to L

P* = L

(correctness proof at the blackboard)

Computational complexity : O(|E||V|)
(proof at the blackboard) 



  

Prim's algorithm

Build an optimal spanning tree P* from scratch, adding one 
edge at a time

Choose a random vertex i

Set S = {i}, L = empty set

For t = 2 .. |V|

Pick the minimum cost edge (i,j) in the cut [S, V\S]

Add j to S

Add (i,j) to L

P* = L

(correctness proof at the blackboard)

Computational complexity : O(|E||V|)
(proof at the blackboard) 



  

Boruvka's algorithm (1/2)

nearest-neighbor (N, i, j) → 

Input : a tree spanning the vertices N

Output : an edge (i, j) with the minimum cost among all 
edges from N
cij = min{clk:(l,k) in E, l in N and k not in N}

Scan all the edges in the adjacency lists of nodes in N, 
and find a min cost edge among those arcs that have 
one endpoint not belonging to N.

merge(N, M) → 

Input : two vertex sets N and M

Output : merge N and M, appending M to N

Append lists



  

Boruvka's algorithm (2/2)

For each i in V, let N(i) := { i }

Let P* := empty set ; Let K := V;

While |P*| < |V|-1

Let E := empty set

For each N(k) do
nearest-neighbor(N(k), i(k), j(k))
Let E:= E U { ( i(k), j(k) ) }

For each ( i , j ) in E do
If i and j belong to (different) trees N(i) and N(j)

Merge( N(i), N(j) )

Let P* := P* U {( i , j )}



  

Comparison of Algorithms

Algorithm Data Structure Complexity

Naive path based NN No polynomial bound

Kruskal List O(|E||V|)

Kruskal Lists w. eff. union-find O(|E| Q + edge sorting)

Prim List O(|E||V|)

Prim Fibonacci heap O(|E| + |V| log |V|)

Prim Johnson's data structure O(|E| log log C)

Boruvka Circular doub. linked lists O(|E| log |V|)

Boruvka Chazelle's data structure O(|E| alpha(|E|,|V|) )
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