

Modeling, Analysis and Optimization of Networks
(part 2 : Design)

Alberto Ceselli
alberto.ceselli@unimi.it

Università degli Studi di Milano
Dipartimento di Informatica

Doctoral School in Computer Science

A.A. 2016/2017

What's a Network ?

Dictionary.com:
any netlike combination of filaments, lines,
veins, passages, or the like

Wikipedia:
disambiguation page with 30 entries in 4
categories

Let's try images !

First image in Google :

A few images after: artistic ones

A few images after: artistic ones

… and very different domains

… only rank 26!

Trivia: how many networks do you
see?

To remember:

1.1 - Networks are pervasive !

2.2 - by « network » we mean far more than
computers connected by cables;

And what about computer
networks?

Samuel Morse (1791 – 1872)

professor of arts and design at New York
University

in 1835, proved that signals could be
transmitted by wire …

Alexander Graham Bell (1847 - 1922), and
Thomas Watson

initially working on multi-tone telegraphy
(many signals on the same line at the same
time)

multi-tone then became the telephone!

patented during 1876 ...

The Advanced Research Projects Agency
Network (ARPANet),

J. C. R. Licklider, articulated the ideas in his
January 1960 paper, Man-Computer
Symbiosis,

First operational packet switching network
between computers

actually deployed in 1969

the first message « LO(G) » yielded a system
crash!

WWW: a system of interlinked hypertext documents

Tim Berners-Lee wrote a proposal in March 1989

Robert Cailliau proposed in 1990 to use hypertexts …

Google (Larry Page and Sergey Brin in 1998):

over 1 million servers, at least 12 data centers located
only in the U.S.A. (in 2012);

internet search: about 24 PB of user data daily (in 2012);

cloud computing: managing and balancing distributed

resources.

Facebook (Mark Zuckerberg et al. in 2004):

handling social networks of billion users (1.6 x 10 ?)⁹

To remember:

1.1 - Networks are pervasive !

2.2 - by « network » we mean far more than
computers connected by cables;

3.3 - network problems moved from
technologies to applications, and now to
services;

4 - networks are in general too complex 4 - networks are in general too complex
to be managed by humans without to be managed by humans without
decision support systems. decision support systems.

Modeling, Analysis and Optimization
of Networks

Either « transverse » or « specialization »
course offered by D.I.

(Far) More on modeling and structural
properties than on specific techniques and
technologies

Different editions cover different sub-topics

This year: network design

Course objectives

finding network (design) structures in
applications

modeling as design problems on networks

main theoretical results on trees and
location algorithms

overview of tools for solving network
design problems

PART I: Finding
components and designing

components

Example 1 : finding micells

We are performing molecular dynamics
simulations

We are given a set of proteins, each
composed by several atoms

These proteins interact, and during
simulation, tend to form clusters

How to find, at a certain point in time,
which clusters are there ?

Example 2 : detecting block
structure in matrices

We are given a certain matrix

We would like to understand if it has a
block diagonal structure …

… in order to exploit decomposition in
linear algebra algorithms

What's the common factor among
the two problems ?

Search for connected components in a suitable
graph !

Recall : search in a graph G(V,E) …

Find connected components :

For each i in V, set c[i] = 0

Set k = 0, set R = V

While R is not empty

Pick a vertex i in R

Set c[i] = k

Perform a search in R starting from i: mark every visited node j
by setting c[j] = k

Set R = R \ {j | c[j] == k}

Notation

An undirected graph G(V,E)

Designing components

What if components are not just given, but
need to be designed ?

Given a graph G(V,E)

Given a weight function c:E →ℝ+

Find a subgraph

Forming a single connected component

Of minimum overall weight

i.e. a spanning tree !

Notation

An undirected graph G(V,E)

A function c: E → ℝ (edge costs)

9

9

10

8

1

3

8

10

7

Notation : a spanning tree

An undirected graph G(V,E)

A function c: E → ℝ (edge costs)

9

9

10

8

1

3

8

10

7

Notation : not a spanning tree
(disconnected)

An undirected graph G(V,E)

A function c: E → ℝ (edge costs)

9

9

10

8

1

3

8

10

7

Notation : not a spanning tree
(non spanning)

An undirected graph G(V,E)

A function c: E → ℝ (edge costs)

9

9

10

8

1

3

8

10

7

Notation : not a spanning tree
(loops)

An undirected graph G(V,E)

A function c: E → ℝ (edge costs)

9

9

10

8

1

3

8

10

7

Observations

a - How many vertices are included in a
spanning tree ?

b - How many edges ?

c - How many loops ?

→ (a) |V| vertices, (b) |V|-1 edges, (c) 0 loops !

(b) + (c) → (a)

Example 3 : message passing
(Ahuja, Magnanti, Orlin « Network Flows »)

An intelligence service has n agents in a
nonfriendly country. Each agent knows some of the
other agents and has in place procedures for
arranging a rendezvous with anyone he knows.

For each such possible rendezvous, say between
agent i and agent j, any message passed between
these agents will fall into hostile hands with a
certain probability pij.

The group leader wants to transmit a confidential
message among all the agents while minimizing
the total probability that the message is
intercepted.

Example 4 : reducing data storage
(Ahuja, Magnanti, Orlin « Network Flows »)

In several different application contexts, we wish to store
data specified in the form of a two-dimensional array more
efficiently than storing all the elements of the array (to save
memory space).

We assume that the rows of the array have many similar
entries and differ only at a few places. One such situation
arises in the sequence of amino acids in a protein found in
the mitochondria of different animals and higher plants.

Since the entities in the rows are similar, one approach for
saving memory is to store one row, called the reference row,
completely, and to store only the differences between some
of the rows so that we can derive each row from these
differences and the reference row.

How to choose the reference rows ?

The « roots » of spanning trees

Cut Optimality Conditions

Path Optimality Conditions

Kruskal Algorithm

Prim Algorithm

Boruvka Algorithm

Cut optimality conditions

Remove any edge from a spanning tree, and
the tree disconnects in two components [S,T]

The edges of G connecting S with T form a
cut

Cut Optimality Conditions (COC) : a
spanning tree P* is minimum if and only if

For every tree edge (i,j) in P*,

c(i,j) ≤ c(k,l) for every edge (k,l) in the cut [S,T]
induced by the removal of (i,j)

(proof on the blackboard)

Path optimality conditions

Take any pair of vertices (i,j) and a
spanning tree P : there is a single path in
P connecting them (otherwise → loop)

Path Optimality Conditions (POC) : a
spanning tree P* is minimum if and only if

For every non-tree edge (k,l) in G,

c(i,j) ≤ c(k,l) for every edge (i,j) in the path from
from k to l in P*

(proof on the blackboard)

A comment on optimality conditions

Cut optimality conditions yield an
« external » representation of a minimum
spanning tree (i.e. look to non-tree edges)

Cut optimality conditions yield an
« internal » representation of a minimum
spanning tree (i.e. look to tree edges)

Similar conditions hold for the maximum
spanning tree problem

Straightforward path-based
algorithm

Start with a random spanning tree P

Iteratively,

check if POC are respected

If they are, then P is optimal → stop

else, find a pair of edges violating them and
swap, obtaining a new P

Drawback : not polynomially bounded.

Kruskal's algorithm

Build an optimal spanning tree P* from scratch, adding one
edge at a time

Sort edges by non-decreasing cost

Set L = empty set

For t = 1 .. |V|-1

Pick the minimum cost edge (i,j) from E \ L that is not forming
loops with edges in L

Add (i,j) to L

P* = L

(correctness proof at the blackboard)

Computational complexity : O(|E||V|)
(proof at the blackboard)

Prim's algorithm

Build an optimal spanning tree P* from scratch, adding one
edge at a time

Choose a random vertex i

Set S = {i}, L = empty set

For t = 2 .. |V|

Pick the minimum cost edge (i,j) in the cut [S, V\S]

Add j to S

Add (i,j) to L

P* = L

(correctness proof at the blackboard)

Computational complexity : O(|E||V|)
(proof at the blackboard)

Boruvka's algorithm (1/2)

nearest-neighbor (N, i, j) →

Input : a tree spanning the vertices N

Output : an edge (i, j) with the minimum cost among all
edges from N
cij = min{clk:(l,k) in E, l in N and k not in N}

Scan all the edges in the adjacency lists of nodes in N,
and find a min cost edge among those arcs that have
one endpoint not belonging to N.

merge(N, M) →

Input : two vertex sets N and M

Output : merge N and M, appending M to N

Append lists

Boruvka's algorithm (2/2)

For each i in V, let N(i) := { i }

Let P* := empty set ; Let K := V;

While |P*| < |V|-1

Let E := empty set

For each N(k) do
nearest-neighbor(N(k), i(k), j(k))
Let E:= E U { (i(k), j(k)) }

For each (i , j) in E do
If i and j belong to (different) trees N(i) and N(j)

Merge(N(i), N(j))

Let P* := P* U {(i , j)}

Comparison of Algorithms

Algorithm Data Structure Complexity

Naive path based NN No polynomial bound

Kruskal List O(|E||V|)

Kruskal Lists w. eff. union-find O(|E| Q + edge sorting)

Prim List O(|E||V|)

Prim Fibonacci heap O(|E| + |V| log |V|)

Prim Johnson's data structure O(|E| log log C)

Boruvka Circular doub. linked lists O(|E| log |V|)

Boruvka Chazelle's data structure O(|E| alpha(|E|,|V|))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 41
	Slide 42
	Slide 43

