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Assessing Clustering Tendency

 Assess if non-random structure exists in the data by measuring the 
probability that the data is generated by a uniform data distribution

 Test spatial randomness by statistic test: Hopkins Statistic
 Given a dataset D regarded as a sample of a random variable z, 

determine how far away z is from being uniformly distributed in 
the data space

 Sample n points, p1, …, pn, uniformly from the feature space of D. 
 For each pi, find its nearest neighbor in D:  yi = min{dist (pi, v)} 
where v in D

 Sample n points, q1, …, qn, uniformly from D.  For each qi, find its 
nearest neighbor in D – {qi}:  xi = min{dist (qi, v)} where v in D 
and v ≠ qi

 Calculate the Hopkins Statistic:

 If z (and so D) is uniformly distributed, ∑ xi and ∑ yi are close to 
each other and H is close to 0.5.

 If D is clustered, H is close to 1 4



Determine the Number of Clusters

 Empirical method
 # of clusters ≈sqrt(n/2) for a dataset of n points

 Elbow method
 Use the turning point in the curve of sum of within cluster 

variance w.r.t  the # of clusters
 Cross validation method

 Divide a given data set into m parts
 Use m – 1 parts to obtain a clustering model
 Use the remaining part to test the quality of the clustering

 E.g., For each point in the test set, find the closest 
centroid, and use the sum of squared distance between 
all points in the test set and the closest centroids to 
measure how well the model fits the test set

 For any k > 0, repeat it m times, compare the overall quality 
measure w.r.t. different k’s, and find # of clusters that fits 
the data the best 5



Measuring Clustering Quality

 Two methods: extrinsic vs. intrinsic  

 Extrinsic: supervised, i.e., the ground truth (ideal 
clustering, e.g. built by domain experts) is available

 Compare a clustering against the ground truth using 
certain clustering quality measure

 Ex. BCubed precision and recall metrics

 Intrinsic: unsupervised, i.e., the ground truth is 
unavailable

 Evaluate the goodness of a clustering by considering 
how well the clusters are separated, and how compact 
the clusters are

 Ex. Silhouette coefficient
6



Measuring Clustering Quality: Extrinsic 
Methods 

 Clustering quality measure: Q(C, Cg), for a clustering C 
given the ground truth Cg. 

 Q is good if it satisfies the following 4 essential criteria
 Cluster homogeneity: the purer, the better
 Cluster completeness: should assign objects belong 

to the same category in the ground truth to the same 
cluster

 Rag bag: putting a heterogeneous object into a pure 
cluster should be penalized more than putting it into 
a rag bag (i.e., “miscellaneous” or “other” category)

 Small cluster preservation: splitting a small category 
into pieces is more harmful than splitting a large 
category into pieces
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Measuring Clustering Quality: Intrinsic 
Methods 

 Silhouette coefficient: similarity metric between objects 
in the data set

 Let C1 .. Ck be the clusters
 For each object o in a certain cluster t

 let a(o) be the average distance between o and 
the objects of Ct

 let bl(o) be the average distance between o and 
the objects of cluster l; then b(o) = minl ≠ t bl(o)

 The silhouette coefficient is defined as follows:

8

s (o)=
b (o)−a(o)

max (a (o) , b (o))
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Summary
 Cluster analysis groups objects based on their similarity  and has wide 

applications
 Measure of similarity can be computed for various types of data
 Clustering algorithms can be categorized into partitioning methods, 

hierarchical methods, density-based methods, grid-based methods, and 
model-based methods

 K-means and K-medoids algorithms are popular partitioning-based clustering 
algorithms

 Birch and Chameleon are interesting hierarchical clustering algorithms, and 
there are also probabilistic hierarchical clustering algorithms

 DBSCAN, OPTICS, and DENCLU are interesting density-based algorithms
 STING and CLIQUE are grid-based methods, where CLIQUE is also a subspace 

clustering algorithm
 Quality of clustering results can be evaluated in various ways 
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