
Università degli Studi di Milano
Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 19: 10/12/2015

Data Mining: Concepts and Techniques

(3rd ed.)

— Chapter 8 —

Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign &
Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

Classification methods

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Support Vector Machines
- Model Evaluation and Selection
- *Rule-Based Classification*
- *Techniques to Improve Classification Accuracy: Ensemble Methods*

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by **labels** indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

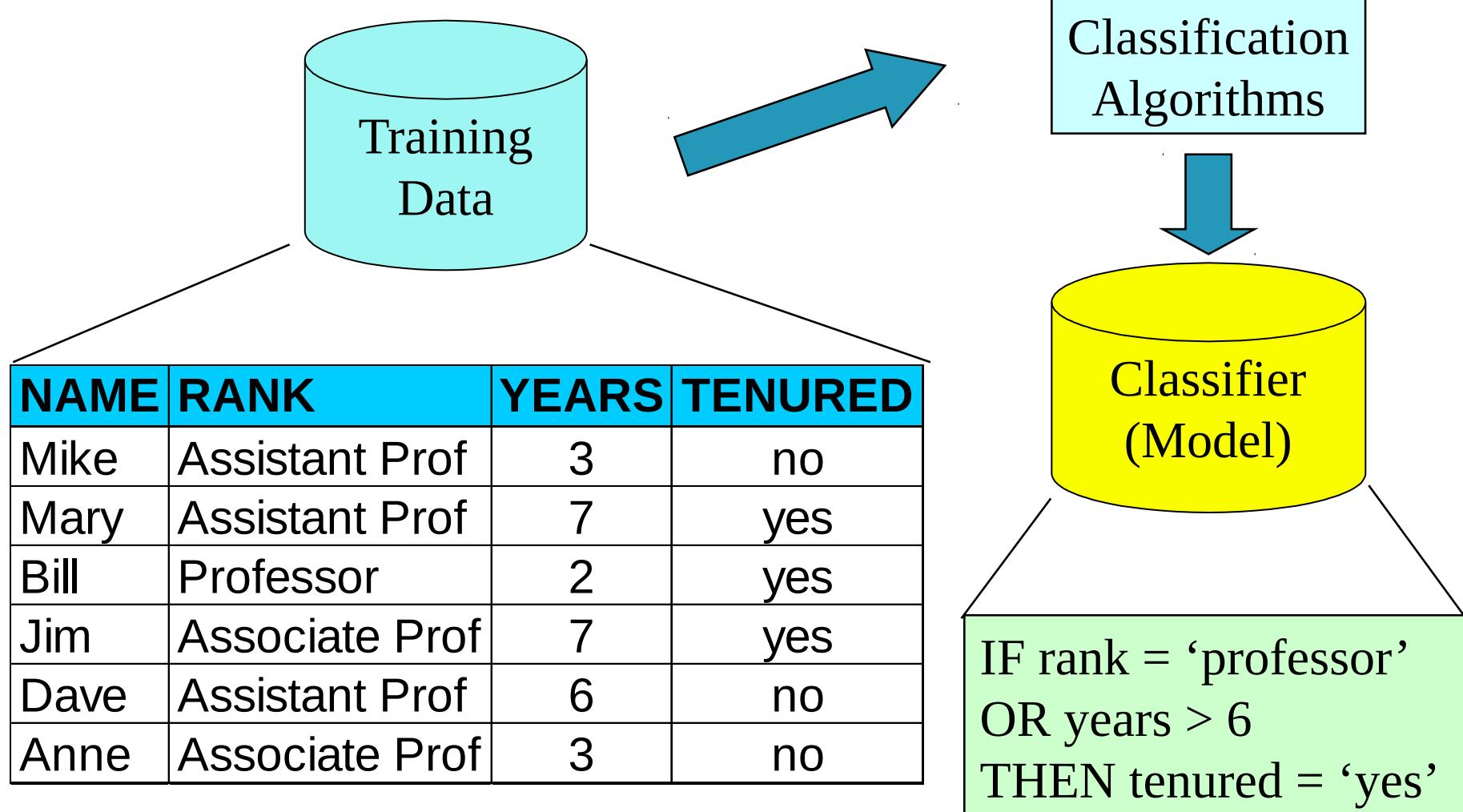
Prediction Problems: Classification vs. Numeric Prediction

- Classification
 - predicts categorical class labels (discrete or nominal)
 - classifies data (constructs a model) based on the training set and the values (**class labels**) in a classifying attribute and uses it in classifying new data
- Numeric Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

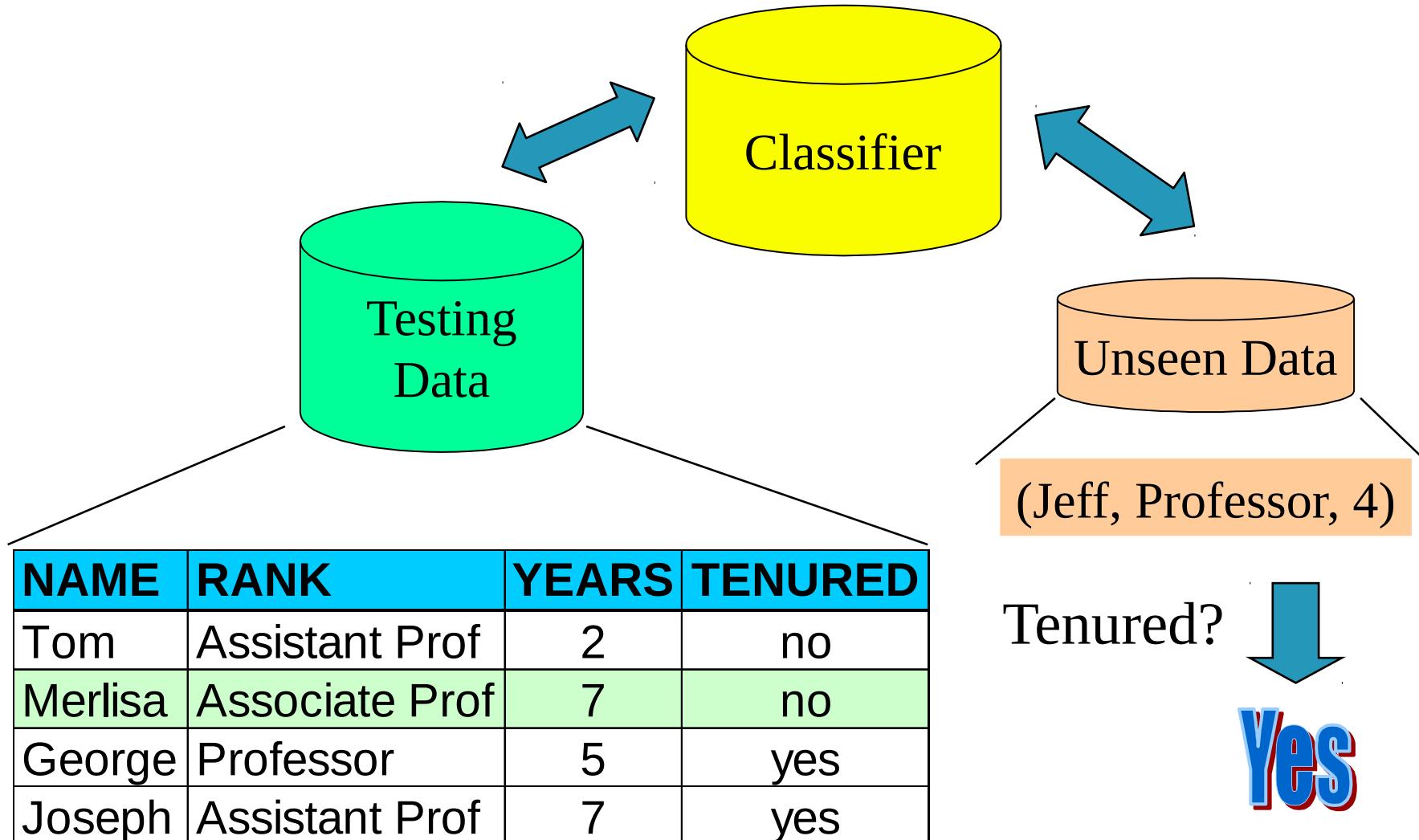
Classification—A Two-Step Process

- **Model construction**: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the **class label attribute**
 - The set of tuples used for model construction is **training set**
 - The model is represented as classification rules, decision trees, or mathematical formulae
- **Model usage**: for classifying future or unknown objects
 - **Estimate accuracy** of the model
 - The known label of test sample is compared with the classified result from the model
 - **Accuracy** rate is the percentage of test set samples that are correctly classified by the model
 - **Test set** is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to **classify data** tuples whose class labels are not known

Process (1): Model Construction (learning)



Process (2): Using the Model in Prediction (classification)



Classification techniques

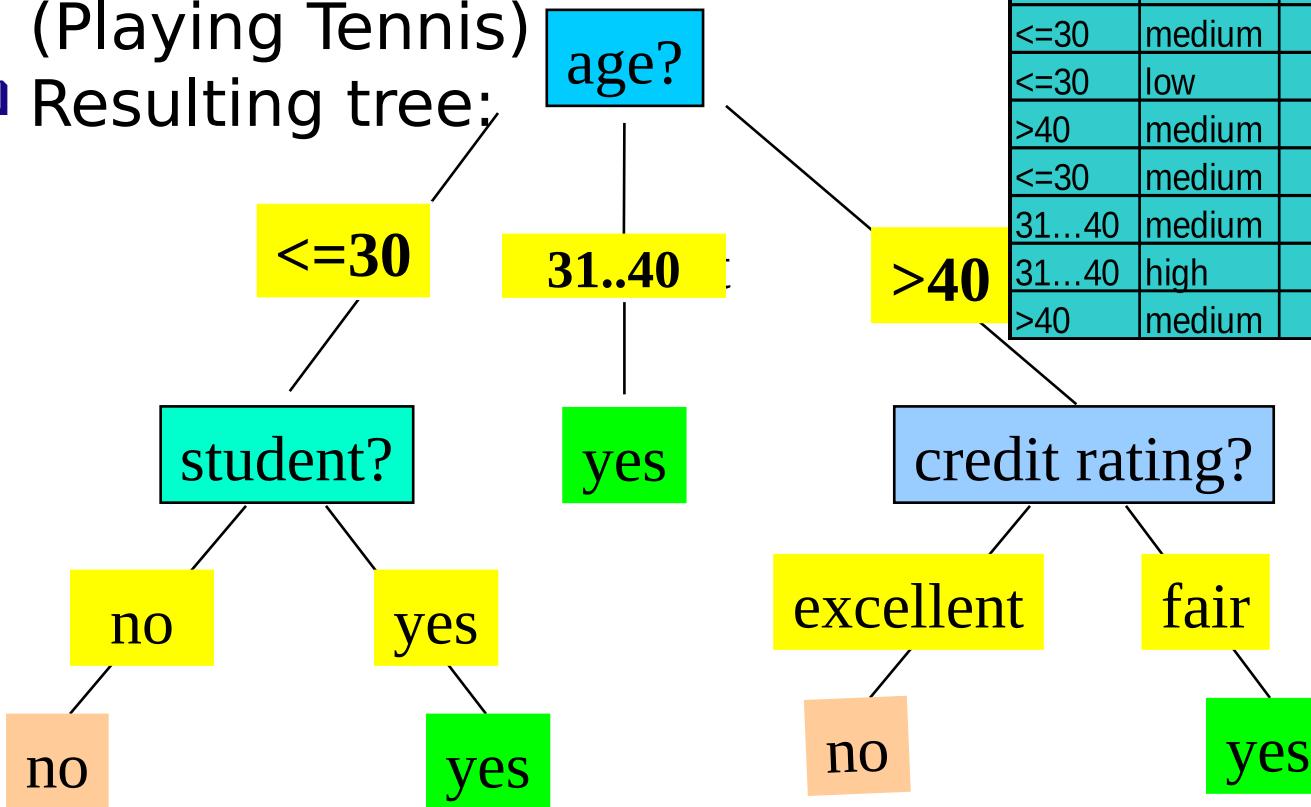
- Information-gain based methods
 - decision tree induction
- Classification probability based methods
 - Bayesian classification
- Geometry based methods
 - Support Vector Machines
- Other approaches (e.g. ANN)

Classification methods

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Support Vector Machines
- Model Evaluation and Selection
- *Rule-Based Classification*
- *Techniques to Improve Classification Accuracy: Ensemble Methods*

Decision Tree Induction: An Example

- Training data set: Buys_computer
- The data set follows an example of Quinlan's ID3 (Playing Tennis)
- Resulting tree:



age	income	student	credit rating	buys computer
≤ 30	high	no	fair	no
≤ 30	high	no	excellent	no
31..40	high	no	fair	yes
> 40	medium	no	fair	yes
> 40	low	yes	fair	yes
> 40	low	yes	excellent	no
31..40	low	yes	excellent	yes
≤ 30	medium	no	fair	no
≤ 30	low	yes	fair	yes
> 40	medium	yes	fair	yes
≤ 30	medium	yes	excellent	yes
31..40	medium	no	excellent	yes
31..40	high	yes	fair	yes
> 40	medium	no	excellent	no

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a **top-down recursive divide-and-conquer manner**
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., **information gain**)

Algorithm for Decision Tree Induction

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class (pure partition)
 - There are no remaining attributes for further partitioning - **majority voting** is employed for classifying the leaf
 - There are no samples left
- Selection criteria:
 - Information gain (ID3)
 - Gain ratio (C4.5)
 - Gini index (CART)

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Recall: number of “binary tests” needed to find the class of a tuple in C_i is $-\log_2(p_i)$

- Expected information (entropy) needed to classify a tuple in D :

$$Info(D) = - \sum_{i=1}^m p_i \log_2(p_i)$$

- Information needed (after using A to split D into v partitions) to classify D :

$$Info_A(D) = \sum_{j=1}^v \frac{|D_j|}{|D|} \times Info(D_j)$$

- Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

age	income	student	credit_rating	PC
<=30	high	no	fair	no
<=30	high	no	excellent	no
31...40	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
31...40	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
31...40	medium	no	excellent	yes
31...40	high	yes	fair	yes
>40	medium	no	excellent	no

Attribute Selection: Information Gain

- Class Y: buys_computer = “yes”
- Class N: buys_computer = “no”

$$Info(D) = I(9,5) = -\frac{9}{14} \log_2\left(\frac{9}{14}\right) - \frac{5}{14} \log_2\left(\frac{5}{14}\right) = 0.940$$

age	Y _i	N _i	I(p _i , n _i)
<=30	2	3	0.971
31...40	4	0	0
>40	3	2	0.971

$\frac{5}{14} I(2,3)$ means “age ≤ 30 ” has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Info_{age}(D) = \frac{5}{14} I(2,3) + \frac{4}{14} I(4,0) + \frac{5}{14} I(3,2) = 0.694$$

and therefore $\text{Gain}(\text{age}) = 0.940 - 0.694 = 0.246$ bits.

Similarly $\text{Gain}(\text{income}) = 0.029$ bits ...

$$Info(D) = - \sum_{i=1}^m p_i \log_2(p_i)$$

$$Info_A(D) = \sum_{j=1}^v \frac{|D_j|}{|D|} \times Info(D_j)$$

$$Gain(A) = Info(D) - Info_A(D)$$

Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the *best split point* for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*: $(a_i + a_{i+1})/2$
 - The point with the *minimum expected information requirement* for A is selected as the split-point for A
- Split:D1 is the set of tuples in D satisfying $A \leq$ split-point, and D2 is the set of tuples in D satisfying $A >$ split-point

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_A(D) = - \sum_{j=1}^v \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|} \right)$$

$$Info(D) = - \sum_{i=1}^m p_i \log_2(p_i)$$
$$Info_A(D) = \sum_{j=1}^v \frac{|D_j|}{|D|} \times Info(D_j)$$
$$Gain(A) = Info(D) - Info_A(D)$$

- GainRatio(A) = Gain(A) / SplitInfo(A)
- Ex.
 - $SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2\left(\frac{4}{14}\right) = 1.557$
 - $gain_ratio(income) = 0.029/1.557 = 0.019$
 - The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index (CART, IBM IntelligentMiner)

- If a data set D contains examples from n classes, gini index, $gini(D)$ is defined as

$$gini(D) = 1 - \sum_{j=1}^n p_j^2$$

where p_j is the relative frequency of class j in D

- If a data set D is split on A into two subsets D_1 and D_2 , the gini index $gini(D)$ is defined as

$$gini_A(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

- Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

- The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (*need to enumerate all the possible splitting points for each attribute*)

Computation of Gini Index

- Ex. D has 9 tuples in buys_computer = “yes” and 5 in “no”: $5/14 * I(2,3)$

$$gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14} \right) Gini(D_1) + \left(\frac{4}{14} \right) Gini(D_2)$$

- Suppose the attribute income partitions D into 10 in D_1 : {low, medium} and 4 in D_2

$$\begin{aligned} &= \frac{10}{14} \left(1 - \left(\frac{7}{10} \right)^2 - \left(\frac{3}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right) \\ &= 0.443 \\ &= Gini_{income \in \{high\}}(D). \end{aligned}$$

$Gini_{\{low, high\}}$ is 0.458; $Gini_{\{medium, high\}}$ is 0.450. Thus, split on the {low, medium} (and {high}) since it has the lowest Gini index

Computation of Gini Index

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - **Information gain:**
 - biased towards multivalued attributes
 - **Gain ratio:**
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - **Gini index:**
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

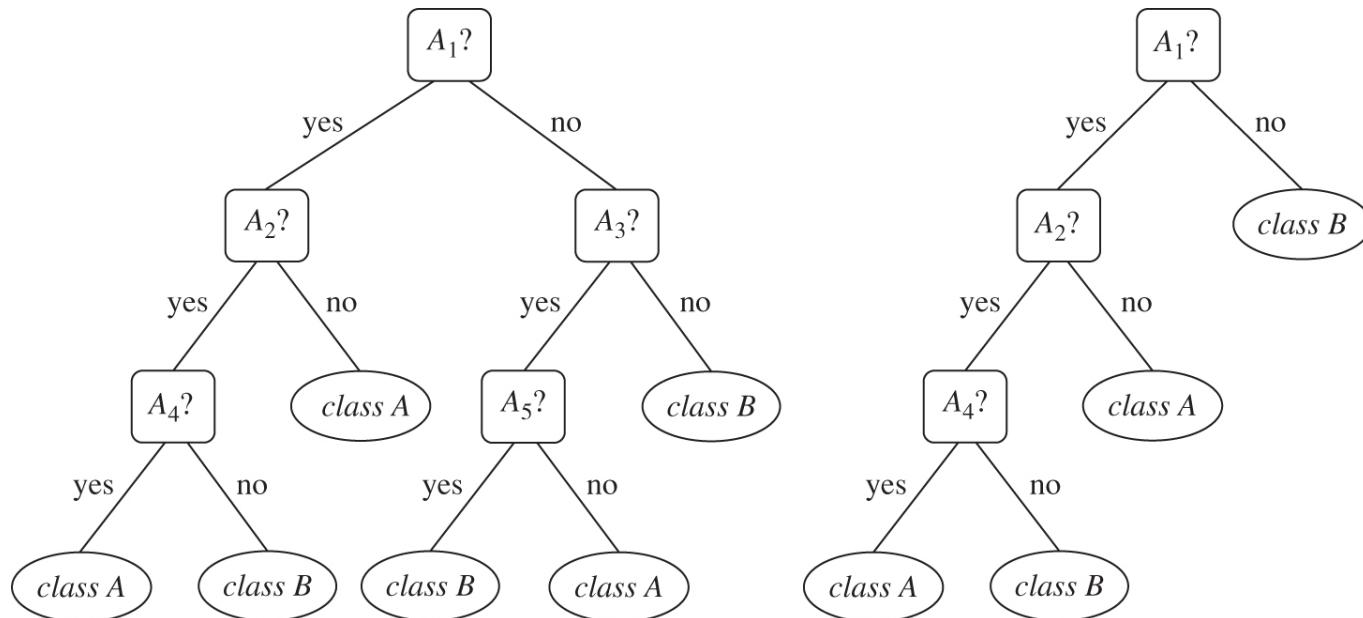
Other Attribute Selection Measures

- CHAID: a popular decision tree algorithm, measure based on χ^2 test for independence
- C-SEP: performs better than i. gain and gini index in certain cases
- G-statistic: has a close approximation to χ^2 distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred): the best tree is one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions (misclassifications)
- Multivariate splits (partition based on multiple variable combinations) → CART: finds multivariate splits based on a linear comb. of attrs. (*feature construction*)
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
 - Try to balance cost complexity and information gain
- Two approaches to avoid overfitting
 - Prepruning: *Halt tree construction early*- do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: *Remove branches* from a “fully grown” tree—get a sequence of progressively pruned trees
 - Use a test set to decide which is “best pruning”

Overfitting and Tree Pruning

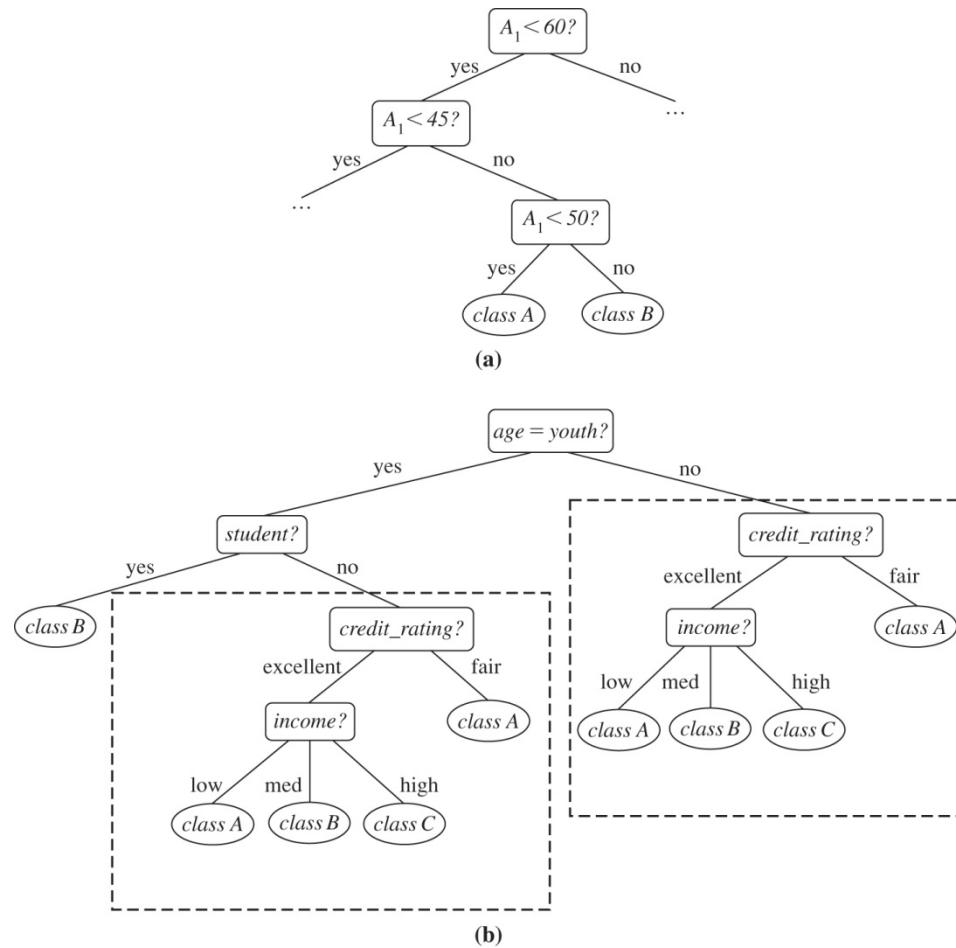


Say this case
is infrequent

Repetition and Replication

(a) subtree **repetition**, where an attribute is repeatedly tested along a given branch of the tree (e.g., age)

(b) subtree **replication**, where duplicate subtrees exist within a tree (e.g., the subtree headed by the node “*credit_rating?*”)



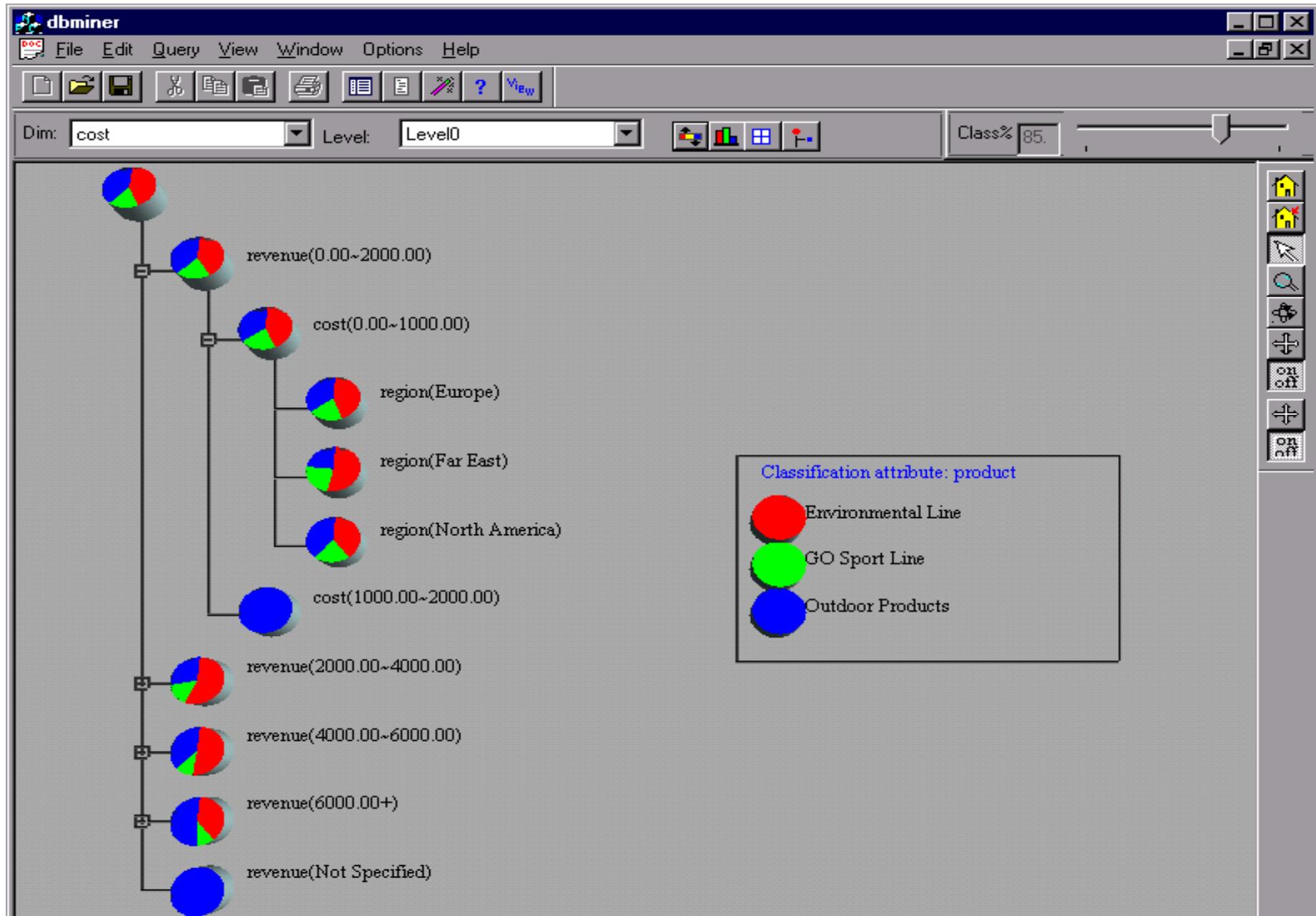
Classification in Big Data

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why is decision tree induction popular?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - can use SQL queries for accessing databases
 - comparable classification accuracy with other methods
- **RainForest** (VLDB'98 — Gehrke, Ramakrishnan & Ganti)
 - Builds an AVC-list (attribute, value, class label)

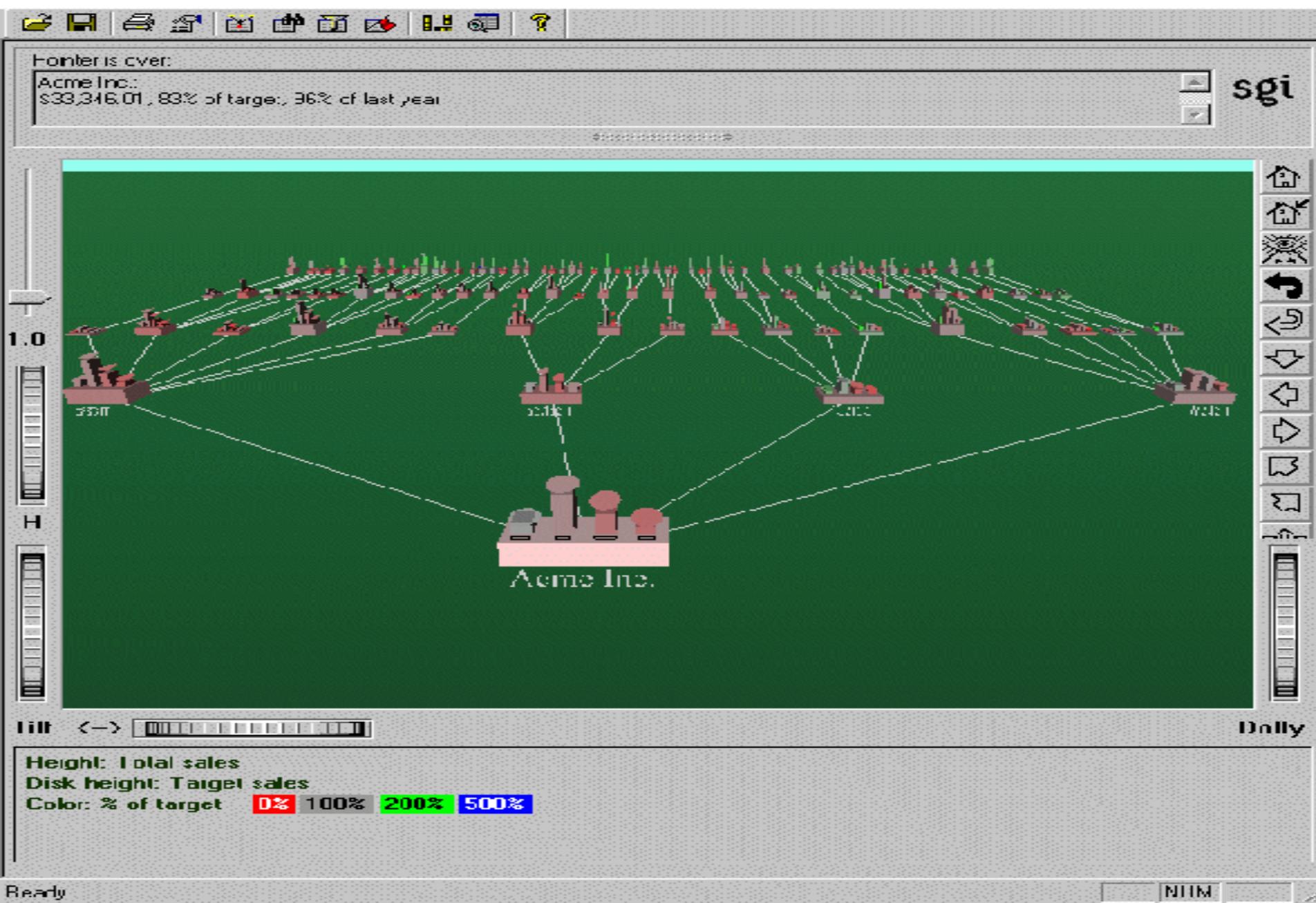
BOAT (Bootstrapped Optimistic Algorithm for Tree Construction)

- Use a statistical technique called *bootstrapping* to create several smaller samples (subsets), each fits in memory
- Each subset is used to create a tree, resulting in several trees
- These trees are examined and used to construct a new tree T'
 - It turns out that T' is very close to the tree that would be generated using the whole data set together
- Adv: requires only two scans of DB, an incremental alg.

Presentation of Classification Results



Visualization of a Decision Tree in SGI/MineSet 3.0



Interactive Visual Mining by Perception-Based Classification (PBC)

