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Classification methods

Classification: Basic Concepts &
Decision Tree Induction

Bayes Classification Methods
Support Vector Machines

Model Evaluation and Selection
Rule-Based Classification

Techniques to Improve Classification
Accuracy: Ensemble Methods



Supervised vs. Unsupervised
Learning

= Supervised learning (classification)

= Supervision: The training data (observations,
measurements, etc.) are accompanied by
labels indicating the class of the observations

= New data is classified based on the training set
= Unsupervised learning (clustering)
* The class labels of training data is unknown

= Given a set of measurements, observations,

etc. with the aim of establishing the existence
of classes or clusters in the data



Prediction Problems: Classification vs.
Numeric Prediction

= Classification
= predicts categorical class labels (discrete or nominal)

= classifies data (constructs a model) based on the
training set and the values (class labels) in a
classifying attribute and uses it in classifying new
data

= Numeric Prediction

= models continuous-valued functions, i.e., predicts
unknown or missing values

= Typical applications
" Credit/loan approval:
= Medical diagnosis: if a tumor is cancerous or benign
" Fraud detection: if a transaction is fraudulent
* Web page categorization: which category it is



Classification—A Two-Step
Process

= Model construction: describing a set of predetermined classes

= Each tuple/sample is assumed to belong to a predefined
class, as determined by the class label attribute

= The set of tuples used for model construction is training set

= The model is represented as classification rules, decision
trees, or mathematical formulae

= Model usage: for classifying future or unknown objects
= Estimate accuracy of the model

= The known label of test sample is compared with the
classified result from the model

= Accuracy rate is the percentage of test set samples that
are correctly classified by the model

= Test set is independent of training set (otherwise
overfitting)

= |f the accuracy is acceptable, use the model to classify data
tuples whose class labels are not known
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Process (2): Using the Model In
Prediction (classification)
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Classification techniques

Information-gain based methods
— decision tree induction

Classification probability based methods
— Bayesian classification

Geometry based methods
- Support Vector Machines

Other approaches (e.g. ANN)



Classification methods

Classification: Basic Concepts
Decision Tree Induction (&
Bayes Classification Methods
Support Vector Machines
Model Evaluation and Selection
Rule-Based Classification

Techniques to Improve Classification
Accuracy: Ensemble Methods
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Decision Tree Induction: An
Example

age | income |studenticredit rating| buys computer

d Training data set:
Buys computer

d The data set follows an
example of Quinlan’s ID3

(Playing Tennis)
d Resulting tre? -

credit rating?
/N

excellent fair

S
no
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Algorithm for Decision Tree
Induction

= Basic algorithm (a greedy algorithm)

" Tree Is constructed in a top-down recursive
divide-and-congquer manner

= At start, all the training examples are at the
root

= Attributes are categorical (if continuous-
valued, they are discretized in advance)

= Examples are partitioned recursively based
on selected attributes

= Test attributes are selected on the basis of
a heuristic or statistical measure (e.qg.,
iInformation gain)
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Algorithm for Decision Tree
Induction

= Conditions for stopping partitioning

= All samples for a given node belong to the
same class (pure partition)

" There are no remaining attributes for
further partitioning - majority voting is
employed for classifying the leaf

" There are no samples left

= Selection criteria:

" Information gain (ID3)
= Gain ratio (C4.5)
= Gini Index (CART)
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Attribute Selection Measure:
Information Gain (ID3/C4.5)

Let p; be the probability that an arbitrary tuple in D
belongs to class C,, estimated by |C, ,|/|D]

Recall: number of “binary tests” needed to find the
class of a tuple in C,is —log,( p,)

Expected information (entropy) needed to classify

a tuple in D:
P Info( D Z p,log,(p

Information needed (after using A to split D into v
partitions) to classify D: v |D |
(D))

Info (D)=,

Information gained by branc_rlnng on attrlbute A
Gain( A)=1Info(D)- Info,(D)
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Attribute Selection: Information
Gain

age income student credit_rating _PC




Attribute Selection: Information
Gain

* Class Y: buys computer = “yes”
* Class N: buys computer = “no”

9 9, 5 5
Info(D):I(9,5)———10g2(—4)—1—410g2(14) 0.940

31(2,3) means “age <=30" has 5 out of 14 samples, with 2
yes'es and 3 no’s. Hence
5 4 5
Info .. (D)= ﬁ1(2 3)+ HI(4O)+HI(3 2)=0.694
and therefore Gain(age) = 0.940 - 0.694 = 0.246 bits.

Similarly Gain(income) = 0.029 bits ...
Info( D)=~ plog,(p) info,(D)= 3. | 2 nfo( D,

Gain(A)=Info(D)—Info,( D)
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Computing Information-Gain for
Continuous-Valued Attributes

= |Let attribute A be a continuous-valued attribute
= Must determine the best split point for A
= Sort the value A in increasing order

= Typically, the midpoint between each pair of
adjacent values is considered as a possible split
point: (ai+ai;1)/2

" The point with the minimum expected
information requirement for A is selected as the
split-point for A

= Split:D1 is the set of tuples in D satisfying A = split-
point, and D2 is the set of tuples in D satisfying A >
split-point
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Gain Ratio for Attribute
Selection (C4.5)

Information gain measure is biased towards
attributes with a large number of values

C4.5 (a successor of ID3) uses gain ratio to
overcome the problem (normalization to

Information gain) Info( D Z plog
. Dl D |
Splitinfo (D )= Z |D| Xlog, (—L D L) Info,(D Z D] ><1”f0 )
j=1 Gain( A ) Info( )—1Info,(D)
= GainRatio(A) = Gain(A) / Splitinfo(A)
EX.
Splitinfo,,,.ome(D) = —— X 10g2(14) — — X logg( ) — % X logg(lt) = 1.567

- gain_ratio(income) = 0.029/1.557 = 0.019

The attribute with the maximum gain ratio is
selected as the splitting attribute
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Gini Index (CART, IBM
IntelligentMiner)

If a data set D contains examples from n classes, gini index,
gini(D) is defined as

gini(D)=1-2_ p’
j=1

where p; is the relative frequency of classjin D
If a data set D is split on A into two subsets D; and D,, the
gini index gini(D) is defined as

. D D,
gini,(D)=
. ~ |D | D|
Reduction in Impurity:
Agini(A)=gini(D)-gini,(D)
The attribute provides the smallest gini,(D) (or the largest

reduction in impurity) is chosen to split the node (need to
enumerate all the possible splitting points for each attribute)

)+ gini(D,)
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Computation of Gini Index

= Ex. D has 9 tuples in buys computer = “yes” and 5
in “no”: 5/14 * 1(2,3)

N 10
9iNpcomee!low , medium| ( D) :(H

Gini(D,)

4
(D
Gini(D, )+ ”

= Suppose the attribute income partitions D into 10 in
D,: {low, medium} and 4 in D,
-20-G) @)= (-0 -@)
= 0.443

= Ginljpcome e {high}

Gini{mw’high} |S 0458, Gini{medium,high} |S 0450 ThUS,
split on the {low,medium} (and {high}) since it
has the lowest Gini index

(D).
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Computation of Gini Index

= All attributes are assumed continuous-valued

= May need other tools, e.qg., clustering, to get the
possible split values

= Can be modified for categorical attributes
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Comparing Attribute Selection
Measures

= The three measures, in general, return good results
but

" Information gain:
" biased towards multivalued attributes
= Gain ratio:

" tends to prefer unbalanced splits in which one
partition is much smaller than the others

"= Gini index:
" biased to multivalued attributes
* has difficulty when # of classes is large

" tends to favor tests that result in equal-sized
partitions and purity in both partitions
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Other Attribute Selection
Measures

CHAID: a popular decision tree algorithm, measure based on X2 test
for independence

C-SEP: performs better than i. gain and gini index in certain cases

G-statistic: has a close approximation to x2 distribution

MDL (Minimal Description Length) principle (i.e., the simplest
solution is preferred): the best tree is one that requires the fewest
# of bits to both (1) encode the tree, and (2) encode the
exceptions (misclassifications)

Multivariate splits (partition based on multiple variable
combinations) —» CART: finds multivariate splits based on a linear
comb. of attrs. (feature construction)

Which attribute selection measure is the best?

= Most give good results, none is significantly superior
23



Overfitting and Tree Pruning

= Qverfitting: An induced tree may overfit the training
data

= Too many branches, some may reflect anomalies due
to noise or outliers

= Poor accuracy for unseen samples
= Try to balance cost complexity and information gain

= Two approaches to avoid overfitting

" Prepruning: Halt tree construction early- do not split a
node if this would result in the goodness measure
falling below a threshold

= Difficult to choose an appropriate threshold

= Postpruning: Remove branches from a “fully grown”
tree—qget a sequence of progressively pruned trees

= Use a test set to decide which is “best pruning”
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Overfitting and Tree Pruning

Say this case
is infrequent

25



Repetition and Replication

(a) subtree repetition, where an attribute is repeatedly tested along a given branch of the
tree (e.qg., age)

(b) subtree replication, where duplicate subtrees exist within a tree (e.g., the subtree
headed by the node “credit_rating?”)
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Classification in Big Data

Classification—a classical problem extensively studied by

statisticians and machine learning researchers

Scalability: Classifying data sets with millions of
examples and hundreds of attributes with reasonable
speed

Why Is decision tree induction popular?

" relatively faster learning speed (than other
classification methods)

= convertible to simple and easy to understand
classification rules

= can use SQL queries for accessing databases

= comparable classification accuracy with other
methods

RainForest (VLDB’'98 — Gehrke, Ramakrishnan & Ganti)
= Builds an AVC-list (attribute, value, class label)
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BOAT (Bootstrapped Optimistic
Algorithm for Tree Construction)

Use a statistical technique called bootstrapping to create
several smaller samples (subsets), each fits iIn memory

Each subset is used to create a tree, resulting in several
trees

These trees are examined and used to construct a new
tree T’

= |t turns out that T’ is very close to the tree that would
be generated using the whole data set together

Adv: requires only two scans of DB, an incremental alg.
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Presentation of Classification Results
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in SGI/MineSet 3.0
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Interactive Visual Mining by Perception-
Based Classification (PBC)
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