
Università degli Studi di Milano
Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 08: 28/10/2015

Data Mining: Methods and Models

— Chapter 1 —

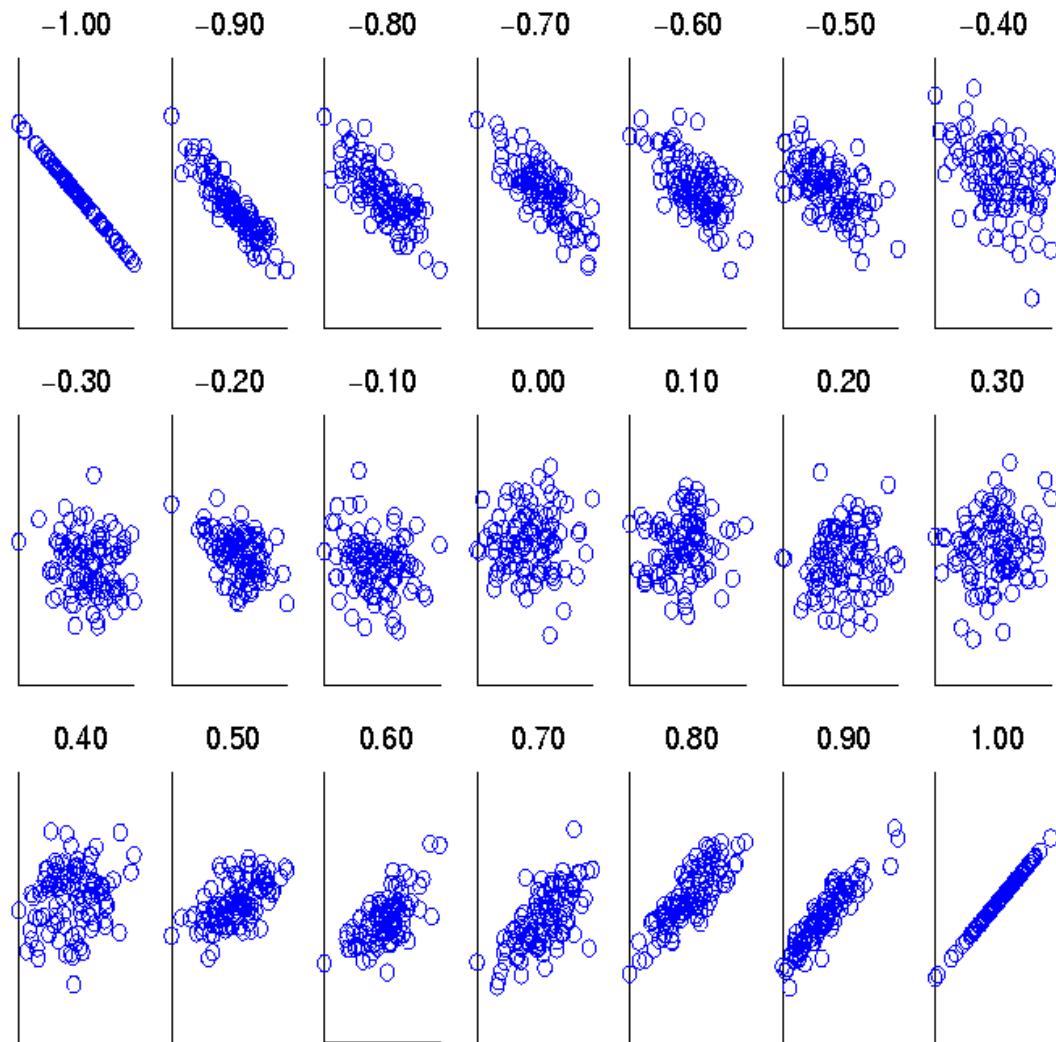
Daniel T. Larose

© 2006 John Wiley and Sons

Data (Dimensionality) Reduction

- In large datasets it is unlikely that all attributes are independent: multicollinearity
- Worse mining quality:
 - Instability in multiple regression (significant overall, but poor wrt significant attributes)
 - Overemphasize particular attributes (multiple counts)
 - Violates principle of parsimony (too many unnecessary predictors in a relation with a response var)
- Curse of dimensionality:
 - Sample size needed to fit a multivariate function grows exponentially with number of attributes
 - e.g. in 1-dimensional distrib. 68% of normally distributed values lie between -1 and 1; in 10-dimensional distrib. only 0.02% within the radius 1 hypersphere

Recall: Visually Evaluating Correlation



Scatter plots
showing the
similarity from
-1 to 1.

A minimal approach: user defined composites

- Sometimes correlation is *known to the data analyst* or *evident from data*
- Then, nothing forbids to *aggregate attributes by hand!*
- Example: say you have a “house” dataset
 - then housing median age, total rooms, total bedrooms and population can be *expected* to be strongly correlated as “block group size”
 - replace these four attributes with a *new attribute*, that is the *average* of them (possibly after normalization)

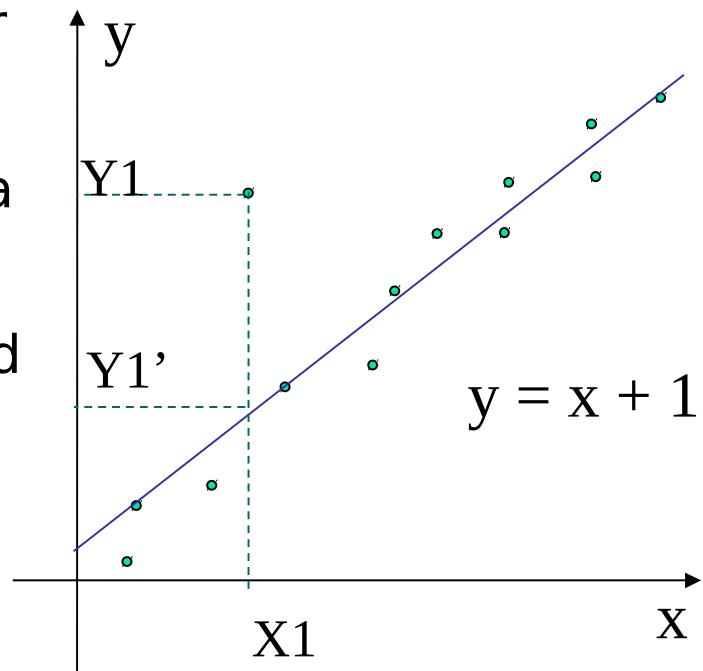
$$X_{m+1_i} = (X_{1_i} + X_{2_i} + X_{3_i} + X_{4_i}) / 4$$

Parametric Data Reduction: Regression and Log-Linear Models

- **Linear regression**
 - Data modeled to fit a straight line
 - Often uses the least-square method to fit the line
- **Multiple regression**
 - Allows a “response” variable Y to be modeled as a linear function of multidimensional “predictor” feature (variable) vector X
- **Log-linear model**
 - Approximates discrete multidimensional probability distributions

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a **dependent variable** (also called **response variable** or *measurement*) and of one or more *independent variables* (aka. **explanatory variables** or **predictors**)
- The parameters are estimated so as to give a "**best fit**" of the data
- Most commonly the best fit is evaluated by using the **least squares method**, but other criteria have also been used



- Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Regress Analysis and Log-Linear Models

- Linear regression: $Y = w X + b$
 - Two regression coefficients, w and b , specify the line and are to be estimated by using the data at hand
 - Using the least squares criterion to the known values of $Y_1, Y_2, \dots, X_1, X_2, \dots$
- Multiple regression: $Y = b_0 + b_1 X_1 + b_2 X_2$
 - Many nonlinear functions can be transformed as above
- Log-linear models:
 - Approximate discrete multidimensional prob. distributions
 - Estimate the probability of each point (tuple) in a multi-dimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations
 - Useful for dimensionality reduction and data smoothing

Principal Component Analysis (PCA)

- Try to explain correlation using a small set of linear combination of attributes
- Geometrically:
 - Look at the attributes as variables forming a coordinate system
 - Principal Components are a new coordinate system, found by rotating the original system along the directions of maximum variability

PCA - Step 1: preprocess data

- Notation (review):

- Dataset with n rows and m columns

- Attributes (columns): X^j

- Mean of each attrib:

$$\mu_j = \frac{1}{n} \sum_{i=1}^n X_i^j$$

- Variance of each attrib:

$$\sigma_{jj}^2 = \frac{1}{n} \sum_{i=1}^n (X_i^j - \mu_j)^2$$

- Covariance between two attrib:

$$\sigma_{kj}^2 = \frac{1}{n} \sum_{i=1}^n (X_i^k - \mu_k) \cdot (X_i^j - \mu_j)$$

- Correlation coefficient:

$$r_{kj} = \frac{\sigma_{kj}^2}{\sigma_{kk} \sigma_{jj}}$$

PCA - Step 1: preprocess data

- Definitions

- Standard Deviation Matrix:

$$V^{1/2} = \begin{bmatrix} \sigma_{11} & 0 & \dots & 0 \\ 0 & \sigma_{22} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \sigma_{mm} \end{bmatrix}$$

- (Symmetric) Covariance Matrix:

$$Cov = \begin{bmatrix} \sigma_{11}^2 & \sigma_{12}^2 & \dots & \sigma_{1m}^2 \\ \sigma_{21}^2 & \sigma_{22}^2 & \dots & \sigma_{2m}^2 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \sigma_{mm}^2 \end{bmatrix}$$

- Correlation Matrix:

$$\rho = [r_{kj}]$$

- Standardization in matrix form:

$$Z = (X - \mu)(V^{1/2})^{-1}$$

$$Z_{ij} = (X_i^j - \mu_j) / \sigma_{jj}$$

- N.B. $E(Z) = \text{vector of zeros}$; $\text{Cov}(Z) = \rho$

PCA - Step 2: compute eigenvalues and eigenvectors

- Eigenvalues of (mxm matrix) ρ are
 - scalars $\lambda_1 \dots \lambda_m$ such that
 - $\det(\rho - \lambda I) = 0$
- Given a matrix ρ and its eigenvalue λ_j ,
 - e^j is a corresponding (mx1) eigenvector if
 - $\rho e^j = \lambda_j e^j$
- Spectral theorem / symmetric eigenvalue decomposition (for symmetric ρ)
 - $\rho = \sum_{j=1}^m \lambda_j e^j (e^j)^T$
- We are interested in eigenvalues / eigenvectors of the *correlation matrix*

PCA - Step 3: compute principal components

- Consider the original (standardized, $n \times m$) matrix Z , with columns Z_j
- Consider the ($n \times 1$ column) vectors
 - $Y_j = Z e_j$
 - e.g. $Y^1 = e^1_1 Z^1 + e^1_2 Z^2 + \dots + e^1_m Z^m$
- Sort Y_j by value of variance:
 - $\text{Var}(Y_j) = (e_j)^T \rho (e_j)$
- Then
 - 1) Start with an empty sequence of principal components
 - 2) Select the vector e_j that
 - 1) maximizes $\text{Var}(Y_j)$
 - 2) Is independent from all selected components
 - 3) Goto (2)

PCA - Properties

- Property 1: The total variability in the standardized data set
 - equals the sum of the variances for each column vector Z^j ,
 - which equals the sum of the variances for each component,
 - which equals the sum of the eigenvalues,
 - Which equals the number of variables

$$\sum_{j=1}^m \text{Var}(Y^j) = \sum_{j=1}^m \text{Var}(Z^j) = \sum_{j=1}^m \lambda_j = m$$

PCA - Properties

- Property 2: The partial correlation between a given component and a given variable is a function of an eigenvector and an eigenvalue.
 - In particular, $\text{Corr}(Y^k, Z^j) = e^k_j \sqrt{\lambda_k}$
- Property 3: The proportion of the total variability in Z that is explained by the j th principal component is the ratio of the j th eigenvalue to the number of variables,
 - that is the ratio λ_j/m

PCA - Experiment on real data

- Open R and read “cadata.txt”
- Keep first attribute (say 0) as response, remaining ones as predictors
- Know Your Data: Barplot and scatterplot attributes
- Normalize Data
- Scatterplot normalized data
- Compute correlation matrix
- Compute eigenvalues and eigenvectors
- Compute components (eigenvectors) – attribute correlation matrix
- Compute cumulative variance explained by principal components

PCA - Experiment on real data

- Details on the dataset:
 - Block groups of houses (1990 California census)
 - Response: Median house value
 - Predictors:
 - 1)Median income
 - 2)Housing median age
 - 3)Total rooms
 - 4)Total bedrooms
 - 5)Population
 - 6)Households
 - 7)Latitude
 - 8)Longitude

PCA - Step 4: choose components

- How many components should we extract?
 - Eigenvalue criterion
 - Keep components having $\lambda > 1$ (they “explain” more than 1 attribute)
 - Proportion of the variance explained
 - Fix a coefficient of determination r
 - Choose the min. number of components to reach a cumulative variance $> r$
 - Scree plot Criterion
 - (try to barplot eigenvalues)
 - Stop just prior to “tailing off”
 - *Communality Criterion*

PCA - Profiling the components

- Look at principal components:
 - Comp. 1 is “explaining” attributes 3, 4, 5 and 6
→ block group size?
 - Comp. 2 is “explaining” attributes 7 and 8
→ geography?
 - Comp. 3 is “explaining” attribute 1
→ salary?
 - Comp. 4 ???
- Compare factor scores of components 3 and 4 with attributes 1 and 2

PCA – Communality of attributes

- Def: **communality** of an (original) attribute j is the sum of squared principal component weights for that attribute.
- When we consider only the first p principal components:

$$k(p,j) = \text{corr}(1,j)^2 + \text{corr}(2,j)^2 + \dots + \text{corr}(p,j)^2$$

- Interpretation: communality is the fraction of variability of an attribute “extracted” by the selected principal components
- Rule of thumb: communality < 0.5 is low!
- Experiment: compute communality for attribute 2 when 3 or 4 components are selected

PCA - Final choice of components

- Eigenvalue criterion did not exclude component 4 (and it tends to underestimate when number of attributes is small)
- Proportion of variance criterion suggests to keep component 4
- Scree criterion suggests not to exceed 4 components
- Minimum communality suggests to keep component 4 to keep attribute 2 in the analysis
- → Let's keep 4 components