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Data (Dimensionality) Reduction

 In large datasets it is unlikely that all attributes are 
independent: multicollinearity

 Worse mining quality:
 Instability in multiple regression (significant overall, but 

poor wrt significant attributes)
 Overemphasize particular attributes (multiple counts)
 Violates principle of parsimony (too many unnecessary 

predictors in a relation with a response var)
 Curse of dimensionality:

 Sample size needed to fit a multivariate function 
grows exponentially with number of attributes

 e.g. in 1-dimensional distrib. 68% of normally 
distributed values lie between -1 and 1; in 10-
dimensional distrib. only 0.02%  within the radius 1 
hypersphere
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Recall: Visually Evaluating Correlation

Scatter plots 
showing the 
similarity from 
–1 to 1.



A minimal approach: user defined 
composites

 Sometimes correlation is known to the data analyst 
or evident from data

 Then, nothing forbids to aggregate attributes by 
hand!

 Example: say you have a “house” dataset
 then housing median age, total rooms, total 

bedrooms and population can be expected to be 
strongly correlated as “block group size”

 replace these four attributes with a new attribute, 
that is the average of them
(possibly after normalization)

Xm+1
i = (X1

i + X2
i + X3

i + X4
i) / 4
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Parametric Data Reduction: 
Regression and Log-Linear Models

 Linear regression
 Data modeled to fit a straight line
 Often uses the least-square method to fit the 

line
 Multiple regression

 Allows a “response” variable Y to be modeled 
as a linear function of multidimensional 
“predictor” feature (variable) vector X

 Log-linear model
 Approximates discrete multidimensional 

probability distributions
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Regression Analysis

 Regression analysis: A collective name for 

techniques for the modeling and analysis 

of numerical data consisting of values of a 

dependent variable (also called 

response variable or measurement) and 

of one or more independent variables 

(aka. explanatory variables or 

predictors)

 The parameters are estimated so as to 

give a "best fit" of the data

 Most commonly the best fit is evaluated 

by using the least squares method, but 

other criteria have also been used

 Used for prediction 
(including forecasting of 
time-series data), 
inference, hypothesis 
testing, and modeling of 
causal relationships

y

x

y = x + 1

X1

Y1

Y1’
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 Linear regression: Y = w X + b

 Two regression coefficients, w and b, specify the line and 
are to be estimated by using the data at hand

 Using the least squares criterion to the known values of Y1, 

Y2, …, X1, X2, ….

 Multiple regression: Y = b0 + b1 X1 + b2 X2

 Many nonlinear functions can be transformed as above

 Log-linear models:

 Approximate discrete multidimensional prob. distributions

 Estimate the probability of each point (tuple) in a multi-
dimensional space for a set of discretized attributes, based 
on a smaller subset of dimensional combinations

 Useful for dimensionality reduction and data smoothing

Regress Analysis and Log-Linear 
Models



Principal Component Analysis (PCA)

 Try to explain correlation using a small set of 
linear combination of attributes

 Geometrically:
 Look at the attributes as variables forming a 

coordinate system
 Principal Components are a new coordinate 

system, found by rotating the original 
system along the directions of maximum 
variability



PCA – Step 1: preprocess data

 Notation (review):
 Dataset with n rows and m columns
 Attributes (columns): Xj

 Mean of each attrib:

 Variance of each attrib:

 Covariance between two attrib:

 Correlation coefficient:

μ j=
1
n
∑
i=1

n

X i
j

σ jj
2
=

1
n
∑
i=1

n

(X i
j
−μ j)

2

σ kj
2
=

1
n
∑
i=1

n

(X i
k
−μk )⋅(X i

j
−μ j)

rkj=
σ kj

2

σ kk σ jj



PCA – Step 1: preprocess data

 Definitions
 Standard Deviation Matrix:

 (Symmetric) Covariance Matrix:

 Correlation Matrix:

 Standardization in matrix form:

 N.B. E(Z) = vector of zeros; Cov(Z) = ρ

V 1 /2=[
σ11 0 ... 0
0 σ22 ... ...
... ... ... ...
... ... ... σmm

]
Cov=[

σ11
2 σ12

2 ... σ1m
2

σ21
2 σ22

2 ... σ2m
2

... ... ... ...

... ... ... σmm
2 ]

Z=(X−μ)(V 1/2
)
−1

Zij=(X i
j
−μ j)/σ jj

ρ=[rkj ]



PCA – Step 2: compute 
eigenvalues and eigenvectors

 Eigenvalues of (mxm matrix) ρ are
 scalars λ1 ... λm such that
 det(ρ – λI) = 0

 Given a matrix ρ and its eigenvalue λj,
 ej is a corresponding (mx1) eigenvector if
 ρ ej = λjej

 Spectral theorem / symmetric eigenvalue 
decomposition (for symmetric ρ)
  

 We are interested in eigenvalues / eigenvectors 
of the correlation matrix

ρ=∑ j=1

m
λ j e

j
(e j

)
T



PCA – Step 3: compute principal 
components

 Consider the original (standardized, nxm) matrix Z, 
with columns Zj

 Consider the (nx1 column) vectors
 Yj = Z ej

 e.g. Y1 = e1
1 Z1 + e1

2 Z2 + … + e1
m Zm

 Sort Yj by value of variance:
 Var(Yj) = (ej)T ρ (ej)

 Then
1)Start with an empty sequence of principal components

2)Select the vector ej that

1)maximizes Var(Yj)

2)Is independent from all selected components

3)Goto (2)



PCA – Properties
 Property 1: The total variability in the standardized 

data set 
 equals the sum of the variances for each 

column vector Zj,
 which equals the sum of the variances for each 

component,
 which equals the sum of the eigenvalues, 
 Which equals the number of variables

∑ j=1

m

Var (Y j
)=∑ j=1

m

Var (Z j
)=∑ j=1

m

λ j=m



PCA – Properties
 Property 2: The partial correlation between a given 

component and a given variable is a function of an 
eigenvector and an eigenvalue.
 In particular, Corr(Yk, Zj) = ek

j sqrt(λk)

 Property 3: The proportion of the total variability in 
Z that is explained by the jth principal component 
is the ratio of the jth eigenvalue to the number of 
variables,
  that is the ratio λj/m



PCA – Experiment on real data
 Open R and read “cadata.txt”
 Keep first attribute (say 0) as response, remaining 

ones as predictors
 Know Your Data: Barplot and scatterplot attributes
 Normalize Data
 Scatterplot normalized data
 Compute correlation matrix
 Compute eigenvalues and eigenvectors
 Compute components (eigenvectors) – attribute 

correlation matrix
 Compute cumulative variance explained by 

principal components



PCA – Experiment on real data
 Details on the dataset:

 Block groups of houses (1990 California census)
 Response: Median house value
 Predictors:

1)Median income
2)Housing median age
3)Total rooms
4)Total bedrooms
5)Population
6)Households
7)Latitude
8)Longitude



PCA – Step 4: choose components
 How many components should we extract?

 Eigenvalue criterion
 Keep components having λ>1 (they “explain” 

more than 1 attribute)
 Proportion of the variance explained

 Fix a coefficient of determination r
 Choose the min. number of components to 

reach a cumulative variance > r
 Scree plot Criterion

 (try to barplot eigenvalues)
 Stop just prior to “tailing off”

 Communality Criterion



PCA – Profiling the components
 Look at principal components:

 Comp. 1 is “explaining” attributes 3, 4, 5 and 6

 → block group size?
 Comp. 2 is “explaining” attributes 7 and 8

→ geography?
 Comp. 3 is “explaining” attribute 1

→ salary?
 Comp. 4 ???

 Compare factor scores of components 3 and 4 with 
attributes 1 and 2



PCA – Communality of attributes
 Def: communality of an (original) attribute j is the 

sum of squared principal component weights for 
that attribute.

 When we consider only the first p principal 
components:

k(p,j) = corr(1,j)2 + corr(2,j)2 + … + corr(p,j)2

 Interpretation: communality is the fraction of 
variability of an attribute “extracted” by the 
selected principal components

 Rule of thumb: communality < 0.5 is low!
 Experiment: compute communality for attribute 2 

when 3 or 4 components are selected



PCA – Final choice of components
 Eigenvalue criterion did not exclude component 4 

(and it tends to underestimate when number of 
attributes is small)

 Proportion of variance criterion suggests to keep 
component 4

 Scree criterion suggests not to exceed 4 
components

 Minimum communality suggests to keep 
component 4 to keep attribute 2 in the analysis

 → Let's keep 4 components
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