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Data Quality: Why Preprocess the 
Data?

 Measures for data quality: A multidimensional view

 Accuracy: correct or wrong, accurate or not

 Completeness: not recorded, unavailable, …

 Consistency: some modified but some not, 

dangling, …

 Timeliness: timely update? 

 Believability: how trustable the data are correct?

 Interpretability: how easily the data can be 

understood?
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Major Tasks in Data Preprocessing

 Data cleaning

 Fill in missing values, smooth noisy data, identify or 
remove outliers, and resolve inconsistencies

 Data integration

 Integration of multiple databases, data cubes, or files

 Data reduction

 Dimensionality reduction

 Numerosity reduction

 Data compression

 Data transformation and data discretization

 Normalization 

 Concept hierarchy generation



Major Tasks in Data Preprocessing
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Data Cleaning

 Data in the Real World Is Dirty (instrument faulty, human or 
computer error, transmission error ...)

 incomplete: lacking attribute values, lacking certain 
attributes of interest, or containing only aggregate data

 e.g., Occupation=“ ” (missing data)
 noisy: containing noise, errors, or outliers

 e.g., Salary=“−10” (an error)
 inconsistent: containing discrepancies in codes or names, 

e.g.,
 Age=“42”, Birthday=“03/07/2010”
 Was rating “1, 2, 3”, now rating “A, B, C”
 discrepancy between duplicate records

 Intentional (e.g., disguised missing data)
 Jan. 1 as everyone’s birthday?
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How to Handle Missing Data?

 Ignore the tuple (e.g. when class label is missing 
and doing classification) → simple, but loss of data

 Fill in the missing value manually
→ tedious + infeasible?

 Fill in it automatically with

 global const (e.g., “unknown”) → a new class?! 

 the attribute mean or median

 the attribute mean for all samples belonging to 
the same class: smarter

 the most probable value: inference-based such as 
Bayesian formula or decision tree
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How to Handle Noisy Data?

 Binning
 first sort data and partition into (equal-

frequency) bins
 then one can smooth by bin means,  smooth by 

bin median, smooth by bin boundaries, etc.
 Clustering

 detect and remove outliers
 Regression

 smooth by fitting the data into regression 
functions

 Filtering
 Apply transforms (e.g whitening)

 Combined computer and human inspection
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Data Cleaning as a Process

 Data discrepancy detection
 Use knowledge about data → use metadata (e.g., domain, 

range, dependency, distribution) i.e. know your data!
 Check field overloading
 Check uniqueness rule, consecutive rule and null rule
 Use commercial tools

 Data scrubbing: use simple domain knowledge (e.g., 
postal code, spell-check) to detect errors and make 
corrections

 Data auditing: by analyzing data to discover rules and 
relationship to detect violators (e.g., correlation and 
clustering to find outliers) → already “data mining”

 Data migration and integration
 Data migration tools: allow transformations to be specified
 ETL (Extraction/Transformation/Loading) tools (GUI)

 Integration of the two processes
 Iterative and interactive (e.g., Potter’s Wheels)
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Data Integration

 Data integration: 

 Combines data from multiple sources into a coherent store

 Schema integration: e.g., A.cust-id  B.cust-#

 Integrate metadata from different sources

 Entity identification problem: 

 Identify real world entities from multiple data sources, e.g., 

Bill Clinton = William Clinton

 Detecting and resolving data value conflicts

 For the same real world entity, attribute values from 

different sources are different

 Possible reasons: different representations, different scales, 

e.g., metric vs. British units
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Handling Redundancy in Data 
Integration

 Redundant data occur often when integrating 
multiple databases

 Object identification:  The same attribute or 
object may have different names in different 
databases

 Derivable data: One attribute may be a 
“derived” attribute in another table, e.g., 
annual revenue

 Redundant attributes may detected by correlation 
analysis and covariance analysis
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Correlation Analysis (Nominal Data)

 Χ2 (chi-square) test
 Attribute A has c values (a1 … ac)

 Attribute B has r values (b1 … br)

 Build a contingency table [oij], having 1 row for each 
ai, one col for each bj

 oij is the observed frequency (number of tuples 
having value ai for A and bj for B)

eij=
count (A=ai)×count (B=b j)

num. data tuples

χ2=∑
i
∑

j

(oij−eij)
2

eij
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Correlation Analysis (Nominal Data)

 The larger the Χ2 value, the more likely the 
variables are related

 The cells that contribute the most to the Χ2 value 
are those whose actual count is very different from 
the expected count

 Correlation does not imply causality
 # of hospitals and # of car-theft in a city are correlated
 Both are causally linked to the third variable: population

 
Expected

ExpectedObserved 2
2 )(
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Chi-Square Calculation: An 
Example

 Χ2 (chi-square) calculation (numbers in parenthesis 
are eij)

 K x K table → K categories → (K-1) degrees of 
freedom (1 in the example)

 From chi-square distribution, the value for rejecting 
hypotesis of independency at 0.001 significance 
level is 10.828 → strong correlation

93.507
840

)8401000(

360

)360200(

210

)21050(

90

)90250( 2222
2 

Play 
chess

Not play 
chess

Sum 
(row)

Like science fiction 250(90) 200(360) 450

Not like science 
fiction

50(210) 1000(840) 1050

Sum(col.) 300 1200 1500



1 0.00 0.02 0.06 0.15 0.46 1.07 1.64 2.71 3.84 6.64 10.83

2 0.10 0.21 0.45 0.71 1.39 2.41 3.22 4.60 5.99 9.21 13.82

3 0.35 0.58 1.01 1.42 2.37 3.66 4.64 6.25 7.82 11.34 16.27

4 0.71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 13.28 18.47

5 1.14 1.61 2.34 3.00 4.35 6.06 7.29 9.24 11.07 15.09 20.52

6 1.63 2.20 3.07 3.83 5.35 7.23 8.56 10.64 12.59 16.81 22.46

7 2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 18.48 24.32

8 2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36 15.51 20.09 26.12

9 3.32 4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 21.67 27.88

10 3.94 4.86 6.18 7.27 9.34 11.78 13.44 15.99 18.31 23.21 29.59

p-val 0.95 0.9 0.8 0.7 0.5 0.3 0.2 0.1 0.05 0.01 0.001

Deg. 
freedom

1 – Cum. Distr. Funct. =
significance level



 Covariance:
 Attributes A and B
 n → number of tuples
 A and B → respective means of A and B
 σA and σB → the respective standard deviation of A and B

22

Covariance (Numeric Data)

Cov (A , B)=
∑
i=1

n

(ai bi)

n
− Ā⋅B̄
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Covariance (Numeric Data)

 Covariance:

 Dep. w. positive correlation ← → positive covariance
If CovA,B > 0, then when A is larger (resp. smaller) than its 
expected value, B is larger (resp. smaller) as well

 Dep. w. negative correlation ← → negative covariance

If CovA,B < 0, then when A is larger than its expected value, B is 
likely to be smaller than its expected value (and vice versa)

 Independence → CovA,B=0 (but the converse is not always true)
 Some pairs of random variables may have a covariance of 0 but are 

not independent. Only under some additional assumptions (e.g., the 
data follow multivariate normal distributions) a covariance of 0 does 
imply independence



Co-Variance: An Example

 It can be simplified in computation as

 Suppose two stocks A and B have the following values in one 

week:  (2, 5), (3, 8), (5, 10), (4, 11), (6, 14). 

 Question:  If the stocks are affected by the same industry 

trends, will their prices rise or fall together?

 E(A) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4

 E(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6

 Cov(A,B) = (2×5+3×8+5×10+4×11+6×14)/5 − 4×9.6= 4

 Thus, A and B rise together since Cov(A, B) > 0.

Cov ( A , B)=∑
i=1

n

(ai bi)/n− Ā⋅B̄
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Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson’s 
product moment coefficient)
 Attributes A and B
 n → number of tuples
 A and B → respective means of A and B
 σA and σB → the respective standard deviation of A and B

r A , B=
∑i=1

n
( ai−A)( bi−B )

n σ Aσ B
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Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson’s 
product moment coefficient)

 If rA,B > 0, A and B are positively correlated (A’s 
values increase as B’s).  The higher, the stronger 
correlation.

 rA,B = 0: independent;  rAB < 0: negatively correlated

r A , B=
∑i=1

n
( ai−A)( bi−B )

n σ Aσ B
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Correlation (viewed as linear 
relationship)

 Correlation measures the linear relationship 
between objects

 To compute correlation, we standardize 
data objects, A and B, and then take their 
dot product

)(/))((' AstdAmeanaa kk 

)(/))((' BstdBmeanbb kk 

''),( BABAncorrelatio 
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Correlation Analysis (Numeric Data)

 Geometrically: the cosine of the angle between the 
two vectors, after centering (or possible regression 
lines) 
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Visually Evaluating Correlation

Scatter plots 
showing the 
similarity from 
–1 to 1.
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Data Reduction Strategies

 Data reduction: Obtain a reduced representation of the data 
set that is much smaller in volume but yet produces the same 
(or almost the same) analytical results

 Why data reduction? Computational issues in big data!
 Data reduction strategies

 Numerosity reduction (or simply “Data Reduction” → red. 
the number of data objects)

 Sampling
 Histograms, clustering
 Regression and Log-Linear Models
 Data cube aggregation

 Dimensionality reduction (→ red. the number of attributes)
 Principal Components Analysis (PCA)
 Feature subset selection, feature creation
 Transforms (Fourier, Wavelet, Whitening …)

 Data compression
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Numerosity Reduction: sampling
 Sampling: obtaining a small sample s to represent 

the whole data set N

 Allow a mining algorithm to run in complexity that 
is potentially sub-linear to the size of the data

 Key principle: Choose a representative subset of 
the data

 Simple random sampling may have very poor 
performance in the presence of skew

 Develop adaptive sampling methods, e.g., 
stratified sampling: 

 Note: Sampling may not reduce database I/Os 
(page at a time)
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Sampling

 Beware! In general, sampling design (e.g. for 
surveys) is a serious issue:

 Cochran, W.G. (1977). Sampling techniques, 
3rd ed. New York: John Wiley & Sons

 Lohr, S. (2009). Sampling: Design and 
Analysis. Duxbury Press

 in data sampling for automatic analyses we're more 
constrained (and therefore simplified)

 still we can exploit general techniques
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Types of Sampling

 Systematic sampling
 Choose equally-spaced data objects (or even 

contiguous elements to reduce I/O)
 Simple random sampling

 There is an equal probability of selecting any 
particular item

 Sampling without / with replacement
 Once an object is selected, it is removed (resp. 

not removed) from the population
 Stratified sampling: 

 Partition the data set, and draw samples from 
each partition (proportionally, i.e., approximately 
the same percentage of the data) 

 Used in conjunction with skewed data
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Sampling: With or without 
Replacement

SRSWOR

(simple random

 sample without 

replacement)

SRSWR

Raw Data
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Types of Sampling

 Stratified sampling: 
 Choose a “category” attribute y
 Partition the data set according to y values 

(strata)
 Draw samples independently from each class 

(e.g. proportionally, i.e. approx. same % of data) 
 Better for skewed data

 Clustered sampling:
 Cluster data, use cluster classes as category in a 

stratified sampling
 Single stage / multi stage sampling:

 Perform hierarchical stratification or clustering
 Sample recursively
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Sampling: Cluster or Stratified 
Sampling

Raw Data Cluster/Stratified Sample
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Sampling: Cluster or Stratified 
Sampling

Raw Data 

Second Stage

First Stage
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Example: estimating sample size

 Generally speaking: we want to select n data 
objects from N
 to estimate the value P of a parameter of (the 

probability distribution of) an attribute
 with a value p computed (by a consistent 

estimator) on the sample only
 up to a given precision δ with a certain 

probability (1-α)
 Then Pr(|p−P| ≥ δ ) ≤ α

 If we assume our estimator to be asymptotically  
normal, and the attribute p.d.f. to have variance σ2

 z(x): value of the normal curve in x
 n0 ≥ z(α/2)2 σ2 / δ2 ; n  ≥ n0 / (1 + n0 / N)
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Numerosity Reduction: change 
representation

 Reduce data volume by choosing alternative, 
smaller forms of data representation

 Parametric methods (e.g., regression)
 Assume the data fits some model, estimate 

model parameters, store only the parameters, 
and discard the data (except possible outliers)

 Ex.: Log-linear models
 Non-parametric methods 

 Do not assume models
 Major families: histograms, clustering, 

sampling, … 
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Histogram Analysis

 Divide data into buckets 
and store average (sum) 
for each bucket

 Partitioning rules:

 Equal-width: equal 
bucket range

 Equal-frequency (or 
equal-depth)
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Clustering

 Partition data set into clusters based on similarity, 
and store cluster representation (e.g., centroid 
and diameter) only

 Can be very effective if data is clustered but not if 
data is “smeared”

 Can have hierarchical clustering and be stored in 
multi-dimensional index tree structures

 There are many choices of clustering definitions 
and clustering algorithms

 We will have some dedicated lectures for 
clustering algorithms
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Data Reduction Strategies

 Data reduction: Obtain a reduced representation of the data 
set that is much smaller in volume but yet produces the same 
(or almost the same) analytical results

 Why data reduction? Computational issues in big data!
 Data reduction strategies

 Numerosity reduction (or simply “Data Reduction” → red. 
the number of data objects)

 Sampling
 Histograms, clustering
 Regression and Log-Linear Models
 Data cube aggregation

 Dimensionality reduction (→ red. the number of attributes)
 Principal Components Analysis (PCA)
 Feature subset selection, feature creation
 Transforms (Fourier, Wavelet, Whitening …)

 Data compression
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Data Compression
 String compression

 There are extensive theories and well-tuned 
algorithms

 Typically lossless, but only limited manipulation is 
possible without expansion

 Audio/video compression
 Typically lossy compression, with progressive 

refinement
 Sometimes small fragments of signal can be 

reconstructed without reconstructing the whole
 Time sequence is not audio

 Typically short and vary slowly with time
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Data Compression

Original Data Compressed 
Data

lossless

Original Data
Approximated 

lossy
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Data Reduction Strategies

 Data reduction strategies
 Numerosity reduction (or simply “Data Reduction” → red. 

the number of data objects)
 Sampling
 Histograms, clustering
 Regression and Log-Linear Models
 Data cube aggregation

 Dimensionality reduction (→ red. the number of attributes)
 Principal Components Analysis (PCA)
 Feature subset selection, feature creation
 Transforms (Fourier, Wavelet, Whitening …)

TOPIC OF THE NEXT SET OF LECTURES

 Data compression
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Data Transformation

 A function that maps the entire set of values of a given 
attribute to a new set of replacement values s.t. each old 
value can be identified with one of the new values

 Methods

 Smoothing: Remove noise from data

 Attribute/feature construction

 New attributes constructed from the given ones

 Aggregation: Summarization, data cube construction

 Normalization: Scaled to fall within a smaller, specified 
range (min-max normalization; z-score normalization; 
normalization by decimal scaling)

 Discretization: Concept hierarchy climbing
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Normalization

 Min-max normalization: to [new_minA, new_maxA]

 Ex.  Let income range $12,000 to $98,000 normalized to 
[0.0, 1.0].  Then $73,600 is mapped to  

 Z-score normalization (μ: mean, σ: standard deviation):

 Ex. Let μ = 54,000, σ = 16,000.  Then

 Normalization by decimal scaling

716.00)00.1(
000,12000,98

000,12600,73 



AAA

AA

A

minnewminnewmaxnew
minmax

minv
v _)__(' 




A
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v


'

j

v
v

10
' Where j is the smallest integer such that Max(|ν’|) < 1

225.1
000,16

000,54600,73 
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Discretization 
 Three types of attributes

 Nominal—values from an unordered set, e.g. color

 Ordinal—values from an ordered set, e.g. rank 

 Numeric—real numbers, e.g., integer or real numbers

 Discretization: Divide the range of a continuous attribute into 
intervals

 Interval labels can then be used to replace actual data 
values 

 Reduce data size by discretization

 Supervised vs. unsupervised

 Split (top-down) vs. merge (bottom-up)

 Discretization can be performed recursively on an attribute

 Prepare for further analysis, e.g., classification
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Data Discretization Methods

 Typical methods: All the methods can be applied 
recursively

 Binning 

 Top-down split, unsupervised

 Histogram analysis

 Top-down split, unsupervised

 Clustering analysis (unsupervised, top-down split or 
bottom-up merge)

 Decision-tree analysis (supervised, top-down split)

 Correlation (e.g., 2) analysis (unsupervised, bottom-
up merge)
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Simple Discretization: Binning

 Equal-width (distance) partitioning

 Divides the range into N intervals of equal size: uniform grid

 if A and B are the lowest and highest values of the attribute, the 

width of intervals will be: W = (B –A)/N.

 The most straightforward, but outliers may dominate 

presentation

 Skewed data is not handled well

 Equal-depth (frequency) partitioning

 Divides the range into N intervals, each containing 

approximately same number of samples

 Good data scaling

 Managing categorical attributes can be tricky
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Binning Methods for Data 
Smoothing

 Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 
26, 28, 29, 34

*  Partition into equal-frequency (equi-depth) bins:

      - Bin 1: 4, 8, 9, 15

      - Bin 2: 21, 21, 24, 25

      - Bin 3: 26, 28, 29, 34

*  Smoothing by bin means:

      - Bin 1: 9, 9, 9, 9

      - Bin 2: 23, 23, 23, 23

      - Bin 3: 29, 29, 29, 29

*  Smoothing by bin boundaries:

      - Bin 1: 4, 4, 4, 15

      - Bin 2: 21, 21, 25, 25

      - Bin 3: 26, 26, 26, 34
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Binning Methods for Data 
Smoothing

 Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 
26, 28, 29, 34

*  Partition into equal-frequency (equi-depth) bins:

      - Bin 1: 4, 8, 9, 15

      - Bin 2: 21, 21, 24, 25

      - Bin 3: 26, 28, 29, 34

*  Smoothing by bin mean codes:

      - Bin 1: 1, 1, 1, 1

      - Bin 2: 2, 2, 2, 2

      - Bin 3: 3, 3, 3, 3

*  Smoothing by bin boundary codes:

      - Bin 1: 1l, 1l, 1l, 1r

      - Bin 2: 2l, 2l, 2r, 2r

      - Bin 3: 3l, 3l, 3l, 3r
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Discretization Without Using Class 
Labels (Binning vs. Clustering) 

Data

Equal interval width 
(binning)

Equal frequency (binning) K-means clustering leads to better 
results

Equal width (binning)
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Concept Hierarchy Generation

 Concept hierarchy organizes concepts (i.e., attribute values) 
hierarchically and is usually associated with each dimension in 
a data warehouse

 Concept hierarchies facilitate drilling and rolling in data 
warehouses to view data in multiple granularity

 Concept hierarchy formation: Recursively reduce the data by 
collecting and replacing low level concepts (such as numeric 
values for age) by higher level concepts (such as youth, adult, 
or senior)

 Concept hierarchies can be explicitly specified by domain 
experts and/or data warehouse designers

 Concept hierarchy can be automatically formed for both 
numeric and nominal data.  For numeric data, use 
discretization methods shown.
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Concept Hierarchy Generation 
for Nominal Data

 Specification of a partial/total ordering of attributes 
explicitly at the schema level by users or experts
 street < city < state < country

 Specification of a hierarchy for a set of values by 
explicit data grouping
 {Cremona, Lodi, Milano} < Lombardia

 Automatic generation of hierarchies (or attribute 
levels) by the analysis of the number of distinct 
values
 E.g., for a set of attributes: {street, city, state, 

country}
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Automatic Concept Hierarchy 
Generation

 Some hierarchies can be automatically 
generated based on the analysis of the number 
of distinct values per attribute in the data set 
 The attribute with the most distinct values is 

placed at the lowest level of the hierarchy
 Exceptions, e.g., weekday, month, quarter, 

year
country

province_or_ state

city

street

15 distinct values

365 distinct values

3567 distinct values

674,339 distinct values
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 Summary



63

Summary
 Data quality: accuracy, completeness, consistency, 

timeliness, believability, interpretability
 Data cleaning: e.g. missing/noisy values, outliers
 Data integration from multiple sources: 

 Entity identification problem
 Remove redundancies
 Detect inconsistencies

 Data reduction
 Dimensionality reduction
 Numerosity reduction
 Data compression

 Data transformation and data discretization
 Normalization
 Concept hierarchy generation
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