
Università degli Studi di Milano
Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 02: 07/10/2015

Data Mining: Concepts and Techniques

— Chapter 2 —

Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign

Simon Fraser University

©2012 Han, Kamber, and Pei. All rights
reserved.

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: term-frequency vector
 - Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data: .bmp
 - Video data: .avi

Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
(the volume of the space grows fast with the number of dimensions, and the available data becomes sparse)
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects.
- A **data object** represents an entity (also called *samples* , *examples*, *instances*, *data points*, *objects*, *tuples* ...)
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Data objects are described by **attributes** (also called *variables*, *dimensions*, *features* ...)
- In databases: rows -> data objects; columns -> attributes.

Attributes

- **Attribute** (or **dimensions, features, variables**): a data field, representing a characteristic or feature of a data object.
 - *E.g., customer _ID, name, address*
- Types:
 - Nominal
 - Binary
 - Ordinal
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- **Nominal:** categories, states, or “names of things”
 - $\text{Hair_color} = \{\text{auburn}, \text{black}, \text{blond}, \text{brown}, \text{grey}, \text{red}, \text{white}\}$
 - marital status, occupation, ID numbers, zip codes
- **Binary**
 - Nominal attribute with only 2 states (0 and 1)
 - Symmetric binary: both outcomes equally important
 - e.g., gender
 - Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)
- **Ordinal**
 - Values have a meaningful order (ranking) but magnitude between successive values is not known.
 - $\text{Size} = \{\text{small}, \text{medium}, \text{large}\}$, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- **Interval**
 - Measured on a scale of **equal-sized units**
 - Values have order
 - E.g., *temperature in C° or F°, calendar dates*
 - No true zero-point
- **Ratio**
 - Inherent **zero-point**
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., *temperature in Kelvin, length, counts, monetary quantities*

Discrete vs. Continuous Attributes (ML view)

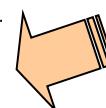
■ Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

■ Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data 
- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance...
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

■ Mean (algebraic measure) (sample vs. population):

Note: n is sample size and N is population size.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\bar{x} = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

■ Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for *grouped data*):

age	frequency
1–5	200
6–15	450
16–20	300
21–50	1500
51–80	700
81–110	44

$$\text{median} = L_1 + \left(\frac{\frac{n}{2} - (\sum \text{freq})_l}{\text{freq}_{\text{median}}} \right) \text{width}$$

Lower boundary of the median interval

values in the dataset

Sum of freq. of intervals preceding the median

Freq. of the median interval

Measuring the Central Tendency

■ Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula for moderately skewed:

$$\text{mean} - \text{mode} \simeq 3 \times (\text{mean} - \text{median})$$

Mean: 58

Median: $(52+56)/2 = 54$

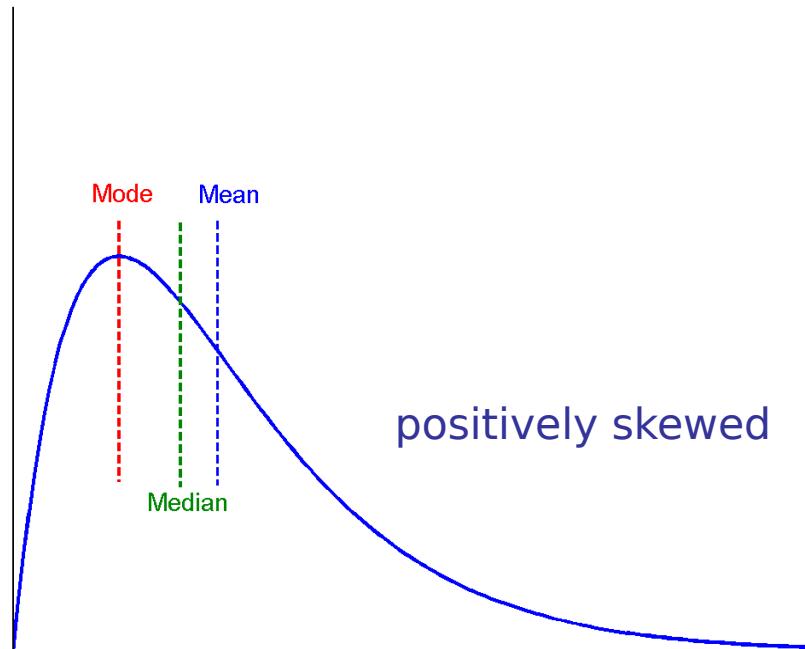
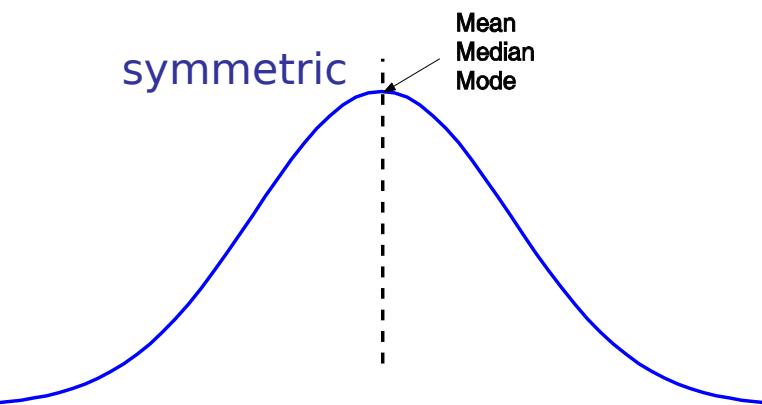
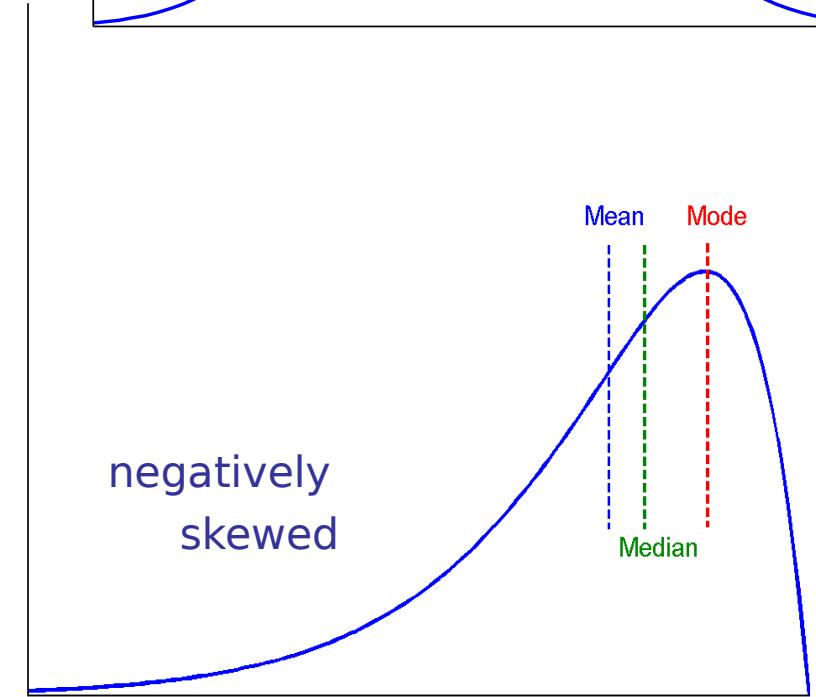
Mode: 52 and 70 (bimodal)

Midrange: $(30+110)/2 = 70$

Employee	Salary
1	30
2	36
3	47
4	50
5	52
6	52
7	56
8	60
9	63
10	70
11	70
12	110

Symmetric vs. Skewed Data

- Median, mean and mode of symmetric, positively and negatively skewed data



Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - **Quartiles**: Q_1 (25th percentile), Q_3 (75th percentile)
 - **Inter-quartile range**: $IQR = Q_3 - Q_1$
 - **Five number summary**: min, Q_1 , median, Q_3 , max (nice for skewed distributions)
 - **Boxplot**: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - **Outlier**: usually, a value higher/lower than $1.5 \times IQR$
- Variance and standard deviation (*sample: s, population: σ*)
 - **Variance**: (algebraic, scalable computation)

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \left[\sum_{i=1}^n x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n x_i \right)^2 \right] \quad \sigma^2 = \frac{1}{N} \sum_{i=1}^n (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^n x_i^2 - \mu^2$$

- **Standard deviation s (or σ)** is the square root of variance

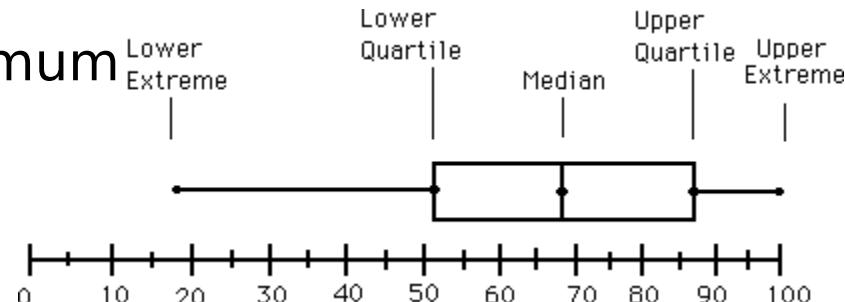
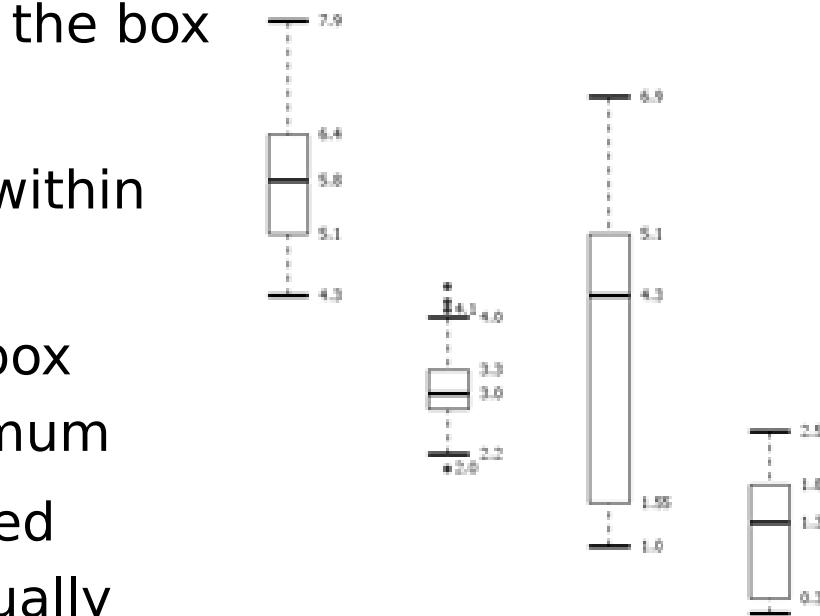
Boxplot Analysis

- **Five-number summary** of a distribution

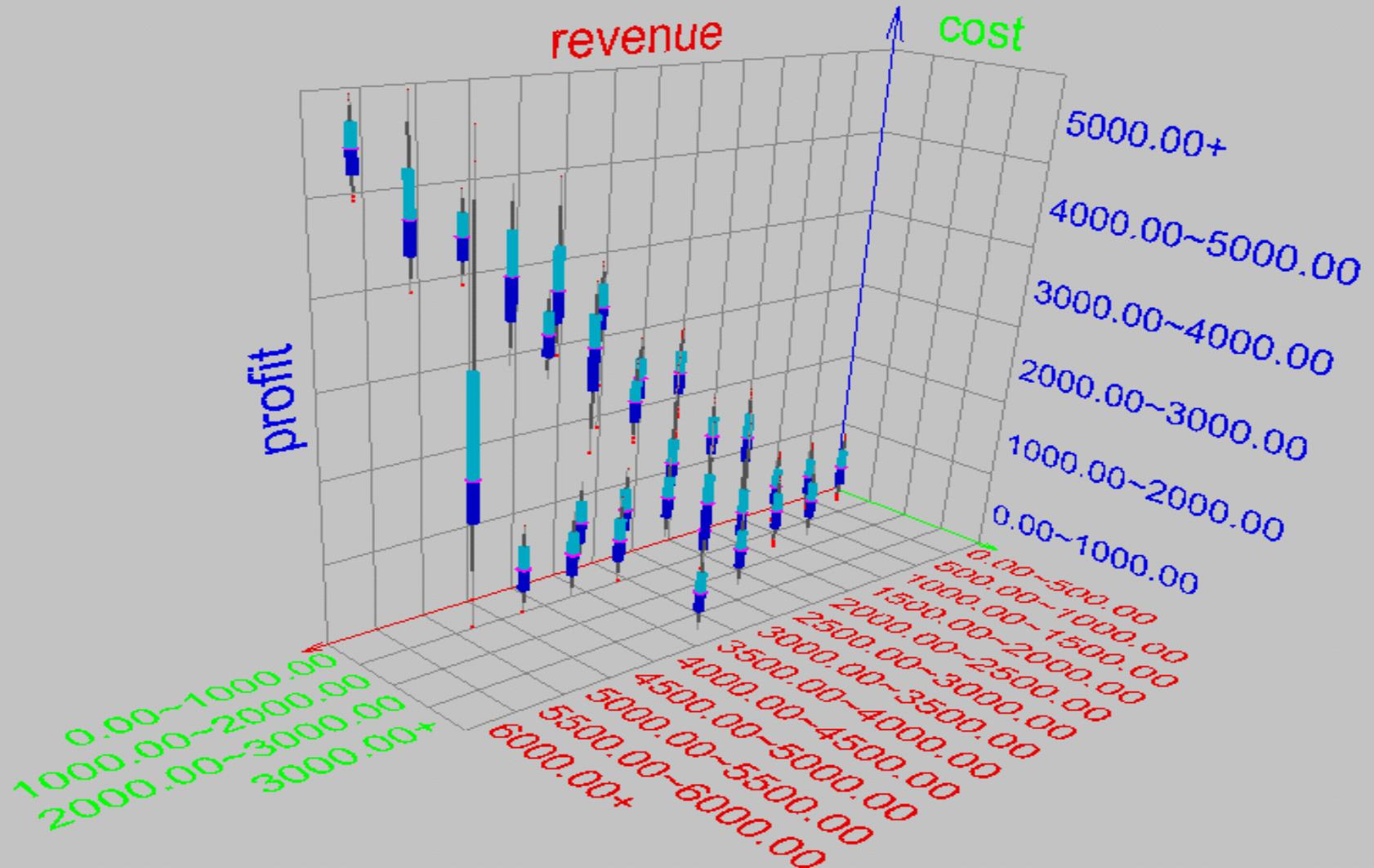
- Minimum, Q1, Median, Q3, Maximum

- **Boxplot**

- Data is represented with a box
 - The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extended to Minimum and Maximum
 - Outliers: points beyond a specified outlier threshold, plotted individually



Visualization of Data Dispersion: 3-D Boxplots

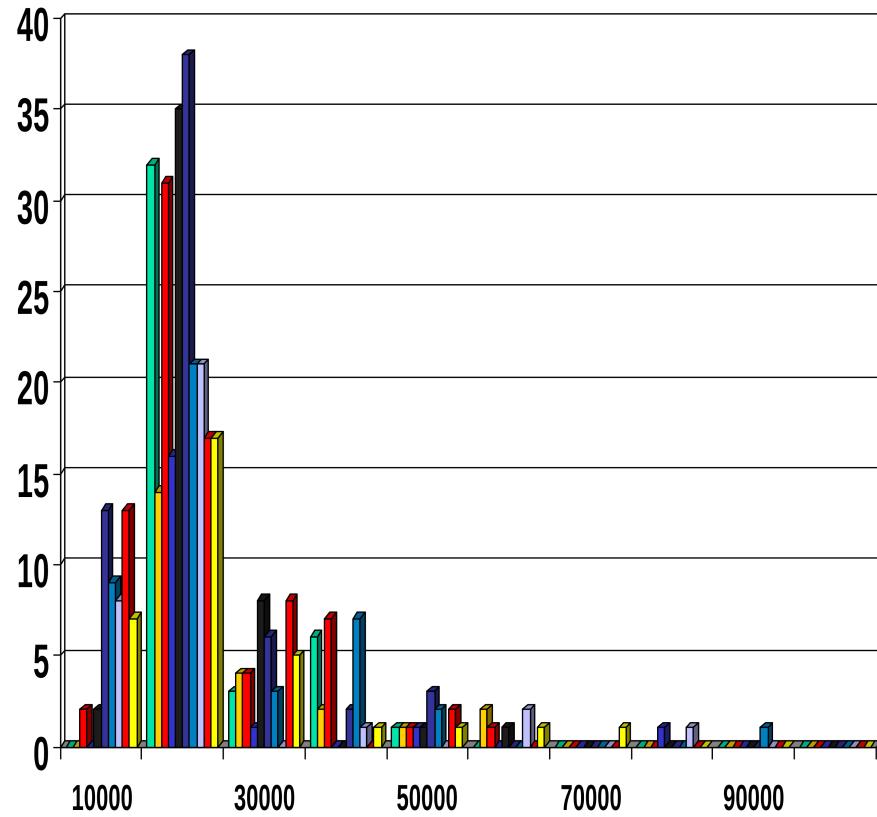


Graphic Displays of Basic Statistical Descriptions

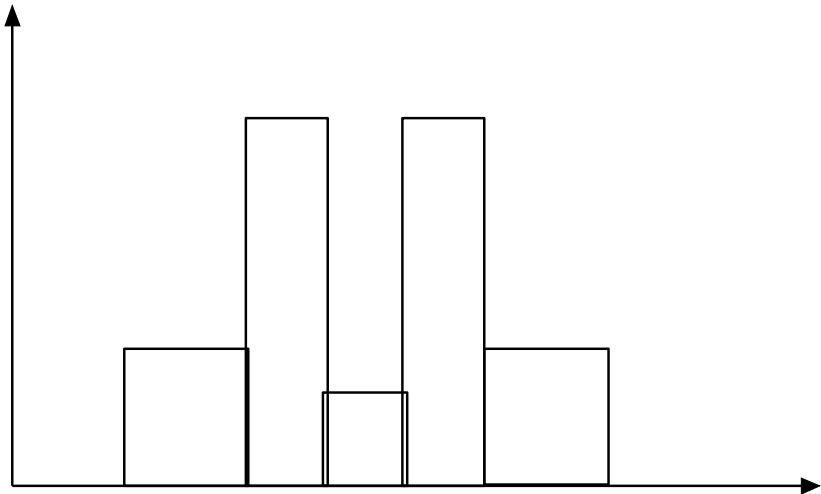
- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately $100 f_i \%$ of data are $\leq x_i$
- **Quantile-quantile (q-q) plot**: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- **Scatter plot**: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

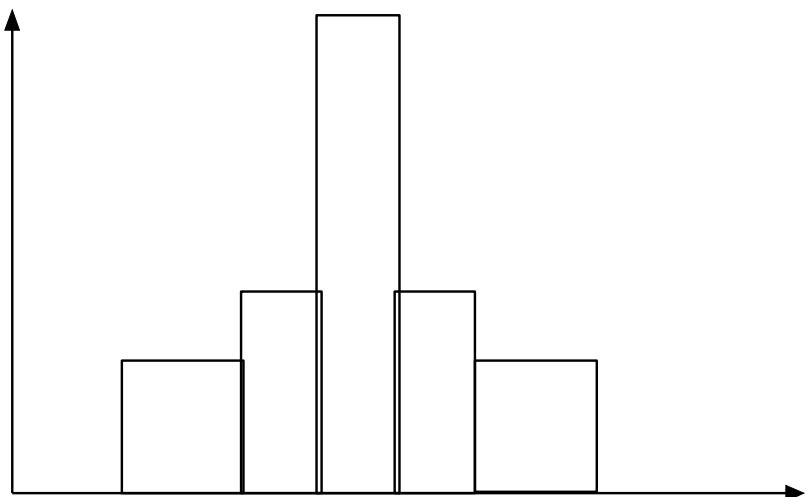
- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the *area* of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent



Histograms Often Tell More than Boxplots

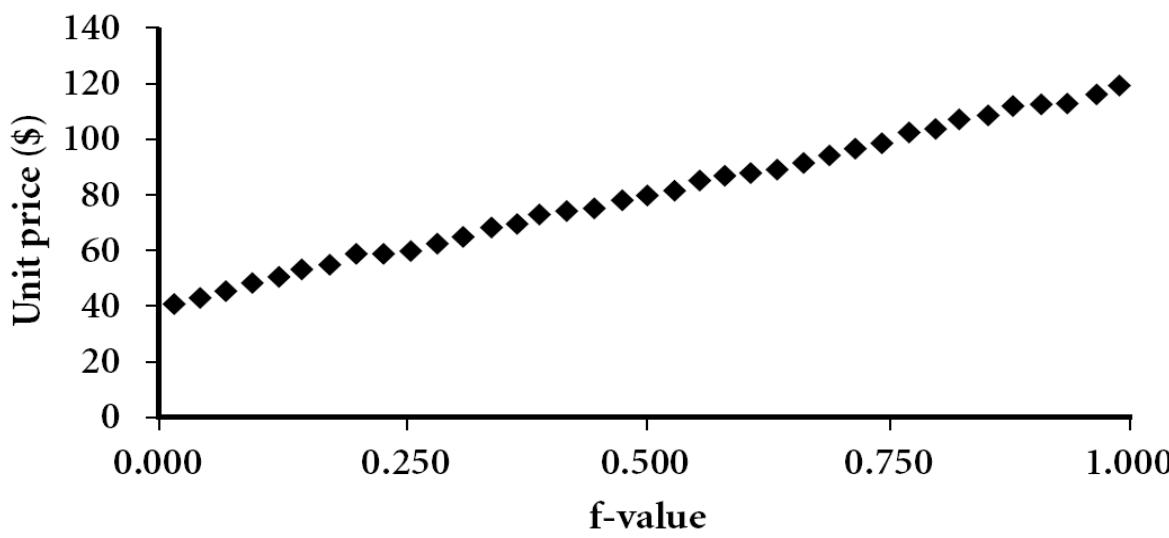


- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions



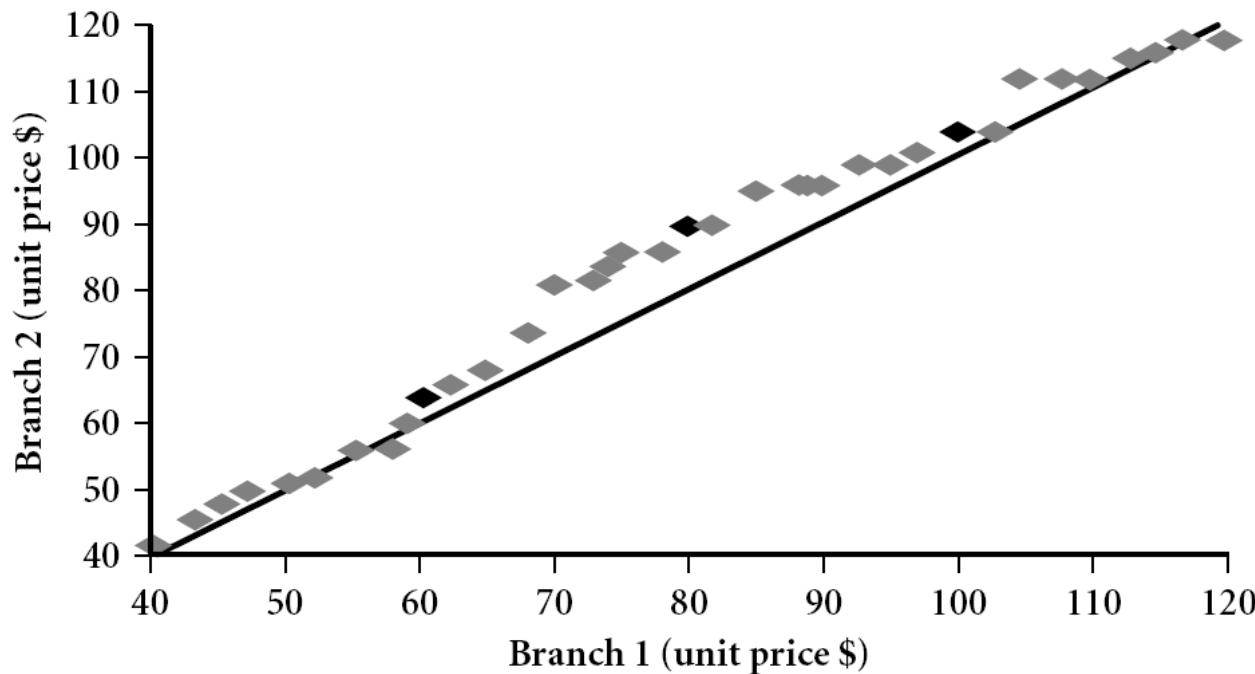
Quantile Plot

- Displays all of the data (assess both the overall behavior and unusual occurrences)
- Plots **quantile** information
 - Select an attribute x_i ; sort data by non-decreasing x_i value; plot it equally spaced on the x axis
 - $v(f)$ indicates the value s.t. a fraction f of data has value at most $v(f)$



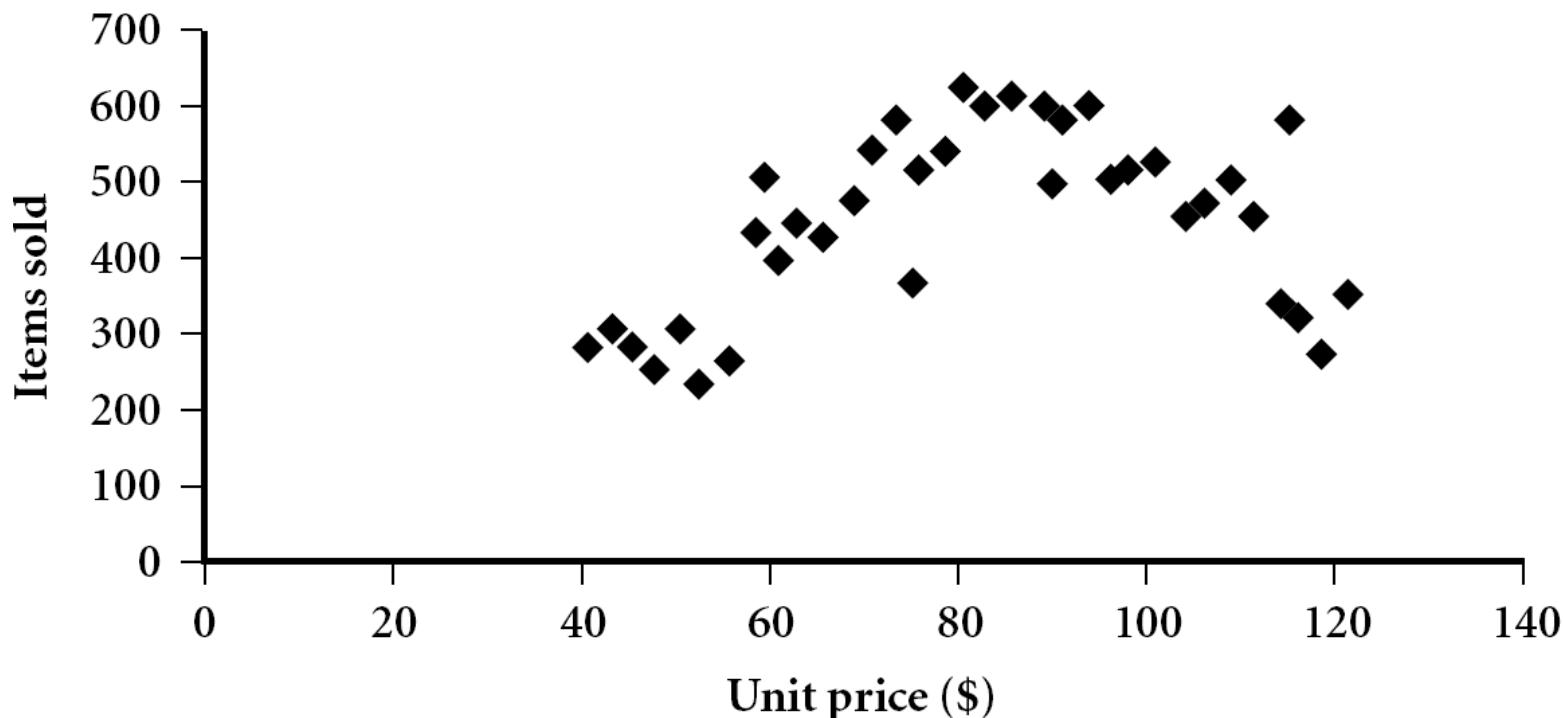
Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

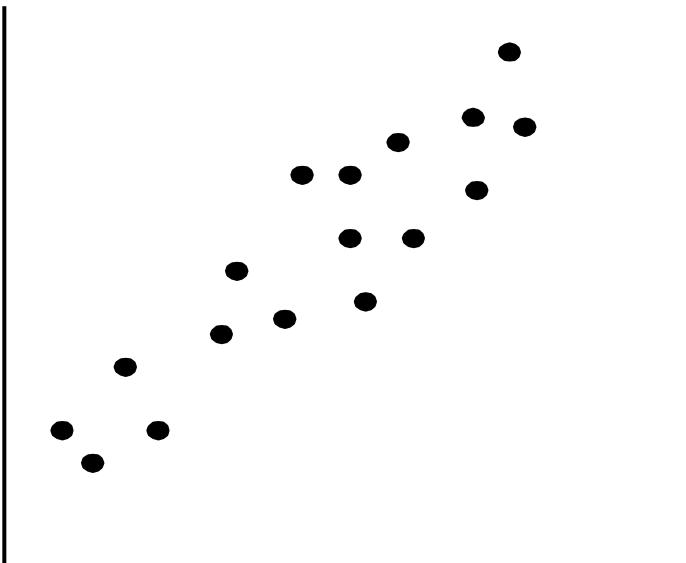
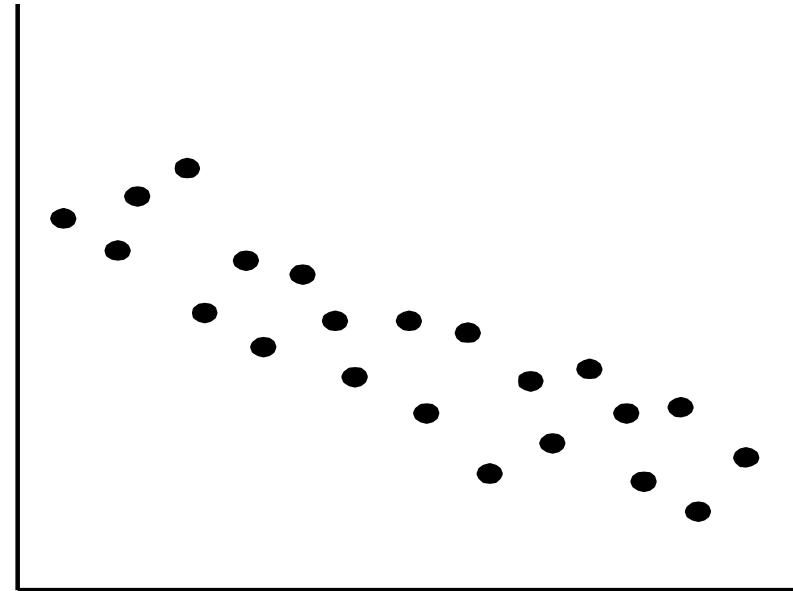
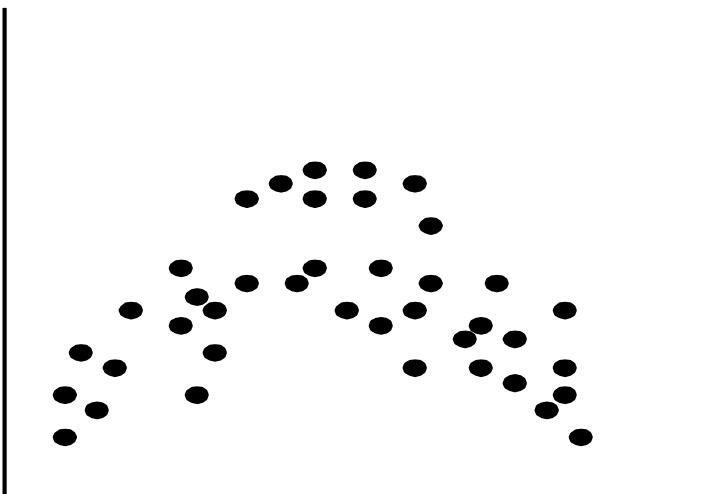


Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

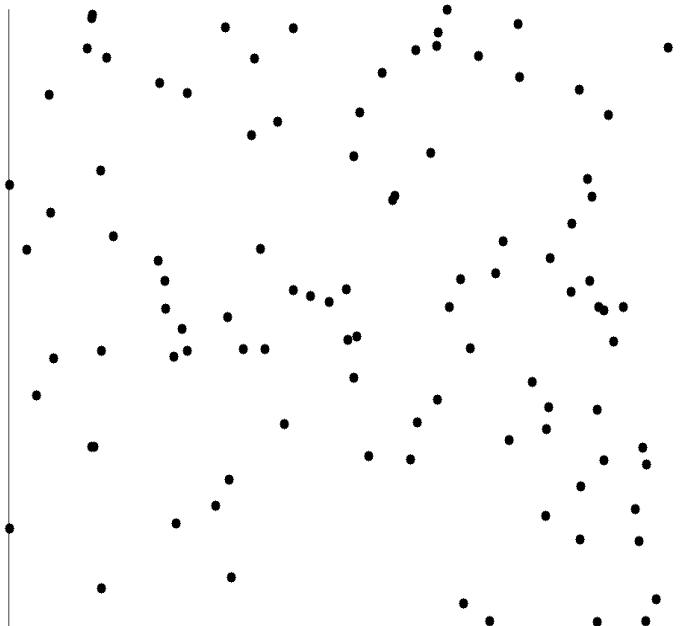
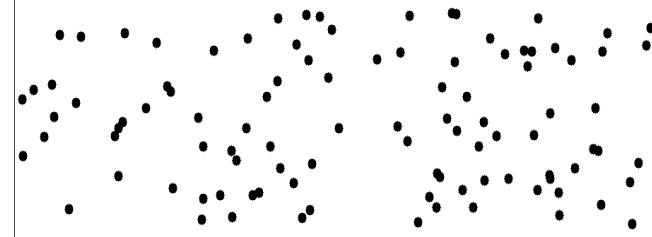
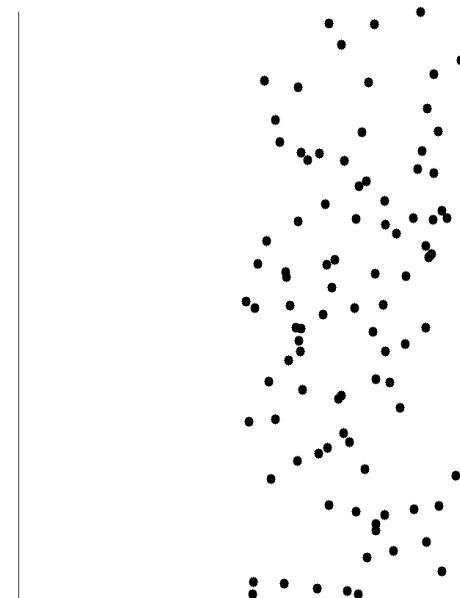


Positively and Negatively Correlated Data



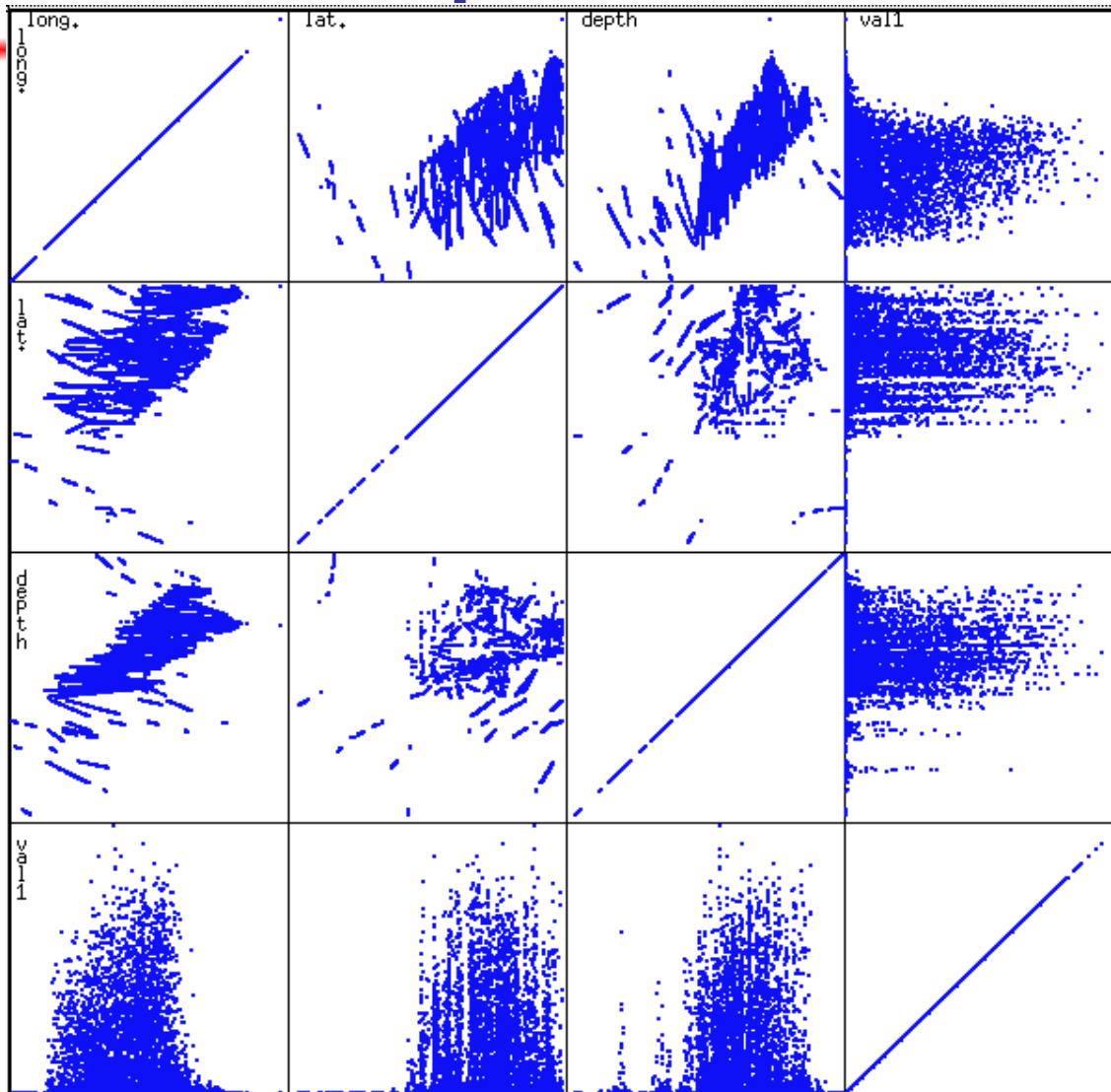
- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data



Scatterplot Matrices

Used by permission of M. Ward, Worcester Polytechnic Institute



Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of $(k^2/2-k)$ scatterplots]

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

Similarity and Dissimilarity

- **Similarity**
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- **Dissimilarity** (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- **Proximity** refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

■ Data matrix

- n data points (objects) with p dimensions (features)

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

■ Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix

$$\begin{bmatrix} 0 & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Proximity Measures for Binary Attributes

- A contingency table for binary data

Number of attributes for which both data objects have value 1

		Data object <i>j</i>		
		1	0	sum
Data object <i>i</i>	1	q	r	$q + r$
	0	s	t	$s + t$
sum		$q + s$	$r + t$	p

Proximity Measures for Binary Attributes

- ... but we can do the same for attributes (transpose)

Number of data objects for which both attributes have value 1

		Attribute j		
		1	0	sum
Attribute i	1	q	r	$q + r$
	0	s	t	$s + t$
sum		$q + s$	$r + t$	p

Proximity Measures for Binary Attributes

- A contingency table for binary data
- Distance measure for symmetric bin. vars (0 and 1 equally important):
- Distance measure for asymm. bin. vars (1 more important - e.g. diseases):
- Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):
- Note: Jaccard coefficient is the same as “coherence”:

$$coherence(i, j) = \frac{sup(i, j)}{sup(i) + sup(j) - sup(i, j)} = \frac{q}{(q + r) + (q + s) - q}$$

		Data object <i>j</i>		Data object <i>i</i>
		1	0	
1	<i>q</i>	<i>r</i>	<i>q + r</i>	
	<i>s</i>	<i>t</i>	<i>s + t</i>	
sum	<i>q + s</i>	<i>r + t</i>	<i>p</i>	
		$d(i, j) = \frac{r + s}{q + r + s + t}$		
		$d(i, j) = \frac{r + s}{q + r + s}$		
		$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$		

Dissimilarity between Binary Attributes

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3
Jack	M	Y	N	P	N	N
Mary	F	Y	N	P	N	P
Jim	M	Y	P	N	N	N

- Gender is a symmetric attribute (let's discard it!)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

	1	0	sum
1	q	r	q+r
0	s	t	s+t
sum	q+s	r+t	p

$$d(i, j) = \frac{r+s}{q+r+s}$$

Proximity Measures for Categorical (or “nominal”) Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m : # of matches, p : total # of attributes

$$d(i, j) = \frac{p - m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M categories

Proximity on Numeric Data: Minkowski Distance

- *Minkowski distance*: A popular distance measure

$$d(i, j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \cdots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, \dots, x_{ip})$ and $j = (x_{j1}, x_{j2}, \dots, x_{jp})$ are two p -dimensional data objects, and h is the order (the distance so defined is also called L- h norm)

- Properties
 - $d(i, j) > 0$ if $i \neq j$, and $d(i, i) = 0$ (Positive definiteness)
 - $d(i, j) = d(j, i)$ (Symmetry)
 - $d(i, j) \leq d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a *metric*

Special Cases of Minkowski Distance

- $h = 1$: Manhattan (city block, L_1 norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

- $h = 2$: (L_2 norm) Euclidean distance

$$d(i, j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

- $h \rightarrow \infty$. “supremum” (L_{\max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \rightarrow \infty} \left(\sum_{f=1}^p |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_f^p |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

Dissimilarity Matrices

Manhattan (L_1)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L_2)

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

L_{∞}	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Standardizing Numeric Data

- Z-score:
$$z = \frac{x - \mu}{\sigma}$$
 - X: raw data, μ : mean of the population, σ : standard deviation
 - the distance between the raw score and the population mean in units of the standard deviation
 - <0 when the raw score is below the mean, >0 when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n} (|x_{1f} - m_f| + |x_{2f} - m_f| + \dots + |x_{nf} - m_f|)$$

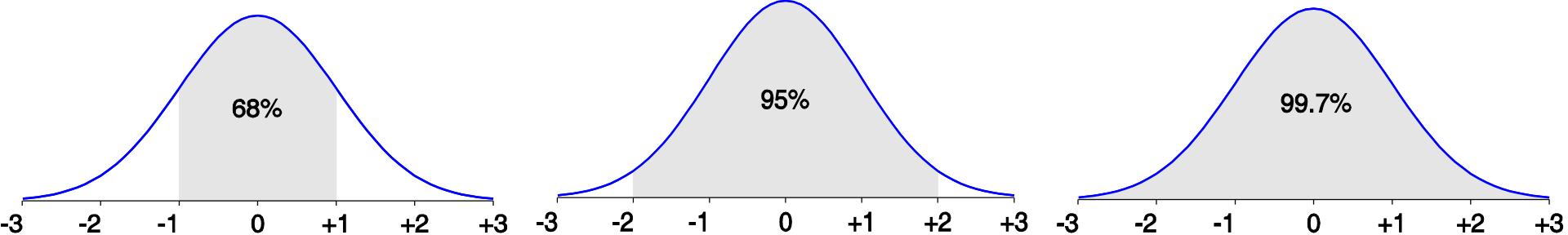
where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf}).$$

- standardized measure (z-score):
$$z_{if} = \frac{x_{if} - m_f}{s_f}$$
- mean absolute deviation is more robust than std dev

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From $\mu-\sigma$ to $\mu+\sigma$: contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From $\mu-2\sigma$ to $\mu+2\sigma$: contains about 95% of it
 - From $\mu-3\sigma$ to $\mu+3\sigma$: contains about 99.7% of it



Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, \dots, M_f\}$
 - map (normalize) the range of each variable onto $[0, 1]$ by replacing x_{if} by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

- compute the dissimilarity using distance measures for numeric attributes

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i, j) = \frac{\sum_{f=1}^p \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^p \delta_{ij}^{(f)}}$$

- Choice of $\delta_{ij}^{(f)}$
 - Set $\delta_{ij}^{(f)} = 0$ if
 - x_{if} or x_{jf} is missing
 - $x_{if} = x_{jf} = 0$ and f is asymmetric binary
 - Set $\delta_{ij}^{(f)} = 1$ otherwise

Attributes of Mixed Type

$$d(i, j) = \frac{\sum_{f=1}^p \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^p \delta_{ij}^{(f)}}$$

- *Choice of $d_{ij}^{(f)}$*
 - *when f is binary or nominal:*
 $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$, $d_{ij}^{(f)} = 1$ otherwise
 - *when f is numeric:* use the normalized distance
 - *when f is ordinal*
 - Compute ranks r_{if} and $z_{if} = \frac{r_{if} - 1}{M_f - 1}$
 - Treat z_{if} as interval-scaled

Cosine Similarity

- A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Issue: very long and **sparse**
- Treat documents as vectors, and compute a **cosine similarity**

Cosine Similarity

- Cosine measure: If x and y are two vectors (e.g., term-frequency vectors), then

$$\cos(x, y) = (x \bullet y) / \|x\| \|y\|$$

where

- \bullet indicates vector dot product, $x \cdot y = \sum_{i=1}^p x_i y_i$
- $\|x\|$: the L2 norm (length) of vector x $\|x\| = \sqrt{x_1^2 + x_2^2 + \dots + x_p^2}$
- Remark: when attributes are binary valued:
 - \bullet indicates the number of shared features
 - $\|x\| \|y\|$ is the geometric mean between the number of features of x and the number of features of y :
$$\sqrt{a} * \sqrt{b} = \sqrt{a * b}$$
 - $\cos(x, y)$ measures relative possession of common features

Example: Cosine Similarity

- $\cos(x, y) = (x \bullet y) / \|x\| \|y\|$
- Ex: Find the **similarity** between documents x and y.

$$x = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

$$y = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$\begin{aligned} x \bullet y &= 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = \\ &= 25 \end{aligned}$$

$$\begin{aligned} \|x\| &= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = \\ &= 6.481 \end{aligned}$$

$$\begin{aligned} \|y\| &= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5} = \\ &= 4.12 \end{aligned}$$

$$\cos(x, y) = 25 / (6.481 * 4.12) = 0.94$$

References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001
- C. Yu et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009