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Types of Data Sets 

 Record
 Relational records
 Data matrix, e.g., numerical matrix, 

crosstabs
 Document data: text documents: 

term-frequency vector
 Transaction data

 Graph and network
 World Wide Web
 Social or information networks
 Molecular Structures

 Ordered
 Video data: sequence of images
 Temporal data: time-series
 Sequential Data: transaction 

sequences
 Genetic sequence data

 Spatial, image and multimedia:
 Spatial data: maps
 Image data: .bmp 
 Video data: .avi

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Important Characteristics of 
Structured Data

 Dimensionality
 Curse of dimensionality

(the volume of the space grows fast with the number of 
dimensions, and the available data becomes sparse)

 Sparsity
 Only presence counts

 Resolution

 Patterns depend on the scale 
 Distribution

 Centrality and dispersion



6

Data Objects

 Data sets are made up of data objects.

 A data object represents an entity (also called samples , 
examples, instances, data points, objects, tuples ...)

 Examples: 

 sales database:  customers, store items, sales

 medical database: patients, treatments

 university database: students, professors, courses

 Data objects are described by attributes (also called 
variables, dimensions, features ...)

 In databases: rows -> data objects; columns ->attributes.
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Attributes

 Attribute (or dimensions, features, 
variables): a data field, representing a 
characteristic or feature of a data object.
 E.g., customer _ID, name, address

 Types:
 Nominal
 Binary
 Ordinal
 Numeric: quantitative

 Interval-scaled
 Ratio-scaled
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Attribute Types 

 Nominal: categories, states, or “names of things”
 Hair_color = {auburn, black, blond, brown, grey, red, 

white}
 marital status, occupation, ID numbers, zip codes

 Binary
 Nominal attribute with only 2 states (0 and 1)
 Symmetric binary: both outcomes equally important

 e.g., gender
 Asymmetric binary: outcomes not equally important.  

 e.g., medical test (positive vs. negative)
 Convention: assign 1 to most important outcome 

(e.g., HIV positive)
 Ordinal

 Values have a meaningful order (ranking) but magnitude 
between successive values is not known.

 Size = {small, medium, large}, grades, army rankings
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Numeric Attribute Types 

 Quantity (integer or real-valued)
 Interval

 Measured on a scale of equal-sized units
 Values have order

 E.g., temperature in C˚or F˚, calendar dates
 No true zero-point

 Ratio
 Inherent zero-point
 We can speak of values as being an order of 

magnitude larger than the unit of measurement 
(10 K˚ is twice as high as 5 K˚).

 e.g., temperature in Kelvin, length, counts, 
monetary quantities
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Discrete vs. Continuous 
Attributes (ML view) 

 Discrete Attribute
 Has only a finite or countably infinite set of 

values
 E.g., zip codes, profession, or the set of words 

in a collection of documents 
 Sometimes, represented as integer variables
 Note: Binary attributes are a special case of 

discrete attributes 
 Continuous Attribute

 Has real numbers as attribute values
 E.g., temperature, height, or weight

 Practically, real values can only be measured and 
represented using a finite number of digits

 Continuous attributes are typically represented as 
floating-point variables
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Basic Statistical Descriptions of 
Data

 Motivation
 To better understand the data: central tendency, 

variation and spread
 Data dispersion characteristics 

 median, max, min, quantiles, outliers, variance...
 Numerical dimensions correspond to sorted intervals

 Data dispersion: analyzed with multiple 
granularities of precision

 Boxplot or quantile analysis on sorted intervals
 Dispersion analysis on computed measures

 Folding measures into numerical dimensions
 Boxplot or quantile analysis on the transformed 

cube
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Measuring the Central Tendency
 Mean (algebraic measure) (sample vs. population):

Note: n is sample size and N is population size. 

 Weighted arithmetic mean

 Sensitive to outliers: trimmed mean (chopping 

extreme values)

 Median: 

 Middle value if odd number of values, or 

average of the middle two values otherwise

 Estimated by interpolation (for grouped data):
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Measuring the Central Tendency
 Mode

 Value that occurs most frequently in the data

 Unimodal, bimodal, trimodal

 Empirical formula for moderately skewed:

mean−mode≃3×(mean−median )

Mean: 58 

Employe
d

Salary

1 30

2 36

3 47

4 50

5 52

6 52

7 56

8 60

9 63

10 70

11 70

12 110

Median: (52+56)/2 = 54 

Mode: 52 and 70 (bimodal)

Midrange: (30+110) /2 = 70



November 9, 2015
Data Mining: Concepts and 

Techniques 15

 Symmetric vs. 
Skewed Data

 Median, mean and mode of 
symmetric, positively and 
negatively skewed data

positively skewed negatively 
skewed

symmetric



16

Measuring the Dispersion of 
Data

 Quartiles, outliers and boxplots

 Quartiles: Q1 (25th percentile), Q3 (75th percentile)

 Inter-quartile range: IQR = Q3 – Q1 

 Five number summary: min, Q1, median, Q3, max (nice for 

skewed distributions)

 Boxplot: ends of the box are the quartiles; median is marked; add 

whiskers, and plot outliers individually

 Outlier: usually, a value higher/lower than 1.5 x IQR

 Variance and standard deviation (sample: s, population: σ)

 Variance: (algebraic, scalable computation)

 Standard deviation s (or σ) is the square root of variance
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 Boxplot Analysis

 Five-number summary of a distribution

 Minimum, Q1, Median, Q3, Maximum

 Boxplot

 Data is represented with a box

 The ends of the box are at the first and 
third quartiles, i.e., the height of the box 
is IQR

 The median is marked by a line within 
the box

 Whiskers: two lines outside the box 
extended to Minimum and Maximum

 Outliers: points beyond a specified 
outlier threshold, plotted individually
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Visualization of Data Dispersion: 3-D 
Boxplots
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Graphic Displays of Basic Statistical 
Descriptions

 Boxplot: graphic display of five-number summary

 Histogram: x-axis are values, y-axis repres. 

frequencies 

 Quantile plot:  each value xi  is paired with fi  

indicating that approximately 100 fi % of data  are  xi 

 Quantile-quantile (q-q) plot: graphs the quantiles of 

one univariant distribution against the corresponding 

quantiles of another

 Scatter plot: each pair of values is a pair of 

coordinates and plotted as points in the plane
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Histogram Analysis

 Histogram: Graph display of 
tabulated frequencies, shown as bars

 It shows what proportion of cases fall 
into each of several categories

 Differs from a bar chart in that it is 
the area of the bar that denotes the 
value, not the height as in bar 
charts, a crucial distinction when the 
categories are not of uniform width

 The categories are usually specified 
as non-overlapping intervals of some 
variable. The categories (bars) must 
be adjacent
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Histograms Often Tell More than 
Boxplots

 The two histograms 
shown in the left 
may have the same 
boxplot 
representation
 The same values 

for: min, Q1, 
median, Q3, max

 But they have 
rather different data 
distributions
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Quantile Plot

 Displays all of the data (assess both the overall 
behavior and unusual occurrences)

 Plots quantile information
 Select an attribute xi; sort data by non-decreasing xi 

value; plot it equally spaced on the x axis
 v(f) indicates the value s.t. a fraction f of data has 

value at most v(f)
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Quantile-Quantile (Q-Q) Plot

 Graphs the quantiles of one univariate distribution against 
the corresponding quantiles of another

 View: Is there is a shift in going from one distribution to 
another?

 Example shows unit price of items sold at Branch 1 vs. 
Branch 2 for each quantile.  Unit prices of items sold at 
Branch 1 tend to be lower than those at Branch 2.
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Scatter plot

 Provides a first look at bivariate data to see 
clusters of points, outliers, etc

 Each pair of values is treated as a pair of 
coordinates and plotted as points in the plane
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Positively and Negatively Correlated 
Data

 The left half fragment is positively 

correlated

 The right half is negative correlated
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 Uncorrelated Data
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Scatterplot Matrices

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) 
scatterplots]
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Similarity and Dissimilarity

 Similarity
 Numerical measure of how alike two data objects 

are
 Value is higher when objects are more alike
 Often falls in the range [0,1]

 Dissimilarity (e.g., distance)
 Numerical measure of how different two data 

objects are
 Lower when objects are more alike
 Minimum dissimilarity is often 0
 Upper limit varies

 Proximity refers to a similarity or dissimilarity
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Data Matrix and Dissimilarity 
Matrix

 Data matrix
 n data points 

(objects) with p 
dimensions 
(features)

 Dissimilarity matrix
 n data points, but 

registers only the 
distance 

 A triangular matrix

[
x11 .. . x1f . . . x1p

.. . .. . .. . . . . . . .
x i1 .. . x if . . . x ip

.. . .. . .. . . . . . . .
xn1 .. . xnf . . . xnp

]
[

0
d ( 2,1) 0
d ( 3,1) d ( 3,2) 0

: : :
d ( n , 1) d (n , 2 ) .. . . .. 0

]
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Proximity Measures for Binary 
Attributes

 A contingency table for binary data

Data object j

Number of attributes for which
both data objects have value 1



32

Proximity Measures for Binary 
Attributes

 … but we can do the same for attributes (transpose)

Attribute j

Number of data objects for which
both attributes have value 1
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Proximity Measures for Binary 
Attributes

 A contingency table for binary data

 Distance measure for symmetric bin. 

vars (0 and 1 equally important): 

 Distance measure for asymm. bin. vars 

(1 more important – e.g. diseases): 

 Jaccard coefficient (similarity measure 

for asymmetric binary variables): 

 Note: Jaccard coefficient is the same as “coherence”:

Data object j
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Dissimilarity between Binary 
Attributes

 Example

 Gender is a symmetric attribute (let's discard it!)
 The remaining attributes are asymmetric binary
 Let the values Y and P be 1, and the value N 0

Name Gender Fever Cough Test-1 Test-2 Test-3
Jack M Y N P N N
Mary F Y N P N P
Jim M Y P N N N

75.0
211

21
),(

67.0
111

11
),(

33.0
102

10
),(
















maryjimd

jimjackd

maryjackd
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Proximity Measures for Categorical 
(or “nominal”) Attributes

 Can take 2 or more states, e.g., red, yellow, 
blue, green (generalization of a binary 
attribute)

 Method 1: Simple matching

 m: # of matches, p: total # of attributes

 Method 2: Use a large number of binary 
attributes

 creating a new binary attribute for each of 
the M categories

d ( i , j )=
p−m

p
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Proximity on Numeric Data: Minkowski 
Distance

 Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two 
p-dimensional data objects, and h is the order (the 
distance so defined is also called L-h norm)

 Properties

 d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive 
definiteness)

 d(i, j) = d(j, i)  (Symmetry)

 d(i, j)  d(i, k) + d(k, j)  (Triangle Inequality)

 A distance that satisfies these properties is a metric
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Special Cases of Minkowski Distance

 h = 1:  Manhattan (city block, L1 norm) distance 
 E.g., the Hamming distance: the number of bits that are 

different between two binary vectors

 h = 2:  (L2 norm) Euclidean distance

 h  .  “supremum” (Lmax norm, L norm) distance. 
 This is the maximum difference between any component 

(attribute) of the vectors

d ( i , j )=√(∣x
i1−x

j 1∣
2+∣x

i 2−x
j 2∣

2+. . .+∣x
i p−x

j p∣
2 )

d ( i , j )=∣x
i1−x

j 1∣+∣x
i 2−x

j 2∣+. . .+∣x
i p−x

j p∣



38

Example: Minkowski Distance

Dissimilarity Matrices

Manhattan (L1)

Euclidean (L2)

Supremum (L
inf

) 
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Standardizing Numeric Data

 Z-score:

 
 X: raw data, μ: mean of the population, σ: standard deviation
 the distance between the raw score and the population mean in 

units of the standard deviation
 <0 when the raw score is below the mean, >0 when above

 An alternative way: Calculate the mean absolute deviation

where

 standardized measure (z-score):

 mean absolute deviation is more robust than std dev

.)...
21

1
nffff
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Properties of Normal Distribution 
Curve

 The normal (distribution) curve
 From μ–σ to μ+σ: contains about 68% of the 

measurements  (μ: mean, σ: standard deviation)
  From μ–2σ to μ+2σ: contains about 95% of it
 From μ–3σ to μ+3σ: contains about 99.7% of it
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Ordinal Variables

 An ordinal variable can be discrete or continuous
 Order is important, e.g., rank
 Can be treated like interval-scaled 

 replace xif  by their rank 
 map (normalize) the range of each variable onto 

[0, 1] by replacing xif by

 compute the dissimilarity using distance 
measures for numeric attributes

z if =
r if −1

M f −1

},...,1{
fif

Mr 
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Attributes of Mixed Type

 A database may contain all attribute types
 Nominal, symmetric binary, asymmetric binary, 

numeric, ordinal
 One may use a weighted formula to combine their 

effects

 Choice of 
 Set           if

 xif or xjf is missing
 xif = xjf = 0 and f is asymmetric binary

 Set           otherwise

d ( i , j )=
Σ f =1

p δ ij
( f )d ij

( f )

Σ f =1
p δ ij

( f )

δij
( f )

=0

δij
( f )

=1

δij
( f )
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Attributes of Mixed Type

 Choice of dij(f)

 when f  is binary or nominal:
dij(f) = 0  if xif = xjf , dij(f) = 1 otherwise

 when f  is numeric: use the normalized distance
 when f  is ordinal 

 Compute ranks rif and  

 Treat zif as interval-scaled
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 Cosine Similarity

 A document can be represented by thousands of attributes, 
each recording the frequency of a particular word (such as 
keywords) or phrase in the document.

 Other vector objects: gene features in micro-arrays, …
 Applications: information retrieval, biologic taxonomy, gene 

feature mapping, …
 Issue: very long and sparse

 Treat documents as vectors, and compute a cosine similarity
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 Cosine Similarity

 Cosine measure: If x and y are two vectors (e.g., term-frequency 
vectors), then

cos(x, y) =  (x  y) /||x|| ||y||

where 
  indicates vector dot product,
  ||x||: the L2 norm (length) of vector x

  Remark: when attributes are binary valued:
  indicates the number of shared features
  ||x|| ||y|| is the geometric mean between the number of 

features of x and the number of features of y:

sqrt(a) * sqrt(b) = sqrt( a * b )
 cos (x, y) measures relative possession of common features

∥x∥=√ x1
2+x2

2+...+x p
2

x⋅y=∑
i=1

p

xi yi
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 Example: Cosine Similarity

 cos(x, y) =  (x  y) /||x|| ||y||

 Ex: Find the similarity between documents x and y.

x =  (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)
y =  (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

x  y = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1=
= 25

||x||=(5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=
= 6.481

||y||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=   
  = 4.12

cos(x, y) = 25 / (6.481 * 4.12) = 0.94
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