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Types of Data Sets

Record
= Relational records

= Data matrix, e.g., numerical matrix,

crosstabs

= Document data: text documents:

term-frequency vector
= Transaction data
Graph and network
=  World Wide Web
= Social or information networks
= Molecular Structures
Ordered
= Video data: sequence of images
= Temporal data: time-series

= Sequential Data: transaction
sequences

= Genetic sequence data
Spatial, image and multimedia:

= Spatial data: maps

* |mage data: .bmp

* Video data: .avi

Document 1

Document 2 0 7 0 2 1 0 0 3
Document 3 0 1 0 0 1 2 2 0
TID Items
1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk




Important Characteristics of
Structured Data

= Dimensionality

= Curse of dimensionality

(the volume of the space grows fast with the number of
dimensions, and the available data becomes sparse)

= Sparsity
= Only presence counts
= Resolution

" Patterns depend on the scale
= Distribution
= Centrality and dispersion



Data Objects

Data sets are made up of data objects.

A data object represents an entity (also called samples,
examples, instances, data points, objects, tuples ...)

Examples:

= sales database: customers, store items, sales

* medical database: patients, treatments

" university database: students, professors, courses

Data objects are described by attributes (also called
variables, dimensions, features ...)

In databases: rows -> data objects; columns ->attributes.



Attributes

= Attribute (or dimensions, features,
variables): a data field, representing a
characteristic or feature of a data object.

= E.g., customer ID, name, address
= Jypes:
= Nominal
= Binary
" Ordinal
= Numeric: quantitative
" Interval-scaled
= Ratio-scaled



Attribute Types

= Nominal: categories, states, or “names of things”
= Hair color = {auburn, black, blond, brown, grey, red,

white}
= marital status, occupation, ID numbers, zip codes
= Binary

= Nominal attribute with only 2 states (0 and 1)

= Symmetric binary: both outcomes equally important
"= e.g., gender

= Asymmetric binary: outcomes not equally important.
= e.g., medical test (positive vs. negative)

= Convention: assign 1 to most important outcome
(e.g., HIV positive)

= Ordinal

= Values have a meaningful order (ranking) but magnitude
between successive values is not known.

= Sjze = {small, medium, large}, grades, army rankings




Numeric Attribute Types

= Quantity (integer or real-valued)
" |Interval

= Measured on a scale of equal-sized units

* Values have order
= E.q., temperature in C°or F°, calendar dates
"= No true zero-point
= Ratio
" Inherent zero-point

= We can speak of values as being an order of
magnitude larger than the unit of measurement
(10 K® is twice as high as 5 K°).

" e.g., temperature in Kelvin, length, counts,
monetary quantities



Discrete vs. Continuous
Attributes (ML view)

= Discrete Attribute

= Has only a finite or countably infinite set of
values

" E.g., zip codes, profession, or the set of words
In a collection of documents

= Sometimes, represented as integer variables

= Note: Binary attributes are a special case of
discrete attributes

= Continuous Attribute
= Has real numbers as attribute values
" E.g., temperature, height, or weight

" Practically, real values can only be measured and
represented using a finite number of digits

= Continuous attributes are typically represented as
floating-point variables 10
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Basic Statistical Descriptions of
Data

B Motivation

B To better understand the data: central tendency,
variation and spread

B Data dispersion characteristics
® median, max, min, quantiles, outliers, variance...
® Numerical dimensions correspond to sorted intervals

® Data dispersion: analyzed with multiple
granularities of precision

® Boxplot or quantile analysis on sorted intervals
® Dispersion analysis on computed measures
® Folding measures into numerical dimensions

® Boxplot or quantile analysis on the transformed
Cube b




Measuring the Central Tendency

® Mean (algebraic measure) (sample vs. population): 1 &
. . . . . X = — X.
Note: n is sample size and N is population size. n “— :
® Weighted arithmetic mean L
> wx
B Sensitive to outliers: trimmed mean (chopping X — =l
extreme values) Zn:w.
B Median: i=1
_ . age frequency
® Middle value if odd number of values, or 15 500
average of the middle two values otherwise ¢_15 450
= Estimated by interpolation (for grouped data): 16—20 300
21-50 1500
n 51-80 700
| ) (2 freq ) | 81-110 A4
median=L,+|- ) width
| freqmedian

Sum of freq. of intervals preceding the median

Lower boundary of the median interval

# values in the dataset Freq. of the median interval

13



Measuring the Central Tendency

® Mode

® Value that occurs most frequently in the data

® Unimodal, bimodal, trimodal

B Empirical formula for moderately skewed:
Employe Salary

mean —mode ~3 X  mean— median | 20

36
47
50
52
52
56
60
63
70
70
110

Mean: 58

Median: (524+56)/2 = 54
Mode: 52 and 70 (bimodal)
Midrange: (30+110) /2 =70

© 00 N O O A~ W N P O

e
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Symmetric vs.
—Skewed Data

= Median, mean and mode of
symmetric, positively and
negatively skewed data

Mode Mean
1 1 1

positively skewed

: Vo
Median

symmetric

Mean
Median
Mode

negatively
skewed

Mean Mode
1 1 1




Measuring the Dispersion of
Data

®  Quartiles, outliers and boxplots
® Quartiles: Q, (25t percentile), Qs (75t percentile)
® Inter-quartile range: IQR = Q;-Q;
® Five number summary: min, Q,, median, Qs;, max (nice for
skewed distributions)

® Boxplot: ends of the box are the quartiles; median is marked; add
whiskers, and plot outliers individually

® Qutlier: usually, a value higher/lower than 1.5 x IQR
B Variance and standard deviation (sample: s, population: o)

® Variance: (algebraic, scalable computation)

n

2_ln 1 »_ 1y EPRCE I SIS
—n;(xi gx Z c N;(Xi 1) N;xi 7

® Standard deviation s (or ) is the square root of variance

16



Boxplot Analysis

= Five-number summary of a distribution

Lower Upper
. e . . Lower Quartile Quartile Upper
= Minimum, Q1, Median, Q3, Maximumg ;> Median Extreme

= Boxplot |

" Data is represented witha box ., ., ., W . 4
= The ends of the box are at the first and
third quartiles, i.e., the height of the box —-
Is IQR -
= The median is marked by a line within ~ —* :
the box o

= Whiskers: two lines outside the box
extended to Minimum and Maximum i -

= Outliers: points beyond a specified - H
outlier threshold, plotted individually ==



: 3-D

ispersion

Visualization of Data D

Boxplots




Graphic Displays of Basic Statistical
Descriptions

Boxplot: graphic display of five-number summary

Histogram: x-axis are values, y-axis repres.
frequencies

Quantile plot: each value x; is paired with f;

indicating that approximately 100 ;% of data are < x;

Quantile-quantile (q-q) plot: graphs the quantiles of
one univariant distribution against the corresponding
quantiles of another

Scatter plot: each pair of values is a pair of
coordinates and plotted as points in the plane

19



Histogram Analysis

Histogram: Graph display of 401
tabulated frequencies, shown as bars

397
It shows what proportion of cases fall

into each of several categories 301

Differs from a bar chart in that it is 251

the area of the bar that denotes the 20
value, not the height as in bar

charts, a crucial distinction when the 19
categories are not of uniform width 4,

The categories are usually specified
as non-overlapping intervals of some

variable. The categories (bars) must (-
be adjacent

10000

| r—

30000

50000

70000

90000
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Histograms Often Tell More than
Boxplots

v

= The two histograms
shown in the left
may have the same
boxplot
representation

" The same values
for: min, Q1,
median, Q3, max

= But they have

rather different data
distributions

21



Quantile Plot

Displays all of the data (assess both the overall

behavior and unusual occurrences)

Plots quantile information

= Select an attribute x;; sort data by non-decreasing X;
value; plot it equally spaced on the x axis

= v(f) indicates the value s.t. a fraction f of data has
value at most v(f)

140 -
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Quantile-Quantile (Q-Q) Plot

Graphs the quantiles of one univariate distribution against
the corresponding quantiles of another

View: Is there is a shift in going from one distribution to
another?

Example shows unit price of items sold at Branch 1 vs.
Branch 2 for each quantile. Unit prices of items sold at
Branch 1 tend to be lower than those at Branch 2.

120 -
110
100 -

D
o
|

Branch 2 (unit price $)
%
3
]

40 50 60 70 80 90 100 110 120

Branch 1 (unit price $)
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Scatter plot

" Provides a first look at bivariate data to see
clusters of points, outliers, etc

= Each pair of values is treated as a pair of
coordinates and plotted as points in the plane

700

600 - o Yotq .
* .0

500 ¢ % »* o
2 400 - (™ .
= . ¢ 5 ¢
5 300 - o, o o
= 200 -

100

O | | | | | | |
0 20 40 60 80 100 120 140

Unit price ($)
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Positively and Negatively Correlated

[ J
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wall

depth

Scatterplot Matrices

lang.,

DT 0—

el gy T

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k)
scatterplots]
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Similarity and Dissimilarity

= Similarity
* Numerical measure of how alike two data objects
are
= Value is higher when objects are more alike
= Often falls in the range [0,1]
= Dissimilarity (e.qg., distance)

= Numerical measure of how different two data
objects are

= Lower when objects are more alike
= Minimum dissimilarity is often 0
= Upper limit varies
= Proximity refers to a similarity or dissimilarity

29



Data Matrix and Dissimilarity

Matrix
= Data matrix
" n data points .X11 e Xy e Xy,
(objects) with p
dimensions Xy oo Xy oo Xy
(features) 3
Xn1 Xof Xnp
= Dissimilarity matrix 0
= n data points, but d(21) 0
registers only the d(31) d(32) 0
distance : : :
= A triangular matrix d(n,1) d(n,2) 0

30



Proximity Measures for Binary

Attributes

= A contingency table for binary data

Number of attributes for which
both data objects have value 1

Data object j

Data object i
s
cn

sum
qTr
S+1

31



Proximity Measures for Binary

Attributes

... but we can do the same for attributes (transpose)

Number of data objects for which
both attributes have value 1

Attribute |
\1 0 sum
- 1 q r gt
i 0 ; ; 54t
< sum gTs P41 D

32



Proximity Measures for Binary
Attributes

coherence(t, j) = -

_ . Data objectj
A contingency table for binary data

% 1 0 sum
g q r gtr
© 0 8 t §+1
_ A sum g+s r+1 p
Distance measure for symmetric bin. o
vars (0 and 1 equally important): dls, 1) =
_ _ g+r+s+1t
Distance measure for asymm. bin. vars
(1 more important - e.g. diseases): dii, 7) = I
. o q+7r-—+sS
Jaccard coefficient (similarity measure
for asymmetric binary variables): ., T d
Y y ) Sszaccard(?’: j) g
q+r+s

Note: Jaccard coefficient is the same as “coherence”:

sup(i, j) q

sup(i) + sup(j) — sup(s,j5) . (¢g+r)+(g+s)—gq

33



Dissimilarity between Binary
Attributes

= Example
Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3
Jack |M Y N P N N
Mary |F Y N P N P
Jim |M Y P N N N

= Gender is a symmetric attribute (let's discard it!)
= The remaining attributes are asymmetric binary
= Letthe valuesY and P be 1, and the value N O

0+1 1 0 sum
d(jack, = — 0.33
(Jack, mary) 24+0+1 1 q r qg+r
d(jack, jim) = 1+1 — 0.67 0 8 t s+t
1+1+1 sum g+s rit p
1+2
d(jim,mary) = — 0.75 o ol
J ) 1+1+2 d(i, j) =

g~ 1r-f 8
34



Proximity Measures for Categorical

4 »

= Can take 2 or more states, e.qg., red, yellow,
blue, green (generalization of a binary
attribute)

= Method 1: Simple matching

= m: # of matches, p: total # of attributes
d(i,j)=+—=
= Method 2: Use a large number of binary
attributes

= creating a new binary attribute for each of
the M categories

35



Proximity on Numeric Data: Minkowski
Distance

= Minkowski distance: A popular distance measure

dfi, j) = {/\fﬂﬂ — 2P+ |z — Tt 4 4 |2 — 3]

where | = (X1, X2, ..., Xip) and j = (X;1, Xj2, ..., X;p) are two
p-dimensional data objects, and h is the order (the
distance so defined is also called L-h norm)

= Properties

= d(i,J) >01ifi =), and d(i, i) = 0 (Positive
definiteness)

= d(i, j) =d(, 1) (Symmetry)
= d(i, j) <d(i, k) + d(k, j) (Triangle Inequality)

= A distance that satisfies these properties is a metric
36



Special Cases of Minkowski Distance

= h=1. Manhattan (city block, L, norm) distance

= E.g., the Hamming distance: the number of bits that are
different between two binary vectors

d(i’f) X _X1‘+|X _X2‘+"°+‘Xip_xjp‘

= h=2. (L, norm) Euclidean distance

d(i’j):\/(|Xi1_Xj1‘2+‘Xi2_Xj2‘2+°"+|Xip_xjp 2)

= h— oo, “supremum” (L, NOrm, L., norm) distance.

= This is the maximum difference between any component
(attribute) of the vectors

P %
d(i, j) = lim (Z [Ty — ij|h’) = Hl%x [Zip —2jrl
=1

37



Example: Minkowski Distance

point |attribute 1 |attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

Dissimilarity Matrices

Manhattan (L,)

L

x1

x2

x3

x4

x1

x2

0

x3

6

x4

A | U1 O

1

Euclidean (L,)

L2

x1

x2

x3

x4

x1

0

x2

3.61

x3

2.24

x4

4.24

5.39

Supremum (L )

L

x1

x2

x3

x4

x1

x2

x3

x4

W N W IO
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Standardizing Numeric Data

X—H
O

= /Z-score: 7

= X: raw data, u: mean of the population, o: standard deviation

= the distance between the raw score and the population mean in
units of the standard deviation

<0 when the raw score is below the mean, >0 when above
= An alternative way: Calculate the mean absolute deviation

|
Sf:E(‘le_mf"l-‘XZf_mf"l""+‘an_mf’)
where

1
m, = ﬁ(x1f+x2f+...+xnf).

= standardized measure (z-score): z = _I f

mean absolute deviation is more robust than std dev

39



Properties of Normal Distribution
Curve

= The normal (distribution) curve

" From u-0 to u+0: contains about 68% of the
measurements (J: mean, o: standard deviation)

" From p-20 to u+20: contains about 95% of it
" From u-30 to u+30: contains about 99.7% of it

68% 95% 99.7%

2 1 0 1 +2 3 3 2 - 0 + +2 43 3 2 - 0 +1 +2 43

40



Ordinal Variables

= An ordinal variable can be discrete or continuous
= Order is important, e.qg., rank
= Can be treated like interval-scaled

" replace x;; by their rank r.e{l...M .}

= map (hormalize) the range of each variable onto
[0, 1] by replacing x;: by

= compute the dissimilarity using distance
measures for numeric attributes

41



Attributes of Mixed Type

= A database may contain all attribute types

= Nominal, symmetric binary, asymmetric binary,
numeric, ordinal

= One may use a weighted formula to combine their

effects Zp 6(f>d(f)
d<i,j>: f:; U (f)l]
2 t=10;
* Choice of ngf)
= Setd,'=0 if

= X OF X;; IS missing
= X = X; = 0 and f is asymmetric binary
= Set 55}.”:1 otherwise

42



Attributes of Mixed Type

xS
1 1) — =1 1 )
d(l,])— Zp 5(f)

f=1"1j

= Choice of d;®
" when f is binary or nominal;
d;" = 0 If xi= X, d;h = 1 otherwise
= when f is numeric: use the normalized distance
= when f iIs ordinal

ro-1
= Compute ranks ri and Z, =M >

f

= Treat z¢ as interval-scaled

43



Cosine Similarity

= A document can be represented by thousands of attributes,
each recording the frequency of a particular word (such as
keywords) or phrase in the document.
Document  teamcoach hockey baseball soccer penalty score win loss season

Document1 5 0 3 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 g 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 2 0 3 0

= QOther vector objects: gene features in micro-arrays, ...

= Applications: information retrieval, biologic taxonomy, gene
feature mapping, ...
= |ssue: very long and sparse

= Treat documents as vectors, and compute a cosine similarity

44



Cosine Similarity

Cosine measure: If x andy are two vectors (e.g., term-frequency
vectors), then

cos(x, y) = (x e y) /|Ix][ |lyll

where ,
= e indicates vector dot product, x-y=>_ x,y,
= ||x]|: the L2 norm (length) of vector x. ||x||:\/xi+x§+...+xi

Remark: when attributes are binary valued:
= e indicates the number of shared features

= |Ix]| |ly]| is the geometric mean between the number of
features of x and the number of features of vy:

sgrt(a) * sqrt(b) = sqrt(a * b))
= cos (X, y) measures relative possession of common features

45



Example: Cosine Similarity

= cos(x, y) = (xey)/||x|[ |lyll

Ex: Find the similarity between documents x and .

x= (5,0,3,0,2,0,0, 2,0, 0)

y=(302011,010,1)

X e 2y5 = 5*34+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1=
| ﬁ=6 Z’;Sl+0*o+3*3+o*o+2*2+o*o+o*o+2*2+o*o+o*0)°5
||yﬁ=431*23+0*0+2*2+0*0+1*1+1*1+O*0+1*1+0*0+1*1)

os(x, y) = 25/(6.481 *4.12) = 0.94

46
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