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What is Cluster Analysis?
 Cluster: A collection of data objects

 similar (or related) to one another within the same 
group

 dissimilar (or unrelated) to the objects in other groups
 Cluster analysis (or clustering, data segmentation, …)

 Finding similarities between data according to the 
characteristics found in the data and grouping similar 
data objects into clusters

 Unsupervised learning: no predefined classes (i.e., try to 
learn by extracting regularities in data)

 Typical applications
 As a stand-alone tool to get insight into data 

distribution 
 As a preprocessing step for other algorithms



Applications of Cluster Analysis

 Data reduction
 Summarization: Preprocessing for regression, PCA, 

classification, and association analysis
 Compression: Image processing: vector quantization

 Hypothesis generation and testing
 Prediction based on groups

 Cluster & find characteristics/patterns for each group
 Finding K-nearest Neighbors

 Localizing search to one or a small number of clusters
 Outlier detection: Outliers are often viewed as those “far 

away” from any cluster
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Clustering: Application Examples

 Biology: taxonomy of living things: kingdom, phylum, class, 
order, family, genus and species

 Information retrieval: document clustering
 Land use: Identification of areas of similar land use in an 

earth observation database
 Marketing: Help marketers discover distinct groups in their 

customer bases, and then use this knowledge to develop 
targeted marketing programs

 City-planning: Identifying groups of houses according to their 
house type, value, and geographical location

 Earth-quake studies: Observed earth quake epicenters 
should be clustered along continent faults

 Climate: understanding earth climate, find patterns of 
atmospheric and ocean

 Economic Science: market research



Basic Steps to Develop a Clustering 
Task

 Feature selection
 Select info concerning the task of interest
 Minimal information redundancy

 Proximity measure
 Similarity of two feature vectors

 Clustering criterion
 Expressed via a cost function or some rules

 Clustering algorithms
 Choice of algorithms

 Validation of the results
 Validation test (also, clustering tendency test)

 Interpretation of the results
 Integration with applications

7



Quality: What Is Good Clustering?

 A good clustering method will produce high quality 

clusters

 high intra-class similarity: cohesive within clusters

 low inter-class similarity: distinctive between clusters

 The quality of a clustering method depends on

 the similarity measure used by the method 

 its implementation (optimality guarantees + 

computational effectiveness), and

 Its ability to discover some or all of the hidden 

patterns (practical behavior) 

8



Measure the Quality of Clustering

 Dissimilarity/Similarity metric
 Similarity is expressed in terms of a (typically metric) 

pairwise distance function d(i, j)
 The definitions of distance functions are usually 

rather different for interval-scaled, boolean, 
categorical, ordinal ratio, and vector variables

 Weights should be associated with different 
variables based on applications and data semantics

 Quality of clustering:
 There is usually a separate global quality function 

that measures the “goodness” of a cluster.
 It is hard to define “similar enough” or “good 

enough” (need to stick to the application!) 
  The answer is typically highly subjective (i.e. 

don't blame the algorithm for modeling errors) 9



Major Clustering Approaches

 Partitioning approach: 
 Construct various partitions and then evaluate them by 

some criterion, e.g., minimizing the sum of square errors
 Typical methods: k-means, k-medoids, CLARANS

 Hierarchical approach: 
 Create a hierarchical decomposition of the set of data (or 

objects) using some criterion
 Agglomerative (bottom-up) or divisive (top-down)

 Density-based approach: 
 Based on connectivity and density functions (keep growing 

as points are still in the neighborhood of cluster elements)
 Find arbitrarily shaped clusters 

 Grid-based approach: 
 Quantize object space in a grid structure
 build a multiple-level granularity structure

12
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Partitioning Algorithms: Basic 
Concept

Partitioning method: 
• given the number of clusters k
• given a dissimilarity measure (partitioning criterion)
• given a database D of n objects
• partition it into a set of k clusters
• such that the sum of dissimilarities with respect to a cluster 

representative ci is minimized (e.g. squared distances to the 
centroid or medoid of cluster Ci)

E=Σ i=1
k Σ p∈C i

(d ( p , c i) )
2
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Partitioning Algorithms: Basic 
Concept

Partitioning method: 
•

 Exact (globally opt) methods: mixed integer programming
 Heuristic methods: k-means and k-medoids algorithms
 k-means (MacQueen’67, Lloyd’57/’82): Each cluster is 

represented by the center (attibute-wise means) of the 
cluster

 k-medoids or k-medians or PAM (Partition Around Medoids) 
(Kaufman & Rousseeuw’87): Each cluster is represented by 
one of the objects in the cluster  
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The K-Means Clustering 
Method 

 Given k, the k-means algorithm is implemented 
in four steps:

1)Partition objects into k nonempty subsets

2)Compute seed points as the centroids of the 
clusters of the current partitioning (the 
centroid is the center, i.e., mean point, of the 
cluster)

3)Assign each object to the cluster with the 
nearest seed point  

4)Go back to Step 2, stop when the 
assignment does not change

17



Comments on the K-Means 
Method

 Strength: Efficient: O(tkn), where 
 n is # objects, k is # clusters, and t  is # iterations. 
 Normally, k, t << n.

 Comparing: PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k))

 Weakness
 Heuristc; often terminates at a local optimal

 Applicable only to objects in a continuous n-dimensional space 

 Using the k-modes for categorical data

 Using the k-medoids for a wider range of data

 Need to give k, the number of clusters, as input
(there are ways to guess meaningful k, see Hastie et al. 2009)

 Sensitive to noisy data and outliers

 Not suitable to discover clusters with non-convex shapes
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Variations of the K-Means Method

 Most of the variants of the k-means which differ in

 Selection of the initial k means

 Dissimilarity calculations

 Strategies to calculate cluster means

 Handling categorical data: k-modes

 Replacing means of clusters with modes

 Using new dissimilarity measures to deal with categorical objects

 Using a frequency-based method to update modes of clusters

 A mixture of categorical and numerical data: k-prototype method
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What Is the Problem of the K-Means Method?

 The k-means algorithm is sensitive to outliers !

 Since an object with an extremely large value may 

substantially distort the distribution of the data

 K-Medoids:  Instead of taking the mean value of the object in 

a cluster as a reference point, medoids can be used, which is 

the most centrally located object in a cluster
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PAM: A Typical K-Medoids Algorithm
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The K-Medoid Clustering Method

 K-Medoids Clustering: Find representative objects (medoids) in 

clusters

 PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)

 Starts from an initial set of medoids and iteratively replaces 

one of the medoids by one of the non-medoids if it improves 

the total distance of the resulting clustering

 PAM works effectively for small data sets, but does not scale 

well for large data sets (due to the computational complexity)

 Efficiency improvement on PAM

 CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples

 CLARANS (Ng & Han, 1994): Randomized re-sampling
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Hierarchical Clustering

 Use distance matrix as clustering criteria.  This 
method does not require the number of clusters k 
as an input, but needs a termination condition 
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AGNES (AGglomerative 
NESting)

 Introduced in Kaufmann and Rousseeuw (1990)
 Implemented in statistical packages, e.g., Splus
 Use the single-link method and the dissimilarity 

matrix  
 Merge nodes that have the least dissimilarity
 Go on in a non-descending fashion
 Eventually all nodes belong to the same cluster
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DIANA (DIvisive ANAlysis)

 Introduced in Kaufmann and Rousseeuw (1990)

 Implemented in statistical analysis packages, e.g., 
Splus

 Inverse order of AGNES

 Eventually each node forms a cluster on its own
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Dendrogram: Shows How Clusters are 
Merged

Decompose data objects into a several levels of nested partitioning (tree of 
clusters), called a dendrogram

A clustering of the data objects is obtained by cutting the dendrogram at 
the desired level, then each connected component forms a cluster

28



Distance between 
Clusters

 Single link:  smallest distance between an element in one cluster 

and an element in the other, i.e.,  dist(Ki, Kj) = minp in Ki, q in Kj d(p,q)

 Complete link: largest distance between an element in one 

cluster and an element in the other, i.e.,  

dist(Ki, Kj) = maxp in Ki, q in Kj d(p,q)

 Average: avg distance between an element in one cluster and an 

element in the other, i.e.,

dist(Ki, Kj) = sump in Ki, q in Kj d(p,q) / (|Ki||Kj|)

 Centroid: distance between the centroids of two clusters, e.g.,

p = mean(Ki), q = mean(Kj), dist(Ki, Kj) = d(p,q)

 Medoid: distance between the medoids of two clusters, i.e.,

p = median(Ki), q = median(Kj), dist(Ki, Kj) = d(p,q)

X X
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Distance between 
Clusters

 Algorithms using minimum distance are also called 

nearest-neighbor clustering algorithms
 they build minimum spanning trees
 if clustering is terminated when the minimum inter-

cluster distance exceeds a given threshold they are 
called single-linkage

 Algorithms using maximum distance are also called 
farthest-neighbor clustering algorithms

 If clustering is terminated when the maximum inter-
cluster distance between nearest clusters exceeds a 
given threshold they are called complete-linkage

X X
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Centroid, Radius and Diameter of a 
Cluster (for numerical data sets)

 Centroid:  the “middle” of a cluster

 Radius: square root of average distance from any 

point of the cluster to its centroid

 Diameter: square root of average mean squared 

distance between all pairs of points in the cluster

Cm=
Σ i=1

N ( t
ip
)

N

Rm=√ Σ i=1
N ( t ip−cm)2

N

Dm=√ Σ i=1
N Σ i=1

N ( t ip−t iq)
2

N ( N −1 )
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Extensions to Hierarchical 
Clustering

 Major weakness of agglomerative clustering methods

 Can never undo what was done previously

 Do not scale well: time complexity of at least O(n2), 

where n is the number of total objects

 Integration of hierarchical & distance-based clustering

 BIRCH (1996): uses CF-tree and incrementally adjusts 

the quality of sub-clusters

 CHAMELEON (1999): hierarchical clustering using 

dynamic modeling

32



BIRCH (Balanced Iterative Reducing 
and Clustering Using Hierarchies)

 Zhang, Ramakrishnan & Livny, SIGMOD’96

 Clustering Feature (CF): <n, LS, SS>
 n: number of points, LS: their sum, SS: their sum of squares

 Easy to compute centroid, radius and diameter from CF
 CFs are additive

 Incrementally construct a CF tree, a hierarchical data structure 
for multiphase clustering

 Phase 1: scan DB to build an initial in-memory CF tree (a 
multi-level compression of the data that tries to preserve its 
inherent clustering structure)  

 Phase 2: use an arbitrary clustering algorithm to cluster the 
leaf nodes of the CF-tree
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BIRCH (Balanced Iterative Reducing 
and Clustering Using Hierarchies)

 Scales linearly: finds a good clustering with a single scan and 
improves the quality with a few additional scans

 Weakness: handles only numeric data, and sensitive to the 
order of the data record
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Clustering Feature Vector in 
BIRCH

Clustering Feature (CF):  CF = (N, LS, SS)

N: Number of data points

LS: linear sum of N points:

SS: square sum of N points
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CF-Tree in BIRCH

 Clustering feature: 

 Summary of the statistics for a given subcluster: the 0-th, 
1st, and 2nd moments of the subcluster from the statistical 
point of view

 Registers crucial measurements for computing cluster and 
utilizes storage efficiently

A CF tree is a height-balanced tree that stores the clustering 
features for a hierarchical clustering 

 A nonleaf node in a tree has descendants or “children”

 The nonleaf nodes store sums of the CFs of their children

 A CF tree has two parameters

 Branching factor: max # of children

 Threshold: max diameter of sub-clusters stored at the leaf 
nodes
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The CF Tree Structure
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The Birch Algorithm

 Cluster Diameter

 For each point in the input
 Find closest leaf entry
 Add point to leaf entry and update CF 
 If entry diameter > max_diameter, then split leaf, and 

possibly parents
 Algorithm is O(n)
 Concerns

 Sensitive to insertion order of data points
 Since we fix the size of leaf nodes, so clusters may not be 

so natural
 Clusters tend to be spherical given the radius and diameter 

measures

√ 1
n( n−1)

∑ ( x i− x j)
2
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CHAMELEON: Hierarchical Clustering 
Using Dynamic Modeling (1999)

 CHAMELEON: G. Karypis, E. H. Han, and V. Kumar, 1999 
 Measures the similarity based on a dynamic model

 Two clusters are merged only if the interconnectivity 
and closeness (proximity) between two clusters are 
high relative to the internal interconnectivity of the 
clusters and closeness of items within the clusters 

 Graph-based, and two-phase algorithm

1. Use a graph-partitioning algorithm: cluster objects 
into a large number of relatively small sub-clusters

2. Use an agglomerative hierarchical clustering 
algorithm: find the genuine clusters by repeatedly 
combining these sub-clusters
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KNN Graphs & Interconnectivity

 k-nearest graphs from an original data in 2D:

 EC{Ci ,Cj } :The absolute inter-connectivity between Ci 
and Cj: the sum of the weight of the edges that 
connect vertices in Ci to vertices in Cj 

 Internal inter-connectivity of a cluster Ci : the size of 
its min-cut bisector ECCi (i.e., the weighted sum of 
edges that partition the graph into two roughly 
equal parts)

 Relative Inter-connectivity (RI):  
40



Relative Closeness & Merge of Sub-
Clusters

 Relative closeness between a pair of clusters Ci 
and Cj : the absolute closeness between Ci and Cj 
normalized w.r.t. the internal closeness of the two 
clusters Ci and Cj 

           and           are the average weights of the edges 
that belong in the min-cut bisector of clusters Ci and Cj , 
respectively, and                is the average weight of the 
edges that connect vertices in Ci to vertices in Cj 

 Merge Sub-Clusters:  
 Merges only those pairs of clusters whose RI and RC are 

both above some user-specified thresholds 
 Merge those maximizing a function combining RI & RC
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Overall Framework of 
CHAMELEON

Construct (K-NN)

Sparse Graph Partition the Graph

Merge Partition

Final Clusters

Data Set

K-NN Graph

P and q are 
connected if q is 
among the top k 
closest neighbors of 
p

Relative interconnectivity:  
connectivity of c1 and c2 over 
internal connectivity

Relative closeness: 
closeness of c1 and c2 over 
internal closeness 42
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CHAMELEON (Clustering Complex Objects)



Hierarchical Clustering Summary
 Hierarchical clustering strengths

 Produce at once clustering solutions for different k values
 Link them, highlighting regularities

 Hierarchical clustering weaknesses
 Nontrivial to choose a good distance measure 
 Hard to handle missing attribute values
 Algorithmically (besides theoretically) hard: mainly heuristics in 

practical settings
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Probabilistic Hierarchical 
Clustering

 Hierarchical (distance-based) clustering strengths ...
 Hierarchical (distance-based) clustering weaknesses ...
 Probabilistic (“fitting”) hierarchical clustering

 Use probabilistic models to measure distances between clusters
 Generative model: Regard the set of data objects to be clustered 

as a sample of the underlying data generation mechanism to be 
analyzed

 Easy to understand, same efficiency as algorithmic agglomerative 
clustering method, can handle partially observed data

 In practice, assume the generative models adopt common 
distributions functions, e.g., Gaussian distribution or Bernoulli 
distribution, governed by parameters
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Generative Model

 Given a set of 1-D points X = {x1, …, xn} for 
clustering analysis & assuming they are 
generated by a Gaussian distribution:

 The probability that a point xi ∈ X is generated 
by the model

 The likelihood that X is generated by the model:

 The task of learning the generative model: find 
the parameters μ and σ2 such that

the maximum 
likelihood
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A Probabilistic Hierarchical Clustering 
Algorithm

 For a set of objects partitioned into m clusters C1, . . . ,Cm, the 
quality can be measured by, 

where P() is the maximum likelihood
 If we merge two clusters Cj1 and Cj2 into a cluster Cj1∪Cj2, then, 

the change in quality of the overall clustering is

 Distance between clusters C1 and C2:
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Density-Based Clustering 
Methods

 Clustering based on density (local cluster criterion), 
such as density-connected points

 Major features:
 Discover clusters of arbitrary shape
 Handle noise
 One scan
 Need density parameters as termination condition

 Several interesting studies:
 DBSCAN: Ester, et al. (KDD’96)
 OPTICS: Ankerst, et al (SIGMOD’99).
 DENCLUE: Hinneburg & D. Keim  (KDD’98)
 CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-

based)
50



Density-Based Clustering: Basic 
Concepts

 Two parameters:

 Eps: Maximum radius of the neighbourhood

 MinPts: Minimum number of points in an Eps-
neighbourhood of that point

 NEps(q): {p belongs to D | dist(p,q) ≤ Eps}

 Directly density-reachable: A point p is directly 
density-reachable from a point q 
w.r.t. (Eps, MinPts) if 

 p belongs to NEps(q)

 core point condition:

              |NEps (q)| ≥ MinPts 

MinPts = 5

Eps = 1 cm

p

q
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Density-Reachable and Density-
Connected

 Density-reachable: 

 A point p is density-reachable 
from a point q w.r.t. (Eps, MinPts) 
if there is a chain of points p1, …, 
pn, p1 = q, pn = p such that pi+1 is 
directly density-reachable from pi

 Density-connected
 A point p is density-connected to 

a point q w.r.t. (Eps, MinPts) if 
there is a point o such that both, 
p and q are density-reachable 
from o w.r.t. Eps and MinPts

p

q
p1

p q

o

52



DBSCAN: Density-Based Spatial 
Clustering of Applications with Noise

 Relies on a density-based notion of cluster:  A 
cluster is defined as a maximal set of density-
connected points

 Experimentally, discovers clusters of arbitrary 
shape in spatial databases with noise

Core

Border

Outlier

Eps = 1cm

MinPts = 5
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DBSCAN: The Algorithm
 Arbitrary select a point p

 Retrieve all points density-reachable from p w.r.t. Eps 
and MinPts

 If p is a core point, a cluster is formed

 If p is a border point, no points are density-reachable 
from p and DBSCAN visits the next point of the 
database

 Continue the process until all of the points have been 
processed

 If a spatial index is used, the computational complexity 
of DBSCAN is O(nlogn), where n is the number of 
database objects. Otherwise, the complexity is O(n2)
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DBSCAN: Sensitive to Parameters

55

DBSCAN online Demo: 
http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html



OPTICS:  A Cluster-Ordering Method 
(1999)

 OPTICS: Ordering Points To Identify the Clustering 
Structure
 Ankerst, Breunig, Kriegel, and Sander 

(SIGMOD’99)
 Produces a special order of the database wrt its 

density-based clustering structure  
 This cluster-ordering contains info equiv to the 

density-based clusterings corresponding to a 
broad range of parameter settings

 Good for both automatic and interactive cluster 
analysis, including finding intrinsic clustering 
structure

 Can be represented graphically or using 
visualization techniques 56



DENCLUE: Using Statistical Density 
Functions

 DENsity-based CLUstEring by Hinneburg & Keim  (KDD’98)

 Using statistical density functions:

 Major features
 Uses gaussian kernel density approximation

 Clusters can be determined mathematically by identifying 
density attractors (local maxima of the overall density function)

 Center defined clusters: assign to each density attractor the 
points density attracted to it (pick each point and follow the 
gradient)

f Gaussian( x , y )=e
−

d ( x , y )2

2s2 f Gaussian
D

( x )=∑i=1

N
e
−

d (x , x i)
2

2σ2

∇ f Gaussian
D

( x , x i )=∑i=1

N
( x i− x )⋅e

−
d ( x , x i)

2

2σ2
influence of 
y on x

total 
influence on 
x

gradient of x 
in the 
direction of xi

61
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 Arbitrary shaped cluster: merge density attractors that 
are connected through paths of high density (> 
threshold)

 Solid mathematical foundation
 Good for data sets with large amounts of noise
 Allows a compact mathematical description of arbitrarily 

shaped clusters in high-dimensional data sets
 Significant faster than existing algorithm (e.g., DBSCAN)
 But needs a large number of parameters

Denclue: Technical Essence
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Density Attractor
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Center-Defined and Arbitrary

64

http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html
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Grid-Based Clustering Method 

 Using multi-resolution grid data structure
 Several interesting methods

 STING (a STatistical INformation Grid 
approach) by Wang, Yang and Muntz 
(1997)

 WaveCluster by Sheikholeslami, 
Chatterjee, and Zhang (VLDB’98)

 A multi-resolution clustering approach 
using wavelet method

 CLIQUE: Agrawal, et al. (SIGMOD’98)
 Both grid-based and subspace clustering
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STING: A Statistical Information Grid 
Approach

 Wang, Yang and Muntz (VLDB’97)
 The spatial area is divided into rectangular cells
 There are several levels of cells corresponding to 

different levels of resolution
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The STING Clustering Method

 Each cell at a high level is partitioned into a number of 
smaller cells in the next lower level

 Statistical info of each cell is calculated and stored 
beforehand and is used to answer queries

 Parameters of higher level cells can be easily calculated 
from parameters of lower level cell

 count, mean, s, min, max 
 type of distribution—normal, uniform, etc.

 Use a top-down approach to answer spatial data queries
 Start from a pre-selected layer—typically with a small 

number of cells
 For each cell in the current level compute the 

confidence interval
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STING Algorithm and Its 
Analysis

 Remove the irrelevant cells from further consideration
 When finish examining the current layer, proceed to 

the next lower level 
 Repeat this process until the bottom layer is reached
 Advantages:

 Query-independent, easy to parallelize, incremental 
update

 O(K), where K is the number of grid cells at the 
lowest level 

 Disadvantages:
 All the cluster boundaries are either horizontal or 

vertical, and no diagonal boundary is detected
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CLIQUE (Clustering In QUEst) 

 Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD’98)

 Automatically identifying subspaces of a high dimensional data 
space that allow better clustering than original space 

 CLIQUE can be considered as both density-based and grid-
based

 It partitions each dimension into the same number of equal 
length interval

 It partitions an m-dimensional data space into non-
overlapping rectangular units

 A unit is dense if the fraction of total data points contained 
in the unit exceeds the input model parameter

 A cluster is a maximal set of connected dense units within a 
subspace
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CLIQUE: The Major Steps

 Partition the data space and find the number of 
points that lie inside each cell of the partition.

 Identify the subspaces that contain clusters using 
the Apriori principle

 Identify clusters

 Determine dense units in all subspaces of 
interests

 Determine connected dense units in all subspaces 
of interests.

 Generate minimal description for the clusters
 Determine maximal regions that cover a cluster of 

connected dense units for each cluster
 Determination of minimal cover for each cluster
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Strength and Weakness of CLIQUE

 Strength 
 automatically finds subspaces of the highest 

dimensionality such that high density clusters exist in 
those subspaces

 insensitive to the order of records in input and does 
not presume some canonical data distribution

 scales linearly with the size of input and has good 
scalability as the number of dimensions in the data 
increases

 Weakness
 The accuracy of the clustering result may be 

degraded at the expense of simplicity of the method
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