Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 20: 09/12/2014

Data Mining: Concepts and Techniques (3rd ed.)

- Chapter 10 -

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University © 2011 Han, Kamber & Pei. All rights reserved.

Cluster Analysis: Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., try to learn by extracting regularities in data)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Applications of Cluster Analysis

- Data reduction
 - Summarization: Preprocessing for regression, PCA, classification, and association analysis
 - Compression: Image processing: vector quantization
- Hypothesis generation and testing
- Prediction based on groups
 - Cluster & find characteristics/patterns for each group
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection: Outliers are often viewed as those "far away" from any cluster

Clustering: Application Examples

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market research

Basic Steps to Develop a Clustering Task

- Feature selection
 - Select info concerning the task of interest
 - Minimal information redundancy
- Proximity measure
 - Similarity of two feature vectors
- Clustering criterion
 - Expressed via a cost function or some rules
- Clustering algorithms
 - Choice of algorithms
- Validation of the results
 - Validation test (also, *clustering tendency* test)
- Interpretation of the results
 - Integration with applications

Quality: What Is Good Clustering?

- A <u>good clustering</u> method will produce high quality clusters
 - high <u>intra-class</u> similarity: <u>cohesive</u> within clusters
 - Iow <u>inter-class</u> similarity: <u>distinctive</u> between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation (optimality guarantees + computational effectiveness), and
 - Its ability to discover some or all of the <u>hidden</u> patterns (practical behavior)

Measure the Quality of Clustering

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a (typically metric) pairwise distance function d(i, j)
 - The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables
 - Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate global quality function that measures the "goodness" of a cluster.
 - It is hard to define "similar enough" or "good enough" (need to stick to the application!)
 - The answer is typically highly subjective (i.e. don't blame the *algorithm* for *modeling* errors)

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Agglomerative (bottom-up) or divisive (top-down)
- Density-based approach:
 - Based on connectivity and density functions (keep growing as points are still in the neighborhood of cluster elements)
 - Find arbitrarily shaped clusters
- Grid-based approach:
 - Quantize object space in a grid structure
 - build a multiple-level granularity structure

Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

Partitioning Algorithms: Basic Concept

Partitioning method:

- given the number of clusters k
- given a dissimilarity measure (partitioning criterion)
- given a database **D** of **n** objects
- partition it into a set of **k** clusters
- such that the sum of dissimilarities with respect to a cluster representative c_i is minimized (e.g. squared distances to the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (d(p,c_i))^2$$

Partitioning Algorithms: Basic Concept

Partitioning method:

- Exact (globally opt) methods: mixed integer programming
- Heuristic methods: k-means and k-medoids algorithms
- <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center (attibute-wise means) of the cluster
- <u>k-medoids</u> or k-medians or PAM (Partition Around Medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - 1)Partition objects into k nonempty subsets
 - 2)Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., *mean point*, of the cluster)
 - 3)Assign each object to the cluster with the nearest seed point

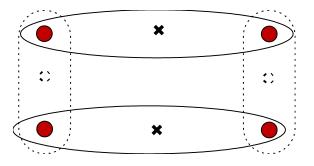
4)Go back to Step 2, stop when the assignment does not change

Comments on the K-Means Method

- <u>Strength:</u> Efficient: O(tkn), where
 - n is # objects, k is # clusters, and t is # iterations.
 - Normally, k, t << n.
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- Weakness
 - Heuristc; often terminates at a local optimal
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes for categorical data
 - Using the k-medoids for a wider range of data
 - Need to give k, the number of clusters, as input (there are ways to guess meaningful k, see Hastie et al. 2009)
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with *non-convex shapes*

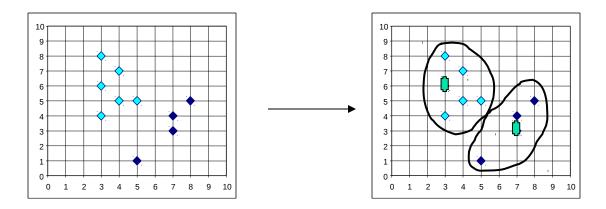
Variations of the K-Means Method

- Most of the variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: *k-prototype* method

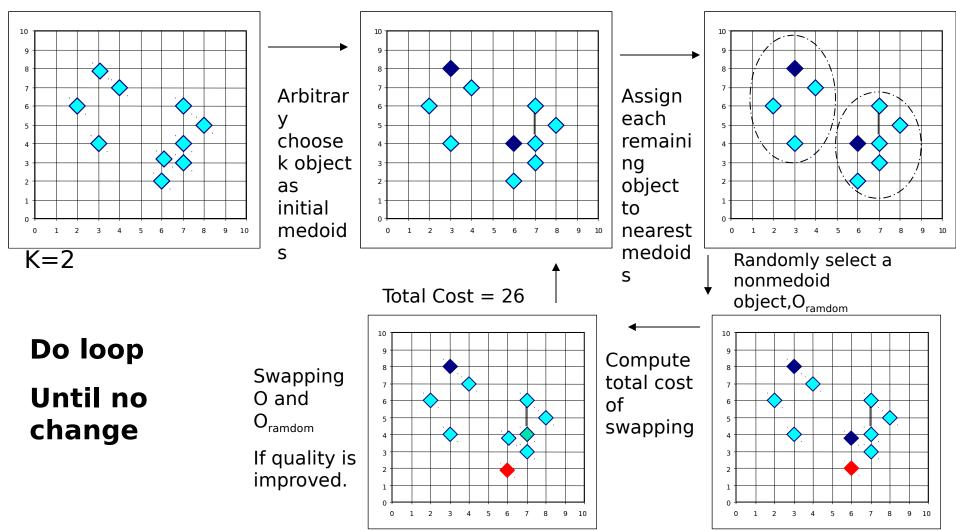


What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers !
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster



PAM: A Typical K-Medoids Algorithm



22

Total Cost = 20

The K-Medoid Clustering Method

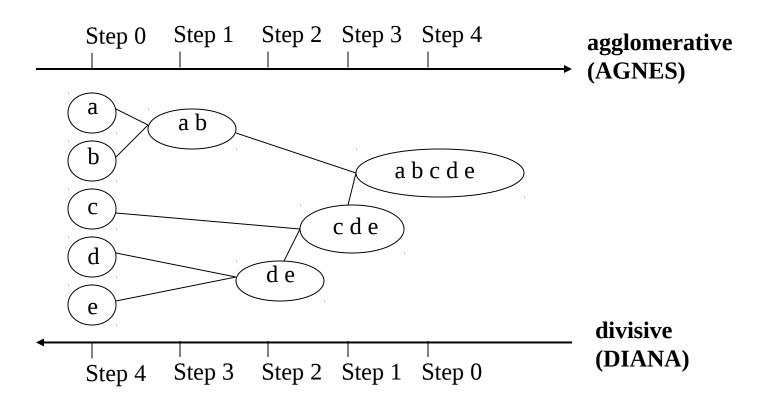
- K-Medoids Clustering: Find representative objects (medoids) in clusters
 - *PAM* (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
- Efficiency improvement on PAM
 - CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples
 - CLARANS (Ng & Han, 1994): Randomized re-sampling

Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

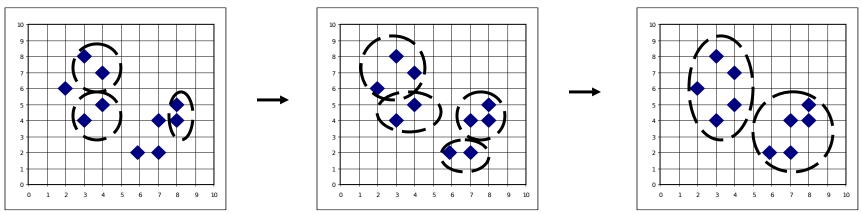
Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition



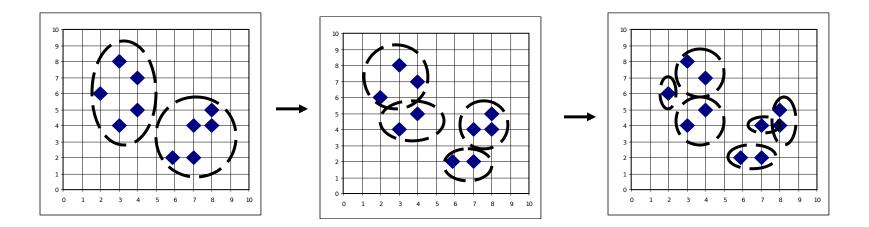
AGNES (AGglomerative NESting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster



DIANA (Divisive ANAlysis)

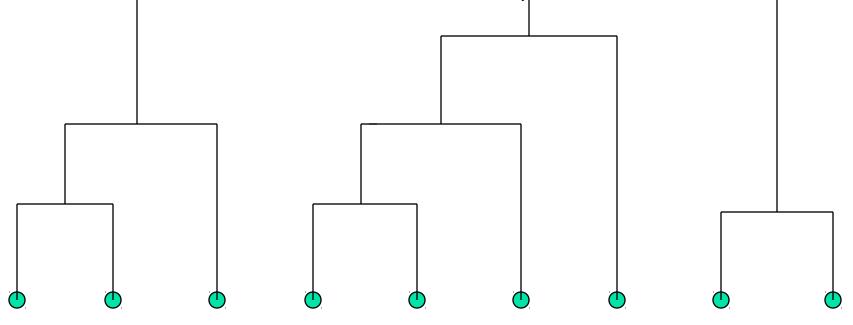
- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own



Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a <u>dendrogram</u>

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster



Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = min_{p in Ki}, q in Kj</sub> d(p,q)
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = max_{p in Ki}, q in Kj</sub> d(p,q)
- Average: avg distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = sum_{p in Ki, g in Kj} d(p,q) / (|Ki||Kj|)
- Centroid: distance between the centroids of two clusters, e.g., $p = mean(Ki), q = mean(Kj), dist(K_i, K_i) = d(p,q)$
- Medoid: distance between the medoids of two clusters, i.e.,
 p = median(Ki), q = median(Kj), dist(K_i, K_j) = d(p,q)

Distance between Clusters

- Algorithms using minimum distance are also called nearest-neighbor clustering algorithms
 - they build minimum spanning trees
 - if clustering is terminated when the minimum intercluster distance exceeds a given threshold they are called single-linkage
- Algorithms using maximum distance are also called farthest-neighbor clustering algorithms
 - If clustering is terminated when the maximum intercluster distance between nearest clusters exceeds a given threshold they are called complete-linkage

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

- Centroid: the "middle" of a cluster $C_{m} = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$
- Radius: square root of average distance from any point of the cluster to its centroid $R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$
- Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - <u>Do not scale</u> well: time complexity of at least O(n²), where n is the number of total objects
- Integration of hierarchical & distance-based clustering
 - <u>BIRCH (1996)</u>: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - <u>CHAMELEON (1999)</u>: hierarchical clustering using dynamic modeling

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies)

- Zhang, Ramakrishnan & Livny, SIGMOD'96
- Clustering Feature (CF): <n, LS, SS>
 - n: number of points, LS: their sum, SS: their sum of squares
- Easy to compute centroid, radius and diameter from CF
- CFs are <u>additive</u>
- Incrementally construct a CF tree, a hierarchical data structure for multiphase clustering
 - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve its inherent clustering structure)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies)

- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weakness: handles only numeric data, and sensitive to the order of the data record

Clustering Feature Vector in BIRCH

Clustering Feature (CF): *CF* = (*N*, *LS*, *SS*)

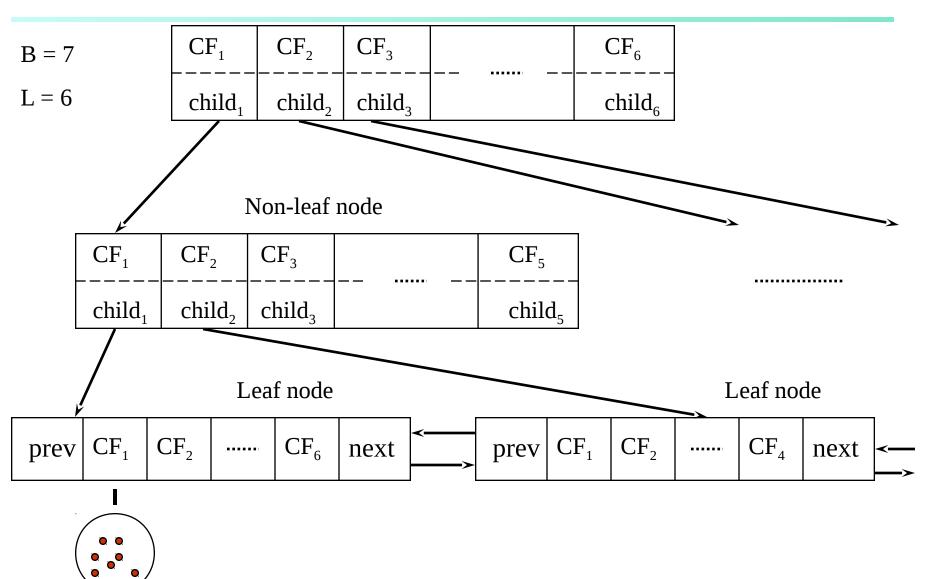
N: Number of data points LS: linear sum of N points: N $\sum X_i$ i = 1SS: square sum of N points CF = (5, (16;30),(54;190)) $\sum_{i=1}^{N} X_{i}^{2}$ (3,4)(2,6)(4,5)(4,7)(3,8)7 8 1 2 3 4 5 6

CF-Tree in BIRCH

- Clustering feature:
 - Summary of the statistics for a given subcluster: the 0-th, 1st, and 2nd moments of the subcluster from the statistical point of view
 - Registers crucial measurements for computing cluster and utilizes storage efficiently
- A CF tree is a height-balanced tree that stores the clustering features for a hierarchical clustering
 - A nonleaf node in a tree has descendants or "children"
 - The nonleaf nodes store sums of the CFs of their children
- A CF tree has two parameters
 - Branching factor: max # of children
 - Threshold: max diameter of sub-clusters stored at the leaf nodes

The CF Tree Structure

Root



The Birch Algorithm

Cluster Diameter

$$\left|\frac{1}{n(n-1)}\sum (x_i - x_j)^2\right|$$

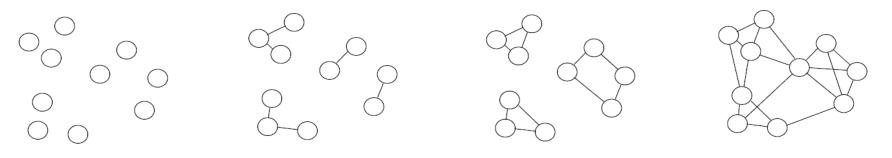
- For each point in the input
 - Find closest leaf entry
 - Add point to leaf entry and update CF
 - If entry diameter > max_diameter, then split leaf, and possibly parents
- Algorithm is O(n)
- Concerns
 - Sensitive to insertion order of data points
 - Since we fix the size of leaf nodes, so clusters may not be so natural
 - Clusters tend to be spherical given the radius and diameter measures

CHAMELEON: Hierarchical Clustering Using Dynamic Modeling (1999)

- CHAMELEON: G. Karypis, E. H. Han, and V. Kumar, 1999
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the *interconnectivity* and *closeness (proximity)* between two clusters are high *relative to* the internal interconnectivity of the clusters and closeness of items within the clusters
- Graph-based, and two-phase algorithm
 - 1. Use a graph-partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 - Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these sub-clusters

KNN Graphs & Interconnectivity

k-nearest graphs from an original data in 2D:



(a) Original Data in 2D (b) 1-nearest neighbor graph (c) 2-nearest neighbor graph (d) 3-

(d) 3-nearest neighbor graph

- EC_{Ci,Cj} The absolute inter-connectivity between C_i and C_j: the sum of the weight of the edges that connect vertices in C_i to vertices in C_j
- Internal inter-connectivity of a cluster C_i : the size of its min-cut bisector EC_{ci} (i.e., the weighted sum of edges that partition the graph into two roughly equal parts) $EC_{\{C_i,C_j\}}$
- Relative Inter-connectivity (RI): $RI(C_i, C_j) =$

Relative Closeness & Merge of Sub-Clusters

Relative closeness between a pair of clusters C_i and C_j: the absolute closeness between C_i and C_j normalized w.r.t. the internal closeness of the two clusters C_i and C_j

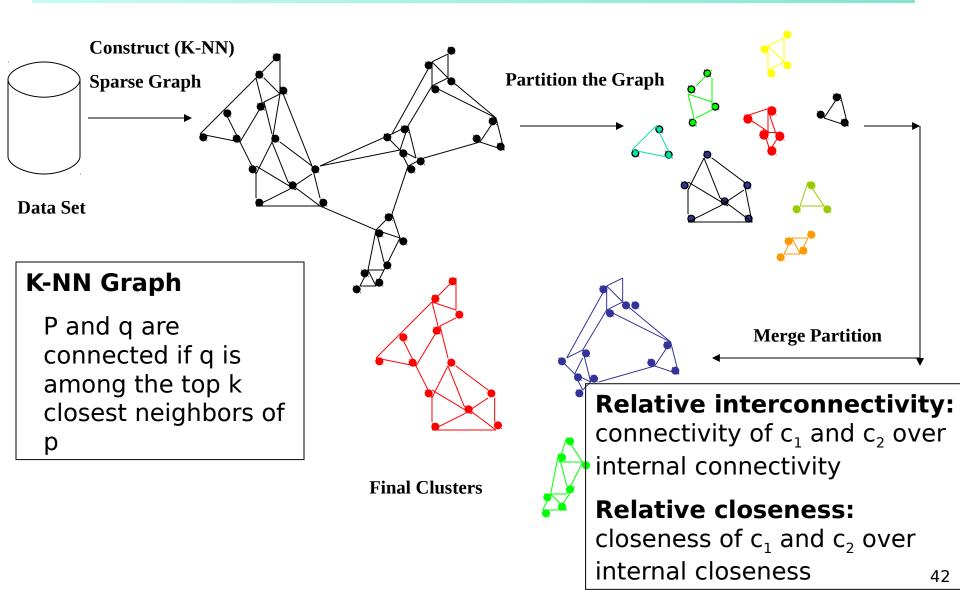
$$RC(C_i, C_j) = \frac{\overline{S}_{EC_{\{C_i, C_j\}}}}{\frac{|C_i|}{|C_i| + |C_j|} \overline{S}_{EC_{C_i}} + \frac{|C_j|}{|C_i| + |C_j|} \overline{S}_{EC_{C_j}}}$$

• $\overline{S}_{EC_{C_i}}$ and $\overline{S}_{EC_{C_j}}$ are the average weights of the edges that belong in the min-cut bisector of clusters C_i and C_j , respectively, and $\overline{S}_{EC_{\{C_i,C_j\}}}$ is the average weight of the edges that connect vertices in C_i to vertices in C_j

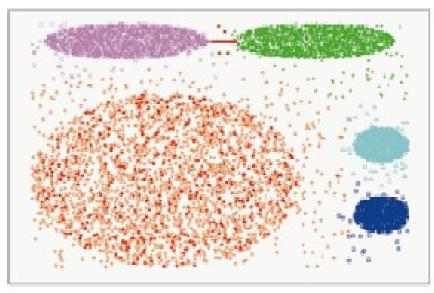
Merge Sub-Clusters:

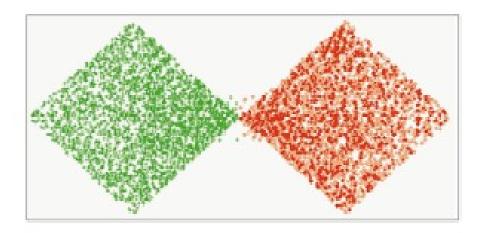
- Merges only those pairs of clusters whose RI and RC are both above some user-specified thresholds
- Merge those maximizing a function combining RI & RC

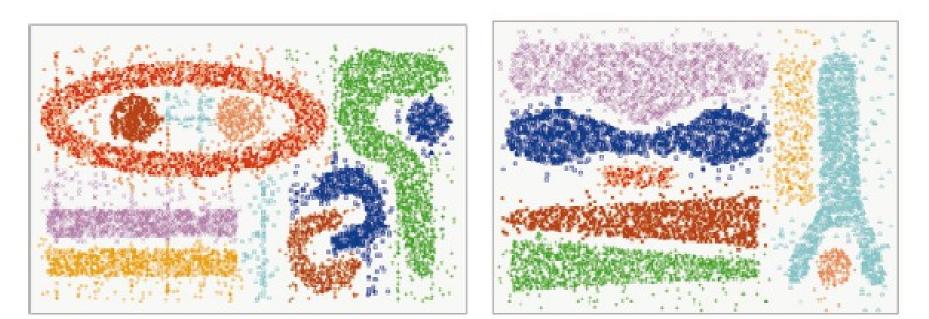
Overall Framework of CHAMELEON



CHAMELEON (Clustering Complex Objects)







Hierarchical Clustering Summary

- Hierarchical clustering strengths
 - Produce at once clustering solutions for different k values
 - Link them, highlighting regularities
- Hierarchical clustering weaknesses
 - Nontrivial to choose a good distance measure
 - Hard to handle missing attribute values
 - Algorithmically (besides theoretically) hard: mainly heuristics in practical settings

Probabilistic Hierarchical Clustering

- Hierarchical (distance-based) clustering strengths ...
- Hierarchical (distance-based) clustering weaknesses ...
- Probabilistic ("fitting") hierarchical clustering
 - Use probabilistic models to measure distances between clusters
 - Generative model: Regard the set of data objects to be clustered as a sample of the underlying data generation mechanism to be analyzed
 - Easy to understand, same efficiency as algorithmic agglomerative clustering method, can handle partially observed data
- In practice, assume the generative models adopt common distributions functions, e.g., Gaussian distribution or Bernoulli distribution, governed by parameters

Generative Model

- Given a set of 1-D points $X = \{x_1, ..., x_n\}$ for clustering analysis & assuming they are generated by a Gaussian distribution: $\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- The probability that a point $x_i \in X$ is generated by the model $P(x_i|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$
- The likelihood that X is generated by the model:

$$L(\mathcal{N}(\mu, \sigma^2) : X) = P(X|\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

 The task of learning the generative model: find the parameters μ and σ² such that

 $\mathcal{N}(\mu_0, \sigma_0^2) = \arg \max\{L(\mathcal{N}(\mu, \sigma^2) : X)\}$

the maximum likelihood

A Probabilistic Hierarchical Clustering Algorithm

• For a set of objects partitioned into *m* clusters C_1, \ldots, C_m , the quality can be measured by, $Q(\{C_1, \ldots, C_m\}) = \prod_{i=1}^m P(C_i)$

where P() is the maximum likelihood

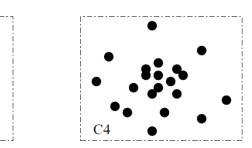
If we merge two clusters C_{j1} and C_{j2} into a cluster C_{j1}UC_{j2}, then, the change in quality of the overall clustering is

$$Q((\{C_{1}, \dots, C_{m}\} - \{C_{j_{1}}, C_{j_{2}}\}) \cup \{C_{j_{1}} \cup C_{j_{2}}\}) - Q(\{C_{1}, \dots, C_{m}\})$$

$$= \frac{\prod_{i=1}^{m} P(C_{i}) \cdot P(C_{j_{1}} \cup C_{j_{2}})}{P(C_{j_{1}}) P(C_{j_{2}})} - \prod_{i=1}^{m} P(C_{i})$$

$$= \prod_{i=1}^{m} P(C_{i}) (\frac{P(C_{j_{1}} \cup C_{j_{2}})}{P(C_{j_{1}}) P(C_{j_{2}})} - 1)$$

• Distance between clusters C_1 and C_2 : $dist(C_i, C_j) = -\log \frac{P(C_1 \cup C_2)}{P(C_1)P(C_2)}$



C2

Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

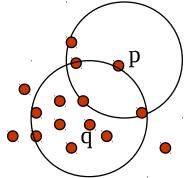
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98) (more gridbased)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - Eps: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Epsneighbourhood of that point
- $N_{Eps}(q)$: {p belongs to D | dist(p,q) \leq Eps}
- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. (*Eps, MinPts*) if
 - p belongs to N_{Eps}(q)
 - core point condition:

 $|N_{Eps}(q)| \ge MinPts$

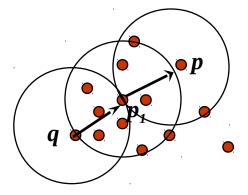


MinPts = 5

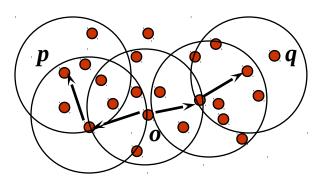
Eps = 1 cm

Density-Reachable and Density-Connected

- Density-reachable:
 - A point p is density-reachable from a point q w.r.t. (Eps, MinPts) if there is a chain of points p₁, ..., p_n, p₁ = q, p_n = p such that p_{i+1} is <u>directly</u> density-reachable from p_i

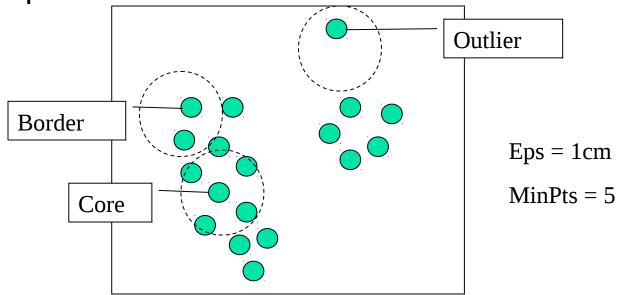


- Density-connected
 - A point p is density-connected to a point q w.r.t. (Eps, MinPts) if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts



DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of densityconnected points
- Experimentally, discovers clusters of arbitrary shape in spatial databases with noise



DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed
- If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), where n is the number of database objects. Otherwise, the complexity is O(n²)

DBSCAN: Sensitive to Parameters

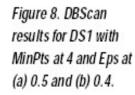
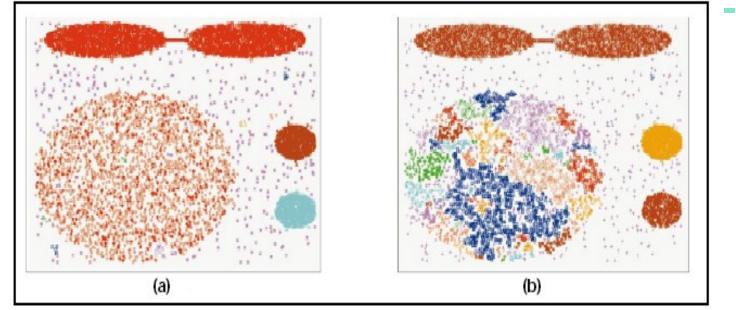
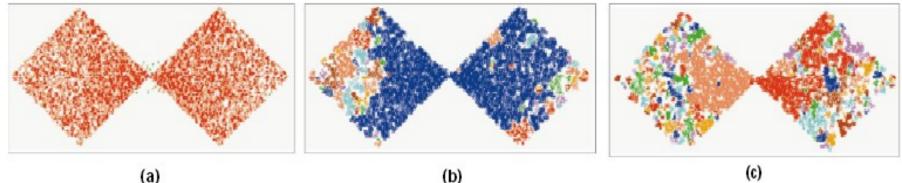


Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.





DBSCAN online Demo:

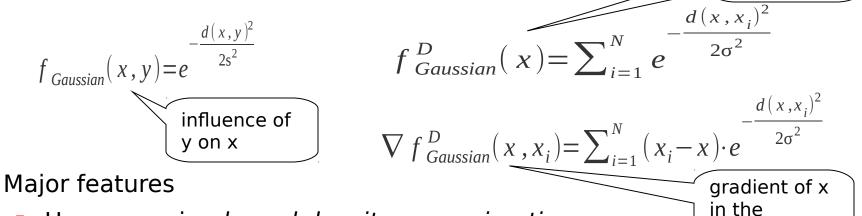
http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html

OPTICS: A Cluster-Ordering Method (1999)

- OPTICS: Ordering Points To Identify the Clustering Structure
 - Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Produces a special order of the database wrt its density-based clustering structure
 - This cluster-ordering contains info equiv to the density-based clusterings corresponding to a broad range of parameter settings
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

DENCLUE: Using Statistical Density Functions

- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98)
- Using statistical density functions:



Uses gaussian kernel density approximation

$$f(x) = \frac{1}{ns} \sum_{i=1}^{n} K(\frac{x - x_i}{s})$$

- Clusters can be determined mathematically by identifying density attractors (local maxima of the overall density function)
- Center defined clusters: assign to each density attractor the points density attracted to it (pick each point and follow the gradient)

total

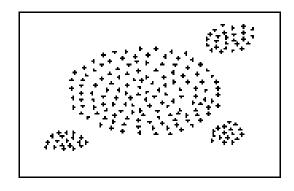
influence on

direction of x_i

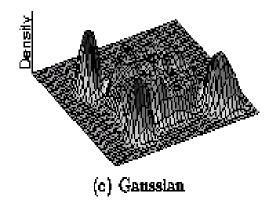
Denclue: Technical Essence

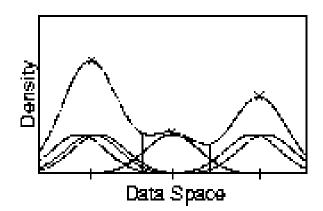
- Arbitrary shaped cluster: merge density attractors that are connected through paths of high density (> threshold)
- Solid mathematical foundation
- Good for data sets with large amounts of noise
- Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
- Significant faster than existing algorithm (e.g., DBSCAN)
- But needs a large number of parameters

Density Attractor

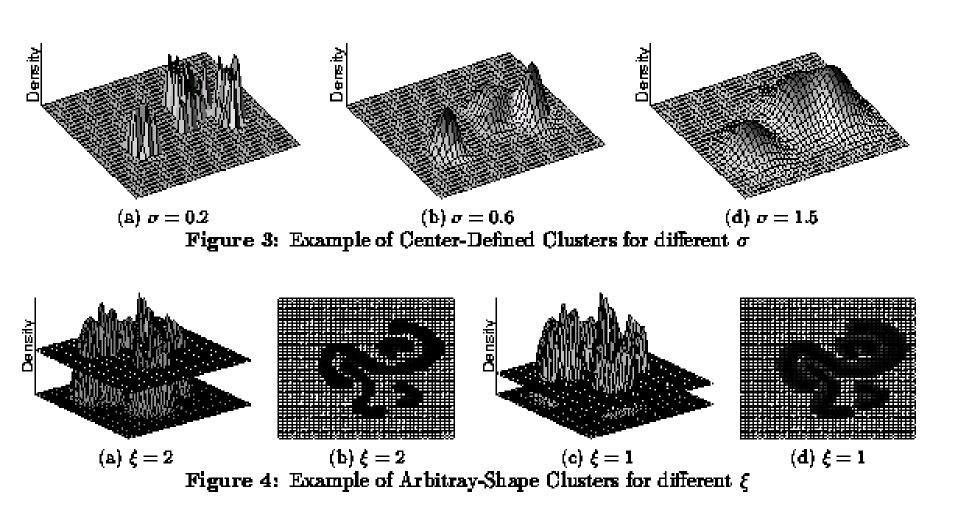


(a) Data Set





Center-Defined and Arbitrary



Chapter 10. Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Evaluation of Clustering
- Summary

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB'98)
 - A multi-resolution clustering approach using wavelet method
 - CLIQUE: Agrawal, et al. (SIGMOD'98)
 - Both grid-based and subspace clustering

STING: A Statistical Information Grid Approach

- Wang, Yang and Muntz (VLDB'97)
- The spatial area is divided into rectangular cells
- There are several levels of cells corresponding to different levels of resolution

The STING Clustering Method

- Each cell at a high level is partitioned into a number of smaller cells in the next lower level
- Statistical info of each cell is calculated and stored beforehand and is used to answer queries
- Parameters of higher level cells can be easily calculated from parameters of lower level cell
 - *count, mean, s, min, max*
 - type of distribution—normal, uniform, etc.
- Use a top-down approach to answer spatial data queries
- Start from a pre-selected layer—typically with a small number of cells
- For each cell in the current level compute the confidence interval

STING Algorithm and Its Analysis

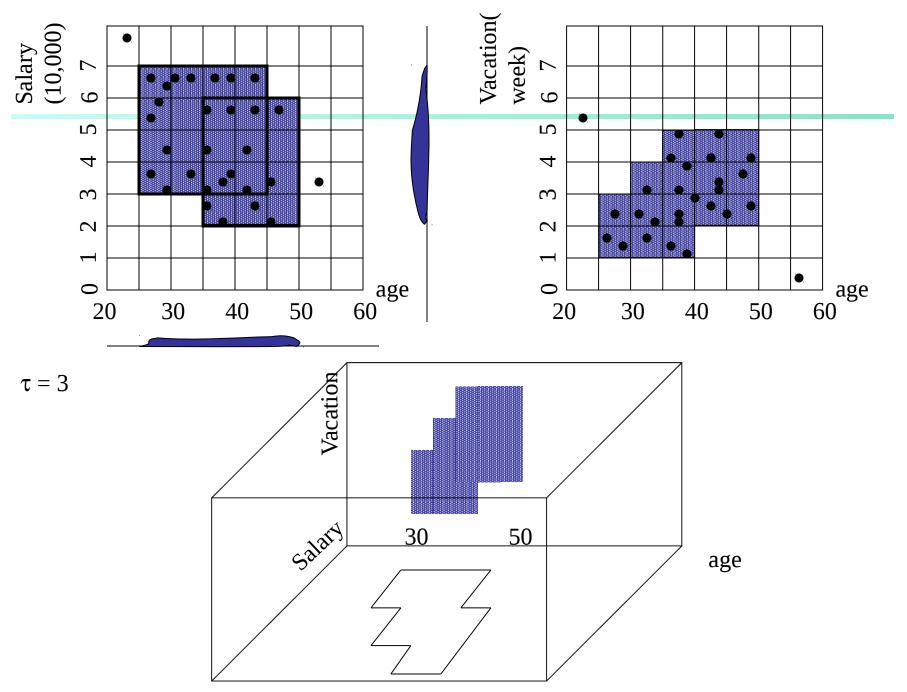
- Remove the irrelevant cells from further consideration
- When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached
- Advantages:
 - Query-independent, easy to parallelize, incremental update
 - O(K), where K is the number of grid cells at the lowest level
- Disadvantages:
 - All the cluster boundaries are either horizontal or vertical, and no diagonal boundary is detected

CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD'98)
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and gridbased
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into nonoverlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - A cluster is a maximal set of connected dense units within a subspace

CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster



Strength and Weakness of CLIQUE

Strength

- <u>automatically</u> finds subspaces of the highest dimensionality such that high density clusters exist in those subspaces
- insensitive to the order of records in input and does not presume some canonical data distribution
- scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases

Weakness

 The accuracy of the clustering result may be degraded at the expense of simplicity of the method