Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 15: 25/11/2014

Data Mining: Concepts and Techniques

— Chapter 6 — Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University © 2011 Han, Kamber & Pei. All rights reserved.

(3rd ed.)

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami (1993) in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing ..., Web log (click stream) analysis, and DNA sequence analysis.

Basic Concepts: Frequent Patterns

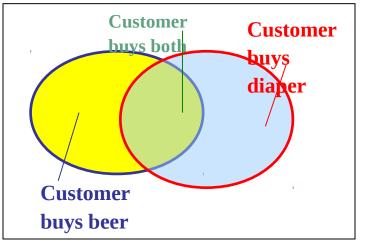
Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk
Customer buys both buys diaper	
Customer buys beer	

itemset: A set of one or more items k-itemset X = {x₁, ..., x_k} (absolute) support, or, support count of X: number of occurrences of an itemset X in the dataset

- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk



- Find all the rules $X \rightarrow Y$ fixing a minimum support and confidence
 - support, s, probability that a transaction contains X ∪
 Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50% Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

Association rules: (many more!) Beer \rightarrow Diaper (60%, 100%) Diaper \rightarrow Beer (60%, 75%)

Closed Patterns and Max-Patterns

 A (long) pattern contains a combinatorial number of sub-patterns, e.g., {a₁, ..., a₁₀₀} contains

$$\begin{pmatrix} 100 \\ 1 \end{pmatrix} + \begin{pmatrix} 100 \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} 100 \\ 100 \end{pmatrix} = 2^{100} - 1 = 1.27 \cdot 10^{30}$$
sub-patterns!

- Idea: restrict to closed and maximal patterns
 - An itemset X is a closed p. if X is frequent and there exists no super-pattern Y ⊃ X, with the same support as X
 - An itemset X is a maximal p. if X is frequent and there exists no super-pattern Y ⊃ X, which is also frequent
- Closed pattern is a lossless compression of freq.
 Patterns: reducing the # of patterns and rules

Closed Patterns and Max-Patterns

Exercise.

 $DB = \{ <a_1, ..., a_{100} >, <a_1, ..., a_{50} > \}$

- Min_sup = 1.
- What is the set of closed itemset?
 - <a₁, ..., a₁₀₀>: 1
 - a₁, ..., a₅₀>: 2
- What is the set of maximal pattern?

<a₁, ..., a₁₀₀>: 1

What is the set of all patterns? !!

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
 - Ex. Suppose Amazon has 10⁴ kinds of products
 - The chance to pick up one product 10-4
 - The chance to pick up a particular set of 10 products: ~10-40
 - What is the chance this particular set of 10 products to be frequent (e.g. 10³ times in 10⁹ transactions)?

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

Scalable Frequent Itemset Mining Methods

- Apriori: Candidate Generate&Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format

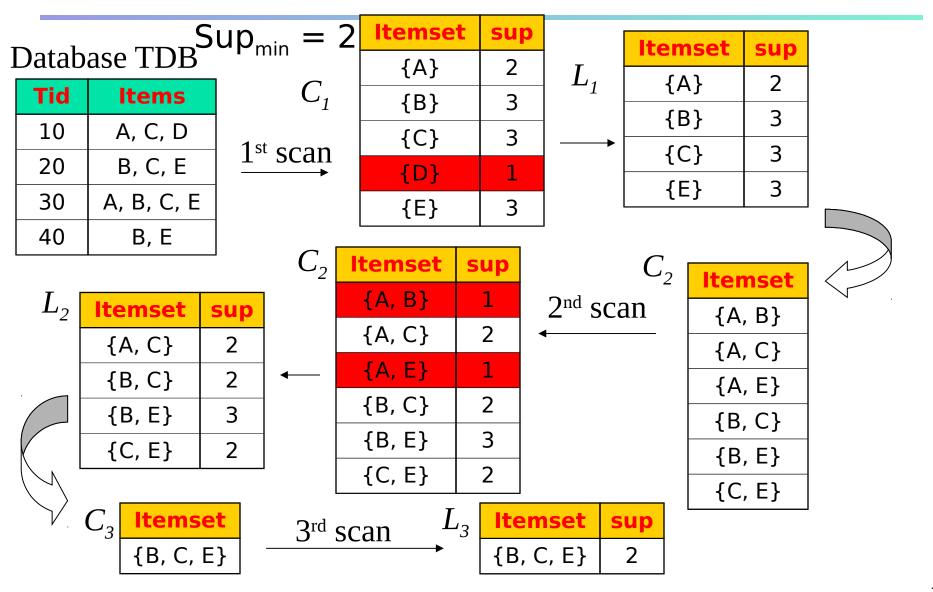
The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset is frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generate & Test Approach

- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example



The Apriori Algorithm (Pseudo-Code)

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_1 = \{ \text{frequent items} \};$ for $(k = 1; L_k != \emptyset; k++)$ do begin C_{k+1} = candidates generated from L_k ; for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t L_{k+1} = candidates in C_{k+1} with enough support end **return** $\cup_k L_k$;

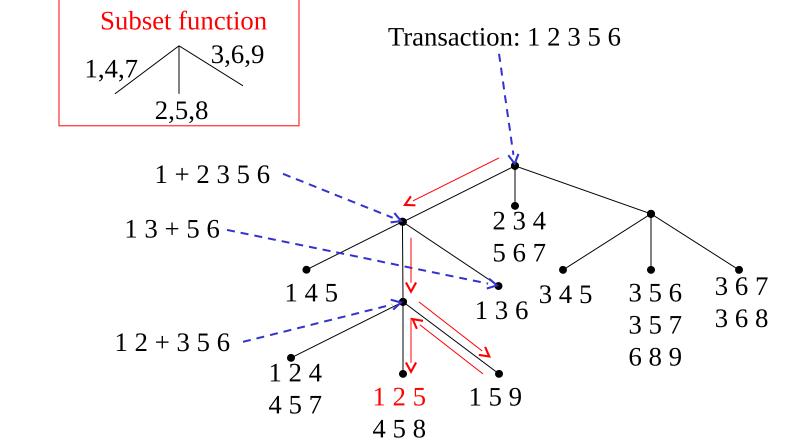
Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

How to Count Supports of Candidates?

- Why counting supports of candidates is a problem?
 - The total number of candidates can be huge
 - Each transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf nodes of hash-tree contain a list of itemsets and counts
 - Interior nodes contain a hash table
 - Subset function: finds all the candidates contained in a transaction

Counting Supports of Candidates Using Hash Tree



<u>Build</u>: store only frequent candidates and their count; do it incrementally while building L_k

<u>Query for a candidate:</u> visit the tree; <u>Query for an itemset:</u> perform a visit for each sub-itemset;

Generating Association Rules from frequent itemsets

- When all frequent itemsets are found, generate strong association rules:
 - Pick each frequent itemset F, generate all its nonempty subsets
 - For each such subset S, test the rule

• $S \rightarrow (F \setminus S)$

- support(S → (F \ S)) is above the threshold (as F is frequent by construction)
- confidence (S → (F \ S)) = P((F \ S) | S) = count(F) / count(S)
 - count(F) and count(S) are known, and so checking is quick

Candidate Generation: An SQL Implementation

- SQL Implementation of candidate generation
 - Suppose the items in L_{k-1} are listed in an order
 - Step 1: self-joining L_{k-1}

insert into C_k

select *p.item*₁, *p.item*₂, ..., *p.item*_{k-1}, *q.item*_{k-1}

from *L*_{*k*-1} *p*, *L*_{*k*-1} *q*

where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

Step 2: pruning

forall *itemsets c in C_k* do

forall (k-1)-subsets s of c do

if (s is not in L_{k-1}) then delete c from C_k

 Use object-relational extensions like UDFs, BLOBs, and Table functions for efficient implementation [See: S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98]

Scalable Frequent Itemset Mining Methods

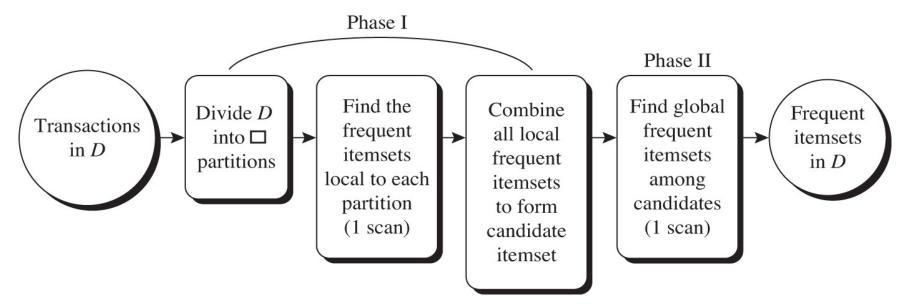
- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data
 Format
- Mining Close Frequent Patterns and Maxpatterns

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

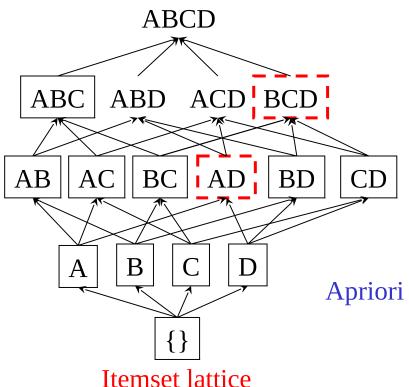
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski and S. Navathe '95



Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only *borders* of closure of frequent patterns are checked
 - Example: check abcd instead of ab, ac, ..., etc.
- Scan database again to find missed frequent patterns
- H. Toivonen. Sampling large databases for association rules. In VLDB'96

Dynamic Itemset Counting: Reduce Number of Scans



S. Brin R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset DIC counting and implication rules for market basket data. SIGMOD'97

- Once both A and D are determined frequent, the counting of AD begins
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins

