Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 08: 23/10/2014

Data Mining: Methods and Models

— Chapter 1 —

Daniel T. Larose © 2006 John Wiley and Sons

Data (Dimension) Reduction

- In large datasets it is unlikely that all attributes are independent: multicollinearity
- Worse mining quality:
 - Instability in multiple regression (significant overall, but poor wrt significant attributes)
 - Overemphasize particular attributes (multiple counts)
 - Violates principle of parsimony (too many unnecessary predictors in a relation with a response var)
- Curse of dimensionality:
 - Sample size needed to fit a multivariate function grows exponentially with number of attributes
 - e.g. in 1-dimensional distrib. 68% of normally distributed values lie between -1 and 1; in 10dimensional distrib. only 0.02% within the radius 1 hypersphere

Principal Component Analysis (PCA)

- Try to explain correlation using a small set of linear combination of attributes
- Geometrically:
 - Look at the attributes as variables forming a coordinate system
 - Principal Components are a new coordinate system, found by rotating the original system along the directions of maximum variability

PCA - Step 1: preprocess data

- Notation (review):
 - Dataset with n rows and m columns
 - Attributes (columns): X^j
 - Mean of each attrib:
 - Variance of each attrib:

$$\mu_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}$$

$$\sigma_{jj}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{j} - \mu_{j})^{2}$$

n

7

Covariance between two attrib:

$$\sigma_{kj}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{k} - \mu_{k}) \cdot (X_{i}^{j} - \mu_{j})$$

$$r_{kj} = \frac{\sigma_{kj}^2}{\sigma_{kk} \sigma_{jj}}$$

PCA - Step 1: preprocess data

Definitions

- Standard Deviation Matrix:
- (Symmetric) Covariance Matrix:
- Correlation Matrix:

 $\rho = [r_{kj}]$

Standardization in matrix form:

$$Z = (X - \mu)(V^{1/2})^{-1} \qquad Z_{ij} = (X_i^j - \mu_j)/\sigma_{jj}$$

• N.B. $E(Z) = vector of zeros; Cov(Z) = \rho$

PCA - Step 2: compute eigenvalues and eigenvectors

- Eigenvalues of (mxm matrix) ρ are
 - scalars $\lambda_1 \dots \lambda_m$ such that
 - det($\rho \lambda I$) = 0
- Given a matrix ρ and its eigenvalue λ_j ,
 - e^j is a corresponding (mx1) eigenvector if

•
$$\rho e^{j} = \lambda_{j} e^{j}$$

 Spectral theorem / symmetric eigenvalue decomposition (for symmetric ρ)

$$\rho = \sum_{j=1}^{m} \lambda_j e^j (e^j)^T$$

 We are interested in eigenvalues / eigenvectors of the correlation matrix

PCA - Step 3: compute principal components

- Consider the (nx1 column) vectors
 - $Y_{j} = Z e_{j}$
 - e.g. $Y_1 = e_1^1 Z_1 + e_2^2 Z_2 + ... + e_m^1 Z_m$
- Sort Yⁱ by value of variance:
 - Var(Y_j) = (e_j)^T ρ (e_j)
- Then
 - 1)Start with an empty sequence of principal components
 - 2)Select the vector e^j that
 - 1)maximizes Var(Y_j)
 - 2)Is independent from all selected components
 - 3)Goto (2)

PCA - Properties

- Property 1: The total variability in the standardized data set
 - equals the sum of the variances for each column vector Zⁱ,
 - which equals the sum of the variances for each component,
 - which equals the sum of the eigenvalues,
 - Which equals the number of variables

$$\sum_{j=1}^{m} Var(Y^{j}) = \sum_{j=1}^{m} Var(Z^{j}) = \sum_{j=1}^{m} \lambda_{j} = m$$

PCA - Properties

- Property 2: The partial correlation between a given component and a given variable is a function of an eigenvector and an eigenvalue.
 - In particular, Corr(Y^k, Z^j) = e^{k_j} sqrt(λ_k)
- Property 3: The proportion of the total variability in Z that is explained by the jth principal component is the ratio of the jth eigenvalue to the number of variables,
 - that is the ratio λ_i/m

PCA - Experiment on real data

- Open R and read "cadata.txt"
- Keep first attribute (say 0) as response, remaining ones as predictors
- Know Your Data: Barplot and scatterplot attributes
- Normalize Data
- Scatterplot normalized data
- Compute correlation matrix
- Compute eigenvalues and eigenvectors
- Compute components (eigenvectors) attribute correlation matrix
- Compute cumulative variance explained by principal components

PCA - Experiment on real data

- Details on the dataset:
 - Block groups of houses (1990 California census)
 - Response: Median house value
 - Predictors:
 - Median income
 Housing median age
 Total rooms
 Total bedrooms
 Population
 Households
 Latitude
 - 8)Longitude

PCA - Step 4: choose components

- How many components should we extract?
 - Eigenvalue criterion
 - Keep components having $\lambda > 1$ (they "explain" more than 1 attribute)
 - Proportion of the variance explained
 - Fix a coefficient of determination r
 - Choose the min. number of components to reach a cumulative variance > r
 - Scree plot Criterion
 - (try to barplot eigenvalues)
 - Stop just prior to "tailing off"
 - Communality Criterion

PCA - Profiling the components

- Look at principal components:
 - Comp. 1 is "explaining" attributes 3, 4, 5 and 6
 → block group size?
 - Comp. 2 is "explaining" attributes 7 and 8
 → geography?
 - Comp. 3 is "explaining" attribute 1
 - \rightarrow salary?
 - Comp. 4 ???
- Compare factor scores of components 3 and 4 with attributes 1 and 2

PCA - Communality of attributes

- Def: communality of an (original) attribute j is the sum of squared principal component weights for that attribute.
- When we consider only the first p principal components:

 $k(p,j) = corr(1,j)^2 + corr(2,j)^2 + ... + corr(p,j)^2$

- Interpretation: communality is the fraction of variability of an attribute "extracted" by the selected principal components
- Rule of thumb: communality < 0.5 is low!</p>
- Experiment: compute communality for attribute 2 when 3 or 4 components are selected

PCA - Final choice of components

- Eigenvalue criterion did not exclude component 4 (and it tends to underestimate when number of attributes is small)
- Proportion of variance criterion suggests to keep component 4
- Scree criterion suggests not to exceed 4 components
- Minimum communality suggests to keep component 4 to keep attribute 2 in the analysis
- \rightarrow Let's keep 4 components

An alternative: user defined composites

- Sometimes correlation is known to the data analyst or evident from data
- Then, nothing forbids to aggregate attributes by hand!
- Example: housing median age, total rooms, total bedrooms and population can be *expected* to be strongly correlated as "block group size"

→ replace these four attributes with a new attribute, that is the average of them (possibly after normalization)

$$X^{m+1}_{i} = (X^{1}_{i} + X^{2}_{i} + X^{3}_{i} + X^{4}_{i}) / 4$$