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Data (Dimension) Reduction

 In large datasets it is unlikely that all attributes are 
independent: multicollinearity

 Worse mining quality:
 Instability in multiple regression (significant overall, but 

poor wrt significant attributes)
 Overemphasize particular attributes (multiple counts)
 Violates principle of parsimony (too many unnecessary 

predictors in a relation with a response var)
 Curse of dimensionality:

 Sample size needed to fit a multivariate function 
grows exponentially with number of attributes

 e.g. in 1-dimensional distrib. 68% of normally 
distributed values lie between -1 and 1; in 10-
dimensional distrib. only 0.02%  within the radius 1 
hypersphere



Principal Component Analysis (PCA)

 Try to explain correlation using a small set of 
linear combination of attributes

 Geometrically:
 Look at the attributes as variables forming a 

coordinate system
 Principal Components are a new coordinate 

system, found by rotating the original 
system along the directions of maximum 
variability



PCA – Step 1: preprocess data

 Notation (review):
 Dataset with n rows and m columns
 Attributes (columns): Xj

 Mean of each attrib:

 Variance of each attrib:

 Covariance between two attrib:

 Correlation coefficient:
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PCA – Step 1: preprocess data

 Definitions
 Standard Deviation Matrix:

 (Symmetric) Covariance Matrix:

 Correlation Matrix:

 Standardization in matrix form:

 N.B. E(Z) = vector of zeros; Cov(Z) = ρ

V 1 /2=[
σ11 0 ... 0
0 σ22 ... ...
... ... ... ...
... ... ... σmm

]
Cov=[

σ11
2 σ12

2 ... σ1m
2

σ21
2 σ22

2 ... σ2m
2

... ... ... ...

... ... ... σmm
2 ]

Z=(X−μ)(V 1/2
)
−1

Zij=(X i
j
−μ j)/σ jj

ρ=[rkj ]



PCA – Step 2: compute 
eigenvalues and eigenvectors

 Eigenvalues of (mxm matrix) ρ are
 scalars λ1 ... λm such that
 det(ρ – λI) = 0

 Given a matrix ρ and its eigenvalue λj,
 ej is a corresponding (mx1) eigenvector if
 ρ ej = λjej

 Spectral theorem / symmetric eigenvalue 
decomposition (for symmetric ρ)
  

 We are interested in eigenvalues / eigenvectors 
of the correlation matrix
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PCA – Step 3: compute principal 
components

 Consider the (nx1 column) vectors
 Yj = Z ej

 e.g. Y1 = e1
1 Z1 + e1

2 Z2 + … + e1
m Zm

 Sort Yi by value of variance:
 Var(Yj) = (ej)T ρ (ej)

 Then

1)Start with an empty sequence of principal 
components

2)Select the vector ej that
1)maximizes Var(Yj)

2)Is independent from all selected components

3)Goto (2)



PCA – Properties
 Property 1: The total variability in the standardized 

data set 
 equals the sum of the variances for each 

column vector Zj,
 which equals the sum of the variances for each 

component,
 which equals the sum of the eigenvalues, 
 Which equals the number of variables

∑ j=1

m

Var (Y j
)=∑ j=1

m

Var (Z j
)=∑ j=1

m

λ j=m



PCA – Properties
 Property 2: The partial correlation between a given 

component and a given variable is a function of an 
eigenvector and an eigenvalue.
 In particular, Corr(Yk, Zj) = ek

j sqrt(λk)

 Property 3: The proportion of the total variability in 
Z that is explained by the jth principal component 
is the ratio of the jth eigenvalue to the number of 
variables,
  that is the ratio λj/m



PCA – Experiment on real data
 Open R and read “cadata.txt”
 Keep first attribute (say 0) as response, remaining 

ones as predictors
 Know Your Data: Barplot and scatterplot attributes
 Normalize Data
 Scatterplot normalized data
 Compute correlation matrix
 Compute eigenvalues and eigenvectors
 Compute components (eigenvectors) – attribute 

correlation matrix
 Compute cumulative variance explained by 

principal components



PCA – Experiment on real data
 Details on the dataset:

 Block groups of houses (1990 California census)
 Response: Median house value
 Predictors:

1)Median income
2)Housing median age
3)Total rooms
4)Total bedrooms
5)Population
6)Households
7)Latitude
8)Longitude



PCA – Step 4: choose components
 How many components should we extract?

 Eigenvalue criterion
 Keep components having λ>1 (they “explain” 

more than 1 attribute)
 Proportion of the variance explained

 Fix a coefficient of determination r
 Choose the min. number of components to 

reach a cumulative variance > r
 Scree plot Criterion

 (try to barplot eigenvalues)
 Stop just prior to “tailing off”

 Communality Criterion



PCA – Profiling the components
 Look at principal components:

 Comp. 1 is “explaining” attributes 3, 4, 5 and 6

 → block group size?
 Comp. 2 is “explaining” attributes 7 and 8

→ geography?
 Comp. 3 is “explaining” attribute 1

→ salary?
 Comp. 4 ???

 Compare factor scores of components 3 and 4 with 
attributes 1 and 2



PCA – Communality of attributes
 Def: communality of an (original) attribute j is the 

sum of squared principal component weights for 
that attribute.

 When we consider only the first p principal 
components:

k(p,j) = corr(1,j)2 + corr(2,j)2 + … + corr(p,j)2

 Interpretation: communality is the fraction of 
variability of an attribute “extracted” by the 
selected principal components

 Rule of thumb: communality < 0.5 is low!
 Experiment: compute communality for attribute 2 

when 3 or 4 components are selected



PCA – Final choice of components
 Eigenvalue criterion did not exclude component 4 

(and it tends to underestimate when number of 
attributes is small)

 Proportion of variance criterion suggests to keep 
component 4

 Scree criterion suggests not to exceed 4 
components

 Minimum communality suggests to keep 
component 4 to keep attribute 2 in the analysis

 → Let's keep 4 components



An alternative: user defined 
composites

 Sometimes correlation is known to the data 
analyst or evident from data

 Then, nothing forbids to aggregate attributes by 
hand!

 Example: housing median age, total rooms, total 
bedrooms and population can be expected to be 
strongly correlated as “block group size”

→ replace these four attributes with a new 
attribute, that is the average of them
(possibly after normalization)

Xm+1
i = (X1

i + X2
i + X3

i + X4
i) / 4


	Slide 1
	Data Mining: Concepts and Techniques (3rd ed.) — Chapter 3 —
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

