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Data (Dimension) Reduction

In large datasets it is unlikely that all attributes are
independent: multicollinearity
Worse mining quality:

= |nstability in multiple regression (significant overall, but
poor wrt significant attributes)

= QOveremphasize particular attributes (multiple counts)

= Violates principle of parsimony (too many unnecessary
predictors in a relation with a response var)
Curse of dimensionality:
= Sample size needed to fit a multivariate function
grows exponentially with number of attributes

" e.g. in 1-dimensional distrib. 68% of normally
distributed values lie between -1 and 1; in 10-
dimensional distrib. only 0.02% within the radius 1

hypersphere



Principal Component Analysis (PCA)

= Try to explain correlation using a small set of
linear combination of attributes

= Geometrically:

" Look at the attributes as variables forming a
coordinate system

" Principal Components are a new coordinate
system, found by rotating the original
system along the directions of maximum
variability



PCA - Step 1: preprocess data

= Notation (review):
= Dataset with n rows and m columns
= Attributes (columns): Xi

= Mean of each attrib: 1 :
MJZEZ X/
=1
= Variance of each attrib: 1~ . )
T, Z (XiJ_Mj)
=1

= Covariance between two attrib:

1 < .
GiJ-:;Z (X —w ) (XI—u,)
= Correlation coefficient: i




PCA - Step 1: preprocess data

= Definitions o, 0 .. O
= Standard Deviation Matrix: yi2=| 0 0y
Omm
= (Symmetric) Covariance Matrix: S ,
O, Op .. Oy
_|0% Oy . Oy
= Correlation Matrix: Cov=
2
p:[rkj] Omml
= Standardization in matrix form:
/ _ .
Z=(X-u)(v")" Z,=(X!-w)lo,

= N.B. E(Z) = vector of zeros; Cov(Z) = p



PCA - Step 2: compute
eigenvalues and eigenvectors

Eigenvalues of (mxm matrix) p are

= scalars A1 ... Am such that
"det(p-Al)=0

Given a matrix p and its eigenvalue Aj,

" @ |s a corresponding (mx1) eigenvector if
" pei= A€

Spectral theorem / symmetric eigenvalue
decomposition (for symmetric p)

We are interested in eigenvalues / eigenvectors
of the correlation matrix



PCA - Step 3: compute principal
components

= Consider the (nx1 column) vectors
"Yi=Z e
"eg.Yl=el, Z1+el, 224 ...+ el 2Zm
= Sort Yi by value of variance:
= Var(Yi) = (ei)T p (e
= Then

1)Start with an empty sequence of principal
components
2)Select the vector ei that
1)maximizes Var(Yi)
2)Is independent from all selected components

3)Goto (2)



PCA - Properties

®= Property 1: The total variability in the standardized
data set

equals the sum of the variances for each
column vector Zj,

which equals the sum of the variances for each
component,

which equals the sum of the eigenvalues,
Which equals the number of variables

Z var (Y’) Z Var (Z Z}l ;=



PCA - Properties

= Property 2: The partial correlation between a given
component and a given variable is a function of an
eigenvector and an eigenvalue.

= |n particular, Corr(Yk, Zi) = ek sqrt(A,)

= Property 3: The proportion of the total variability in
Z that is explained by the jth principal component
Is the ratio of the jth eigenvalue to the number of

variables,
= thatis the ratio )\j/m



PCA - Experiment on real data

Open R and read “cadata.txt”

Keep first attribute (say 0) as response, remaining
ones as predictors

Know Your Data: Barplot and scatterplot attributes
Normalize Data

Scatterplot normalized data

Compute correlation matrix

Compute eigenvalues and eigenvectors

Compute components (eigenvectors) - attribute
correlation matrix

Compute cumulative variance explained by
principal components



PCA - Experiment on real data

= Details on the dataset:

= Block groups of houses (1990 California census)

= Response: Median house value

* Predictors:

1)Median income

2)Housing median age
3)Total rooms
4)Total bedrooms
5)Population
6)Households
7)Latitude
8)Longitude



PCA - Step 4: choose components

= How many components should we extract?
= Eigenvalue criterion

= Keep components having A>1 (they “explain”
more than 1 attribute)

= Proportion of the variance explained
" Fix a coefficient of determination r

* Choose the min. number of components to
reach a cumulative variance > r

= Scree plot Criterion

" (try to barplot eigenvalues)

= Stop just prior to “tailing off”
= Communality Criterion



PCA - Profiling the components

= ook at principal components:

= Comp. 1is “explaining” attributes 3, 4, 5 and 6
- block group size?

= Comp. 2 is “explaining” attributes 7 and 8
— geography?

= Comp. 3 is “explaining” attribute 1
— salary?

= Comp. 4 7?7

= Compare factor scores of components 3 and 4 with
attributes 1 and 2




PCA - Communality of attributes

= Def: communality of an (original) attribute j is the
sum of squared principal component weights for
that attribute.

= When we consider only the first p principal
components:

k(p,j) = corr(1,j)2 + corr(2,j)2 + ... + corr(p,])2

= |nterpretation: communality is the fraction of
variability of an attribute “extracted” by the
selected principal components

= Rule of thumb: communality < 0.5 is low!

= Experiment: compute communality for attribute 2
when 3 or 4 components are selected



PCA - Final choice of components

Eigenvalue criterion did not exclude component 4
(and it tends to underestimate when number of
attributes is small)

Proportion of variance criterion suggests to keep
component 4

Scree criterion suggests not to exceed 4
components

Minimum communality suggests to keep
component 4 to keep attribute 2 in the analysis

- Let's keep 4 components



An alternative: user defined
composites

Sometimes correlation is known to the data
analyst or evident from data

= Then, nothing forbids to aggregate attributes by

hand!

Example: housing median age, total rooms, total
bedrooms and population can be expected to be
strongly correlated as “block group size”

- replace these four attributes with a new
attribute, that is the average of them
(possibly after normalization)

Xm+1i s (Xli + Xzi + X3i + X4i) / 4
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