Università degli Studi di Milano
 Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 08: 23/10/2014

Data Mining:

Methods and Models

- Chapter 1 -

Daniel T. Larose
©2006 John Wiley and Sons

Data (Dimension) Reduction

- In large datasets it is unlikely that all attributes are independent: multicollinearity
- Worse mining quality:
- Instability in multiple regression (significant overall, but poor wrt significant attributes)
- Overemphasize particular attributes (multiple counts)
- Violates principle of parsimony (too many unnecessary predictors in a relation with a response var)
- Curse of dimensionality:
- Sample size needed to fit a multivariate function grows exponentially with number of attributes
- e.g. in 1-dimensional distrib. 68\% of normally distributed values lie between -1 and 1; in 10dimensional distrib. only 0.02% within the radius 1 hypersphere

Principal Component Analysis (PCA)

- Try to explain correlation using a small set of linear combination of attributes
- Geometrically:
- Look at the attributes as variables forming a coordinate system
- Principal Components are a new coordinate system, found by rotating the original system along the directions of maximum variability

PCA - Step 1: preprocess data

- Notation (review):
- Dataset with n rows and m columns
- Attributes (columns): Xi
- Mean of each attrib:

$$
\mu_{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}
$$

- Variance of each attrib:

$$
\sigma_{j j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{j}-\mu_{j}\right)^{2}
$$

- Covariance between two attrib:
- Correlation coefficient:

$$
\begin{aligned}
& \sigma_{k j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{k}-\mu_{k}\right) \cdot\left(X_{i}^{j}-\mu_{j}\right) \\
& r_{k j}=\frac{\sigma_{k j}^{2}}{\sigma_{k k} \sigma_{j j}}
\end{aligned}
$$

PCA - Step 1: preprocess data

- Definitions
- Standard Deviation Matrix:

$$
\begin{aligned}
& V^{1 / 2}=\left|\begin{array}{cccc}
\sigma_{11} & 0 & \ldots & 0 \\
0 & \sigma_{22} & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \sigma_{m m}
\end{array}\right| \\
& C o v
\end{aligned}\left|\begin{array}{cccc}
\sigma_{11}^{2} & \sigma_{12}^{2} & \ldots & \sigma_{1 \mathrm{~m}}^{2} \\
\sigma_{21}^{2} & \sigma_{22}^{2} & \ldots & \sigma_{2 \mathrm{~m}}^{2} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \sigma_{m m}^{2}
\end{array}\right|
$$

- Correlation Matrix:

$$
\rho=\left[r_{k j}\right]
$$

- (Symmetric) Covariance Matrix:
- Standardization in matrix form:

$$
Z=(X-\mu)\left(V^{1 / 2}\right)^{-1} \quad Z_{i j}=\left(X_{i}^{j}-\mu_{j}\right) / \sigma_{j j}
$$

- N.B. $E(Z)=$ vector of zeros; $\operatorname{Cov}(Z)=\rho$

PCA - Step 2: compute eigenvalues and eigenvectors

- Eigenvalues of (mxm matrix) ρ are
- scalars $\lambda_{1} \ldots \lambda_{m}$ such that
- $\operatorname{det}(\rho-\lambda I)=0$
- Given a matrix ρ and its eigenvalue λ_{j},
- ei is a corresponding (mx1) eigenvector if
- ρ ej $=\lambda_{j} \mathrm{e}^{\mathrm{j}}$
- Spectral theorem / symmetric eigenvalue decomposition (for symmetric ρ)

$$
\rho=\sum_{j=1}^{m} \lambda_{j} e^{j}\left(e^{j}\right)^{T}
$$

- We are interested in eigenvalues / eigenvectors of the correlation matrix

PCA - Step 3: compute principal components

- Consider the ($\mathrm{nx1}$ column) vectors
- $Y^{j}=Z$ ej
- e.g. $\mathrm{Y}^{1}=\mathrm{e}^{1}{ }_{1} \mathrm{Z}^{1}+\mathrm{e}^{1}{ }_{2} \mathrm{Z}^{2}+\ldots+\mathrm{e}^{1}{ }_{m} \mathrm{Z}^{\mathrm{m}}$
- Sort Yi by value of variance:
- $\operatorname{Var}\left(\mathrm{Y}^{\mathrm{j}}\right)=\left(\mathrm{e}^{\mathrm{j}}\right)^{\top} \rho\left(\mathrm{e}^{\mathrm{j}}\right)$
- Then
1)Start with an empty sequence of principal components
2)Select the vector ei that
1)maximizes $\operatorname{Var}\left(\mathrm{Y}_{\mathrm{j}}\right)$
2)Is independent from all selected components
3)Goto (2)

PCA - Properties

- Property 1: The total variability in the standardized data set
- equals the sum of the variances for each column vector Z^{i},
- which equals the sum of the variances for each component,
- which equals the sum of the eigenvalues,
- Which equals the number of variables

$$
\sum_{j=1}^{m} \operatorname{Var}\left(Y^{j}\right)=\sum_{j=1}^{m} \operatorname{Var}\left(Z^{j}\right)=\sum_{j=1}^{m} \lambda_{j}=m
$$

PCA - Properties

- Property 2: The partial correlation between a given component and a given variable is a function of an eigenvector and an eigenvalue.
- In particular, $\operatorname{Corr}\left(\mathrm{Y}_{\mathrm{k}}, \mathrm{Zi}\right)=\mathrm{e}_{\mathrm{j}}^{\mathrm{j}} \operatorname{sqrt}\left(\lambda_{\mathrm{k}}\right)$
- Property 3: The proportion of the total variability in Z that is explained by the jth principal component is the ratio of the jth eigenvalue to the number of variables,
- that is the ratio λ_{j} / m

PCA - Experiment on real data

- Open R and read "cadata.txt"
- Keep first attribute (say 0) as response, remaining ones as predictors
- Know Your Data: Barplot and scatterplot attributes
- Normalize Data
- Scatterplot normalized data
- Compute correlation matrix
- Compute eigenvalues and eigenvectors
- Compute components (eigenvectors) - attribute correlation matrix
- Compute cumulative variance explained by principal components

PCA - Experiment on real data

- Details on the dataset:
- Block groups of houses (1990 California census)
- Response: Median house value
- Predictors:
1)Median income
2)Housing median age
3)Total rooms
4)Total bedrooms
5)Population
6)Households
7)Latitude
8)Longitude

PCA - Step 4: choose components

- How many components should we extract?
- Eigenvalue criterion
- Keep components having $\lambda>1$ (they "explain" more than 1 attribute)
- Proportion of the variance explained
- Fix a coefficient of determination r
- Choose the min. number of components to reach a cumulative variance > r
- Scree plot Criterion
- (try to barplot eigenvalues)
- Stop just prior to "tailing off"
- Communality Criterion

PCA - Profiling the components

- Look at principal components:
- Comp. 1 is "explaining" attributes 3, 4, 5 and 6 \rightarrow block group size?
- Comp. 2 is "explaining" attributes 7 and 8 \rightarrow geography?
" Comp. 3 is "explaining" attribute 1 \rightarrow salary?
- Comp. 4 ???
- Compare factor scores of components 3 and 4 with attributes 1 and 2

PCA - Communality of attributes

- Def: communality of an (original) attribute j is the sum of squared principal component weights for that attribute.
- When we consider only the first p principal components:

$$
k(p, j)=\operatorname{corr}(1, j)^{2}+\operatorname{corr}(2, j)^{2}+\ldots+\operatorname{corr}(p, j)^{2}
$$

- Interpretation: communality is the fraction of variability of an attribute "extracted" by the selected principal components
- Rule of thumb: communality <0.5 is low!
- Experiment: compute communality for attribute 2 when 3 or 4 components are selected

PCA - Final choice of components

- Eigenvalue criterion did not exclude component 4 (and it tends to underestimate when number of attributes is small)
- Proportion of variance criterion suggests to keep component 4
- Scree criterion suggests not to exceed 4 components
- Minimum communality suggests to keep component 4 to keep attribute 2 in the analysis
- \rightarrow Let's keep 4 components

An alternative: user defined composites

- Sometimes correlation is known to the data analyst or evident from data
- Then, nothing forbids to aggregate attributes by hand!
- Example: housing median age, total rooms, total bedrooms and population can be expected to be strongly correlated as "block group size"
\rightarrow replace these four attributes with a new attribute, that is the average of them (possibly after normalization)

$$
X m+1_{i}=\left(X 1_{i}+X 2_{i}+X 3_{i}+X 4_{i}\right) / 4
$$

