Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 03 : 16/10/2014

Data Mining: Concepts and Techniques

— Chapter 3 —

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University © 2011 Han, Kamber & Pei. All rights reserved.

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Major Tasks in Data Preprocessing

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Cleaning

- Data in the Real World Is Dirty (instrument faulty, human or computer error, transmission error ...)
 - <u>incomplete</u>: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data

• e.g., Occupation=" " (missing data)

- noisy: containing noise, errors, or outliers
 - e.g., Salary="-10" (an error)
- <u>inconsistent</u>: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
- Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

How to Handle Missing Data?

- Ignore the tuple (e.g. when class label is missing and doing classification) \rightarrow simple, but loss of data
- Fill in the missing value manually
 → tedious + infeasible?
- Fill in it automatically with
 - global const (e.g., "unknown") \rightarrow a new class?!
 - the attribute mean or median
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

How to Handle Noisy Data?

Binning

- first sort data and partition into (equalfrequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Clustering
 - detect and remove outliers
- Regression
 - smooth by fitting the data into regression functions
- Filtering
 - Apply transforms (e.g whitening)
- Combined computer and human inspection

Data Cleaning as a Process

Data discrepancy detection

- Use knowledge about data → use metadata (e.g., domain, range, dependency, distribution) i.e. know your data!
- Check field overloading
- Check uniqueness rule, consecutive rule and null rule
- Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers) → already "data mining"
- Data migration and integration
 - Data migration tools: allow transformations to be specified
 - ETL (Extraction/Transformation/Loading) tools (GUI)
- Integration of the two processes
 - Iterative and interactive (e.g., Potter's Wheels)

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id = B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g.,
 Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integrating multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may detected by correlation analysis and covariance analysis

Correlation Analysis (Nominal Data)

- X² (chi-square) test
 - Attribute A has c values (a₁ ... a_c)
 - Attribute B has r values (b₁ ... b_r)
 - Build a contingency table [o_{ij}], having 1 row for each a_i, one col for each b_j
 - o_{ij} is the observed frequency (number of tuples having value ai for A and bj for B)

$$e_{ij} = \frac{count (A = a_i) \times count (B = b_j)}{num. \, data \, tuples}$$
$$\chi^2 = \sum_i \sum_j \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

Correlation Analysis (Nominal Data)

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

- X² (chi-square) calculation (numbers in parenthesis are e_{ij}) $\chi^2 = \frac{(250-90)^2}{90} + \frac{(50-210)^2}{210} + \frac{(200-360)^2}{360} + \frac{(1000-840)^2}{840} = 507.93$
- K x K table → K categories → (K-1) degrees of freedom (1 in the example)
- From chi-square distribution, the value for rejecting hypotesis of independency at 0.001 significance level is 10.828 → strong correlation

19

Deg. freedom											
1	0.00	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4 17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
1 – Cum. Distr. Funct. =											
sig	gnifican	ce leve		7 27	0.31	11 78	13 //	15 00	18 31	22 21	20 50
10	3.24	4.00	0.10	1.21	9.04	11.70	10.44	10.99	10.31	23.21	29.59
p-val	0.95	0.9	0.8	0.7	0.5	0.3	0.2	0.1	0.05	0.01	0.001

Covariance (Numeric Data)

- Covariance:
 - Attributes A and B
 - n → number of tuples
 - \overline{A} and $\overline{B} \rightarrow$ respective means of A and B
 - σ_A and $\sigma_B \rightarrow$ the respective standard deviation of A and B

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

$$Cov(A,B) = \frac{\sum_{i=1}^{n} (a_i b_i)}{n} - \overline{A} \cdot \overline{B}$$

Covariance (Numeric Data)

• Covariance:

$$Cov(A,B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

- **Dep. w. positive correlation** $\leftarrow \rightarrow$ **positive covariance** If $Cov_{A,B} > 0$, then when A is larger (resp. smaller) than its expected value, B is larger (resp. smaller) as well
- Dep. w. negative correlation ← → negative covariance
 If Cov_{A,B} < 0, then when A is larger than its expected value, B is likely to be smaller than its expected value (and vice versa)
- Independence \rightarrow Cov_{A,B}=0 (but the converse is not always true)
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) a covariance of 0 does imply independence

Co-Variance: An Example

$$Cov(A,B) = E((A - \overline{A})(B - \overline{B})) = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{n}$$

It can be simplified in computation as n

$$Cov(A,B) = \sum_{i=1}^{n} (a_i b_i)/n - \overline{A} \cdot \overline{B}$$

- Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
 - E(A) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
 - E(B) = (5 + 8 + 10 + 11 + 14) / 5 = 48 / 5 = 9.6
 - $Cov(A,B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- Thus, A and B rise together since Cov(A, B) > 0.

Correlation Analysis (Numeric Data)

- Correlation coefficient (also called Pearson's product moment coefficient)
 - Attributes A and B
 - $n \rightarrow number of tuples$
 - \overline{A} and $\overline{B} \rightarrow$ respective means of A and B
 - σ_A and $\sigma_B \rightarrow$ the respective standard deviation of A and B

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{n\sigma_A \sigma_B}$$

Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{n\sigma_A \sigma_B}$$

- If r_{A,B} > 0, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

Correlation (viewed as linear relationship)

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, A and B, and then take their dot product

$$a'_{k} = (a_{k} - mean(A)) / std(A)$$

$$b'_{k} = (b_{k} - mean(B)) / std(B)$$

 $correlation(A, B) = A' \bullet B'$

Correlation Analysis (Numeric Data)

 Geometrically: the cosine of the angle between the two vectors, after centering (or possible regression lines)

Visually Evaluating Correlation

Scatter plots showing the similarity from –1 to 1.

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? Computational issues in big data!
- Data reduction strategies
 - Numerosity reduction (or simply "Data Reduction" → red. the number of data objects)
 - Sampling
 - Histograms, clustering
 - Regression and Log-Linear Models
 - Data cube aggregation
 - Dimensionality reduction (→ red. the number of attributes)
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Transforms (Fourier, Wavelet, Whitening ...)
 - Data compression

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? Computational issues in big data!
- Data reduction strategies
 - <u>Numerosity reduction</u> (or simply "Data Reduction" → red. the number of data objects)
 - Sampling
 - Histograms, clustering
 - Regression and Log-Linear Models
 - Data cube aggregation
 - Dimensionality reduction (→ red. the number of attributes)
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Transforms (Fourier, Wavelet, Whitening ...)
 - Data compression

Numerosity Reduction: sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time) 32

Sampling

- Beware! In general, <u>sampling design (e.g. for</u> <u>surveys</u>) is a serious issue:
 - Cochran, W.G. (1977). Sampling techniques, 3rd ed. New York: John Wiley & Sons
 - Lohr, S. (2009). Sampling: Design and Analysis. Duxbury Press
- in data sampling for automatic analyses we're more constrained (and therefore simplified)
- still we can exploit general techniques

Types of Sampling

Systematic sampling

 Choose equally-spaced data objects (or even contiguous elements to reduce I/O)

Simple random sampling

 There is an equal probability of selecting any particular item

Sampling without / with replacement

 Once an object is selected, it is removed (resp. not removed) from the population

Stratified sampling:

- Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
- Used in conjunction with skewed data 34

Sampling: With or without Replacement

Types of Sampling

Stratified sampling:

- Choose a "category" attribute y
- Partition the data set according to y values (strata)
- Draw samples independently from each class (e.g. proportionally, i.e. approx. same % of data)
- Better for skewed data

Clustered sampling:

Cluster data, use cluster classes as category in a stratified sampling

Single stage / multi stage sampling:

- Perform hierarchical stratification or clustering
- Sample recursively

36

Sampling: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample

Sampling: Cluster or Stratified Sampling

Example: estimating sample size

- Generally speaking: we want to select n data objects from N
 - to estimate the value P of a parameter of (the probability distribution of) an attribute
 - with a value p computed (by a consistent estimator) on the sample only
 - up to a given precision δ with a certain probability (1-α)
 - Then $Pr(|p-P| \ge \delta) \le \alpha$
- If we assume our estimator to be asymptotically normal, and the attribute p.d.f. to have variance σ²
 - z(x): value of the normal curve in x
 - $n_0 \ge z(\alpha/2)^2 \sigma^2 / \delta^2$; $n \ge n_0 / (1 + n_0 / N)$ 39

Numerosity Reduction: change representation

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Parametric Data Reduction: Regression and Log-Linear Models

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a "response" variable Y to be modeled as a linear function of multidimensional "predictor" feature (variable) vector X

Log-linear model

 Approximates discrete multidimensional probability distributions

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a *dependent variable* (also called *response variable* or *measurement*) and of one or more *independent variables* or *(aka. explanatory variables or predictors)*
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the *least squares method*, but other criteria have also been used

 Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships 42

Regress Analysis and Log-Linear Models

- Linear regression: Y = w X + b
 - Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
 - Using the least squares criterion to the known values of Y₁,
 Y₂, ..., X₁, X₂,
- <u>Multiple regression</u>: $Y = b_0 + b_1 X_1 + b_2 X_2$
 - Many nonlinear functions can be transformed as above
- Log-linear models:
 - Approximate discrete multidimensional prob. distributions
 - Estimate the probability of each point (tuple) in a multidimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations
 - Useful for dimensionality reduction and data smoothing

Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket
- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equal-depth)

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multi-dimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
 - We will have some dedicated lectures for clustering algorithms

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? Computational issues in big data!
- Data reduction strategies
 - Numerosity reduction (or simply "Data Reduction" → red. the number of data objects)
 - Sampling
 - Histograms, clustering
 - Regression and Log-Linear Models
 - Data cube aggregation
 - Dimensionality reduction (→ red. the number of attributes)
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Transforms (Fourier, Wavelet, Whitening ...)
 - Data compression

Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio
 - Typically short and vary slowly with time

Data Compression

Data Reduction Strategies

- Data reduction strategies
 - Numerosity reduction (or simply "Data Reduction" → red. the number of data objects)
 - Sampling
 - Histograms, clustering
 - Regression and Log-Linear Models
 - Data cube aggregation
 - <u>Dimensionality reduction</u> (→ red. the number of attributes)
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Transforms (Fourier, Wavelet, Whitening ...)
 <u>TOPIC OF THE NEXT SET OF LECTURES</u>
 - Data compression

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range (min-max normalization; z-score normalization; normalization by decimal scaling)
 - Discretization: Concept hierarchy climbing

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new max_{A} - new min_{A}) + new min_{A}$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,600 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- **Z-score normalization** (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$
- Normalization by decimal scaling

 $v' = \frac{v}{10^{j}}$ Where *j* is the smallest integer such that Max(|v'|) < 1

Discretization

- Three types of attributes
 - Nominal—values from an unordered set, e.g. color
 - Ordinal—values from an ordered set, e.g. rank
 - Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute
 - Prepare for further analysis, e.g., classification

Data Discretization Methods

- Typical methods: All the methods can be applied recursively
 - Binning
 - Top-down split, unsupervised
 - Histogram analysis
 - Top-down split, unsupervised
 - Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - Decision-tree analysis (supervised, top-down split)
 - Correlation (e.g., χ²) analysis (unsupervised, bottomup merge)

Simple Discretization: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (**equi-depth**) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Discretization Without Using Class Labels (Binning vs. Clustering)

Equal frequency (binning)

K-means clustering leads to better results 58

Discretization by Classification & Correlation Analysis

- Classification (e.g., decision tree analysis)
 - Supervised: Given class labels, e.g., cancerous vs. benign
 - Using *entropy* to determine split point (discretization point); Top-down, recursive split

Details to be covered later in the course

- Correlation analysis (e.g., Chi-merge: χ²-based discretization)
 - Supervised: use class information
 - Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e., low χ^2 values) to merge
 - Merge performed recursively, until a stopping condition 59

Concept Hierarchy Generation

- Concept hierarchy organizes concepts (i.e., attribute values) hierarchically and is usually associated with each dimension in a data warehouse
- Concept hierarchies facilitate <u>drilling and rolling</u> in data warehouses to view data in multiple granularity
- Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for *age*) by higher level concepts (such as *youth, adult,* or *senior*)
- Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers
- Concept hierarchy can be automatically formed for both numeric and nominal data. For numeric data, use discretization methods shown.

Concept Hierarchy Generation for Nominal Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
 - street < city < state < country</pre>
- Specification of a hierarchy for a set of values by explicit data grouping
 - {Cremona, Lodi, Milano} < Lombardia</pre>
- Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
 - E.g., for a set of attributes: {street, city, state, country}

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year

15 distinct values

365 distinct values

3567 distinct values

674,339 distinct values **62**

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- **Data integration** from multiple sources:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation