Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 02 : 02/10/2013

Data Mining: Concepts and Techniques

— Chapter 2 —

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University © 2012 Han, Kamber, and Pei. All rights reserved.

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: term-frequency vector
 - Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data: .bmp
 - Video data: .avi

ix,										
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Important Characteristics of Structured Data

Dimensionality

- Curse of dimensionality (the volume of the space grows fast with the number of dimensions, and the available data becomes sparse)
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity (also called samples, examples, instances, data points, objects, tuples ...)
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Data objects are described by **attributes** (also called variables, dimensions, features ...)
- In databases: rows -> data objects; columns ->attributes.

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer _ID, name, address
- Types:
 - Nominal
 - Binary
 - Ordinal
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- **Nominal:** categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes
- Binary
 - Nominal attribute with only 2 states (0 and 1)
 - Symmetric binary: both outcomes equally important
 - e.g., gender
 - <u>Asymmetric binary</u>: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)
- Ordinal
 - Values have a meaningful order (ranking) but magnitude between successive values is not known.
 - Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C°or F°, calendar dates
 - No true zero-point
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes (ML view)

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of Data

Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance...
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population):
 Note: n is sample size and N is population size.
 - Weighted arithmetic mean
 - Sensitive to outliers: trimmed mean (chopping extreme values)
- Median:
 - Middle value if odd number of values, or $\frac{age}{1-5}$ average of the middle two values otherwise 6-15
 - Estimated by interpolation (for grouped data): 16–20 21, 50

$$median = L_1 + \left(\frac{\frac{n}{2} - (\sum freq)_l}{freq_{median}}\right) width$$
Lower boundary of the median interval
$$f_{values in the dataset}$$
Freq. of the median interval
$$f_{values in the dataset}$$
Freq. of the median interval

 $\overline{x} = \frac{1}{2} \sum_{i=1}^{n} x_i$

 $\overline{x} = \frac{i=1}{2}$

 $W_i X_i$

frequency

200

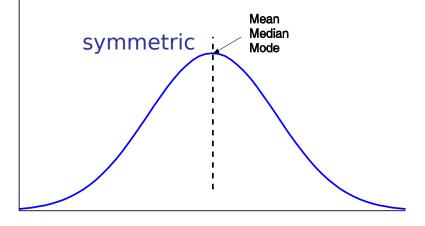
450

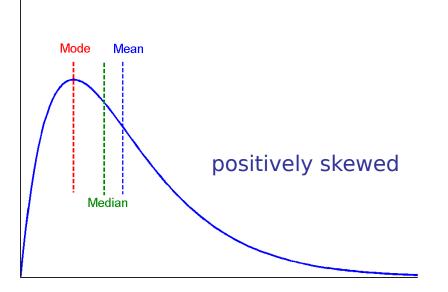
300

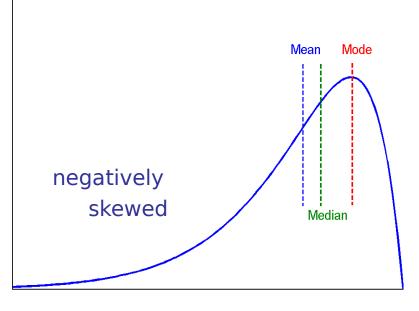
Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula for moderately skewed:


 $mean-mode \simeq 3 \times (mean-median)$


Mean: 58 Median: (52+56)/2 = 54 Mode: 52 and 70 (bimodal) Midrange: (30+110) /2 = 70

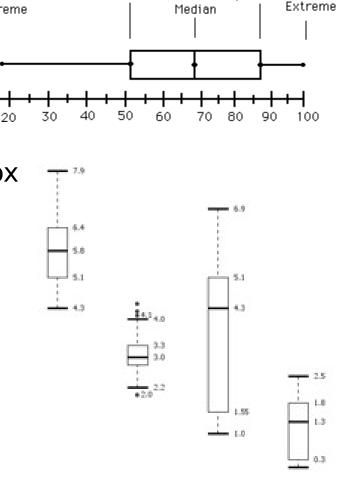

Employe d	Salary
1	30
2	36
3	47
4	50
5	52
6	52
7	56
8	60
9	63
10	70
11	70
12	110

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q1 (25th percentile), Q3 (75th percentile)
 - Inter-quartile range: IQR = Q₃ Q₁
 - Five number summary: min, Q₁, median, Q₃, max (nice for skewed distributions)
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - **Outlier**: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

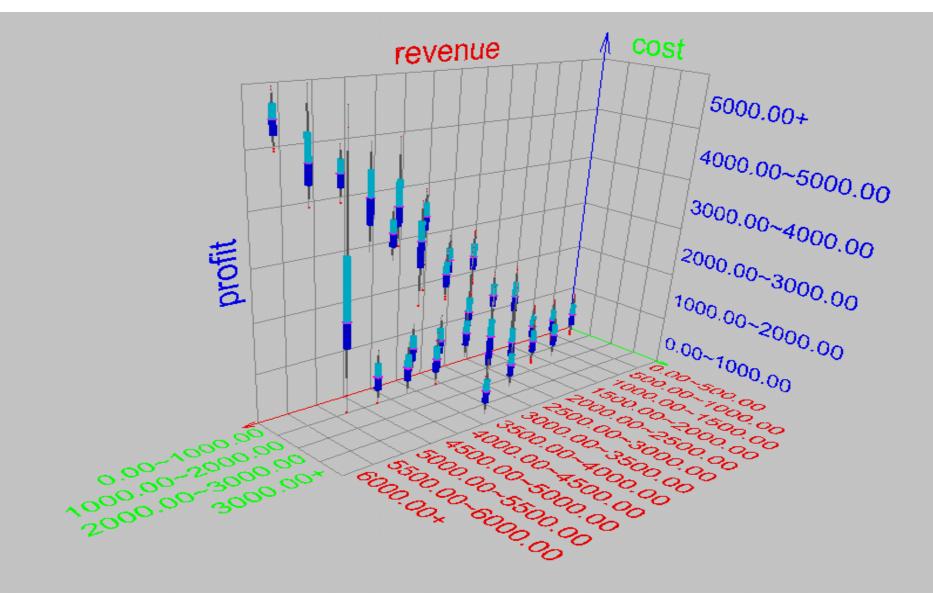

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$
Standard deviation *s* (or σ) is the square root of variance

Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum Lower Extreme

Boxplot

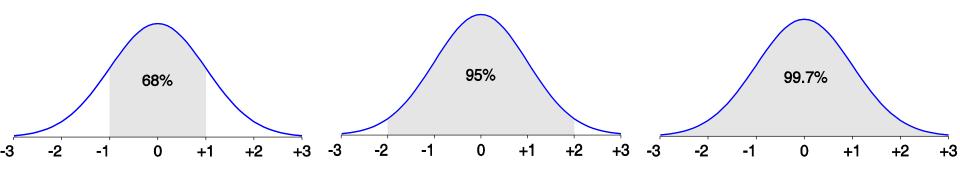
- Data is represented with a box
- The ends of the box are at the first and the first and the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually


Upper

Quartile Upper

Lower

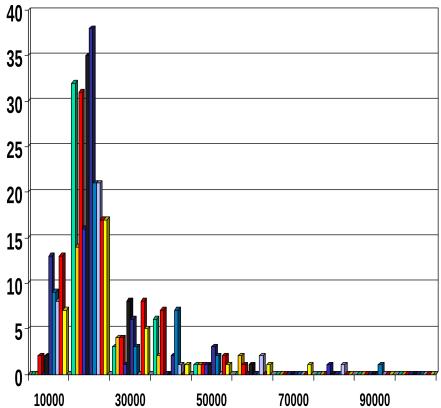
Quartile


Visualization of Data Dispersion: 3-D Boxplots

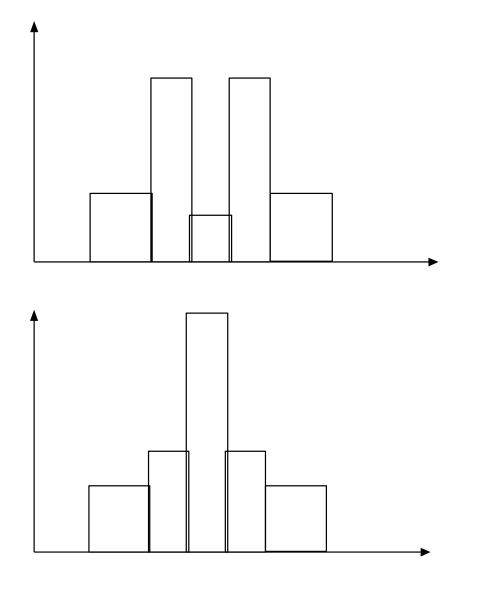
Properties of Normal Distribution Curve

The normal (distribution) curve

- From μ-σ to μ+σ: contains about 68% of the measurements (μ: mean, σ: standard deviation)
- From μ -2 σ to μ +2 σ : contains about 95% of it
- From μ -3 σ to μ +3 σ : contains about 99.7% of it

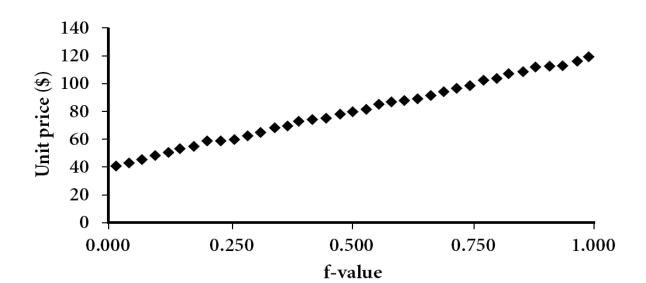


Graphic Displays of Basic Statistical Descriptions

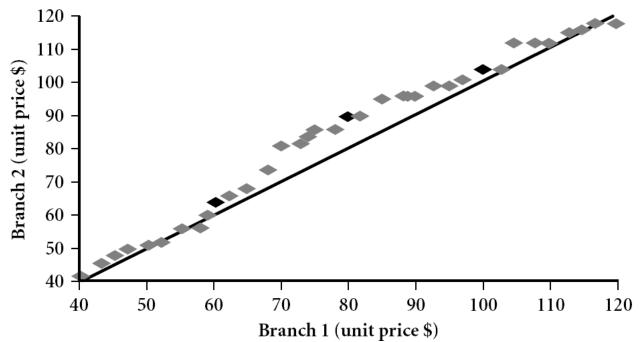

- **Boxplot**: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent


Histograms Often Tell More than Boxplots

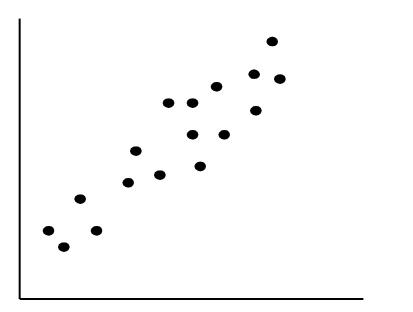
- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

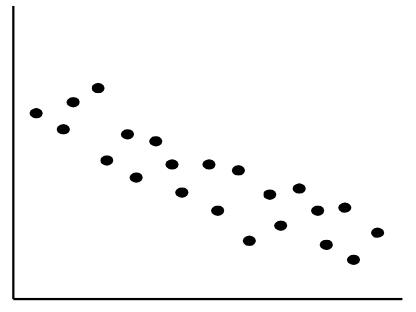

Quantile Plot

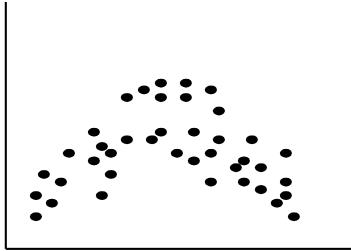
- Displays all of the data (assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - Select an attribute x_i; sort data by non-decreasing x_i value; plot it equally spaced on the x axis
 - v(f) indicates the value s.t. a fraction f of data has value at most v(f)


Quantile-Quantile (Q-Q) Plot

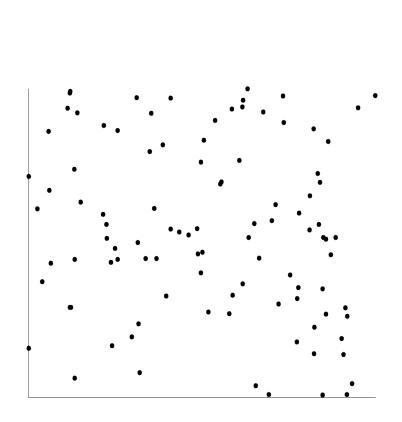
- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

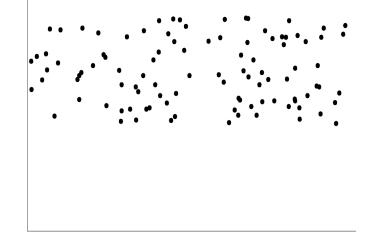


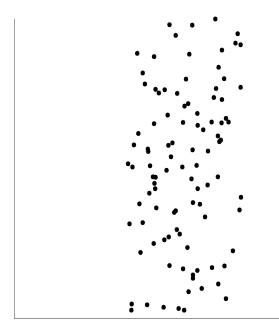

Scatter plot


- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

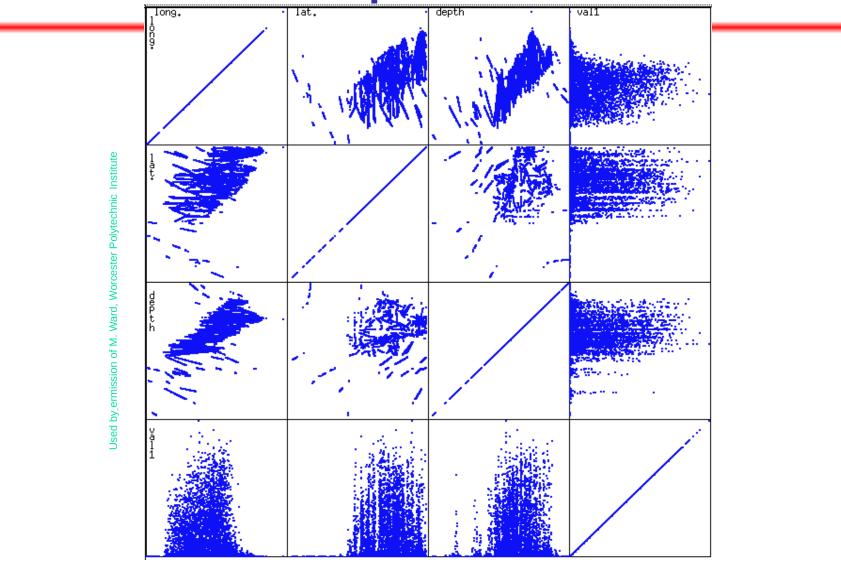
Positively and Negatively Correlated Data







- The left half fragment is positively correlated
- The right half is negative correlated


Uncorrelated Data

Scatterplot Matrices

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) scatterplots]

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

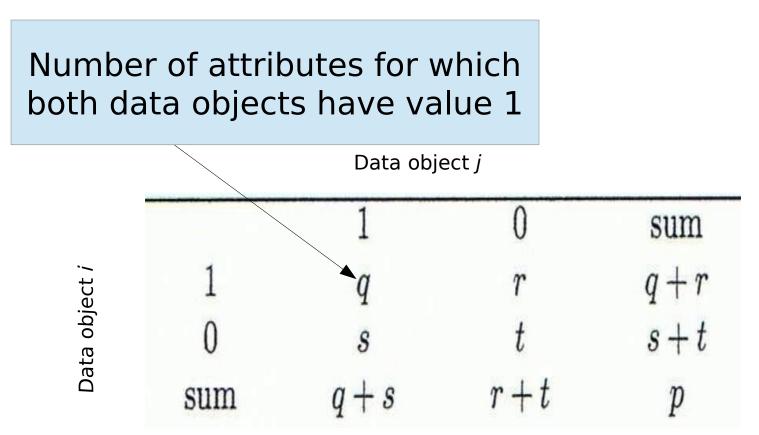
Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

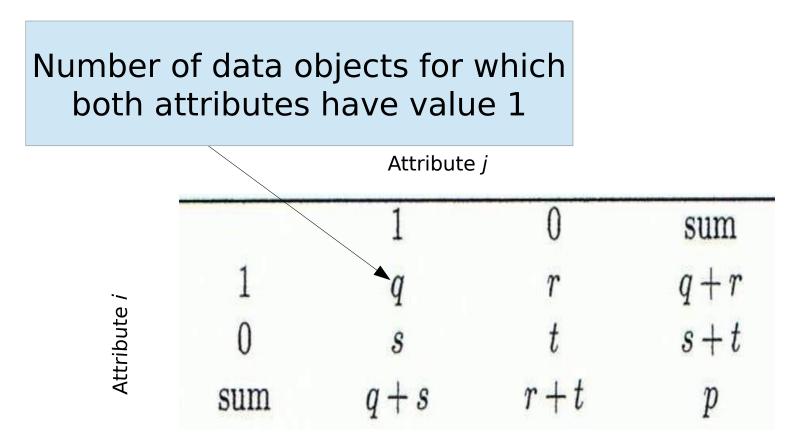
Data Matrix and Dissimilarity Matrix

- Data matrix
 - n data points (objects) with p dimensions (features)


- Dissimilarity matrix
 - n data points, but registers only the distance
 - A triangular matrix

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$


Proximity Measures for Binary Attributes

• A contingency table for binary data

Proximity Measures for Binary Attributes

... but we can do the same for attributes (transpose)

Proximity Measures for Binary Attributes

- A contingency table for binary data
 Joint of the second seco
- Distance measure for symmetric bin.
 vars (0 and 1 equally important):
- Distance measure for asymm. bin. vars (1 more important – e.g. diseases):
- Jaccard coefficient (*similarity* measure for *asymmetric* binary variables): $sim_{Jaccard}(i, j) = \frac{q}{q+r}$
- Note: Jaccard coefficient is the same as "coherence":

$$coherence(i, j) = \frac{sup(i, j)}{sup(i) + sup(j) - sup(i, j)} = \frac{q}{(q+r) + (q+s) - q}$$

	Data d	bject j	
	1	0	sum
1	q	r	q+r
0	8	t	s+t
sum	q+s	r+t	p
d(i,	j) = - q	r + + r + r	

$$d(i, j) = \frac{r+s}{q+r+s}$$

Dissimilarity between Binary Attributes

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3
	M	Y	Ν	Р	N	N
Mary	F	Y	N	P	N	P
Jim	M	Y	P	N	N	N

- Gender is a symmetric attribute (let's discard it!)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

$$\frac{1}{2+0+1} = 0.33$$

$$\frac{1}{2+0+1} = 0.67$$

$$\frac{1}{2+0+1} = 0.67$$

$$\frac{1}{2+0+1} = 0.75$$

$$\frac{1}{2+0+1} = 0.75$$

$$\frac{1}{2+0+1} = 0.75$$

Proximity Measures for Categorical (or "nominal") Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of attributes

$$d(i, j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the *M* categories

Proximity on Numeric Data: Minkowski Distance

• *Minkowski distance*: A popular distance measure

$$d(i, j) = \sqrt[h]{|x_{i1} - x_{j1}|^h} + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two *p*-dimensional data objects, and *h* is the order (the distance so defined is also called L-*h* norm)

- Properties
 - d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

- $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

- h = 2: (L₂ norm) Euclidean distance $d(i, j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$
- $h \to \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f}^{p} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

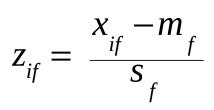
Dissimilarity Matrices

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{inf})

L	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Standardizing Numeric Data


• Z-score:
$$z = \frac{x - \mu}{\sigma}$$

- X: raw data, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- <0 when the raw score is below the mean, >0 when above
- An alternative way: Calculate the mean absolute deviation

$$s_{f} = \frac{1}{n} (|x_{1f} - m_{f}| + |x_{2f} - m_{f}| + \dots + |x_{nf} - m_{f}|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$$

standardized measure (*z-score*):

mean absolute deviation is more robust than std dev

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, ..., M_f\}$
 - map (normalize) the range of each variable onto
 [0, 1] by replacing x_{if} by

$$\mathbf{z}_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using distance measures for numeric attributes

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects $\mathbf{p} = (\mathbf{f}) (\mathbf{f})$

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(T)} d_{ij}^{(T)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- Choice of $\delta_{ij}^{(f)}$ Set $\delta_{ij}^{(f)} = 0$ if
 - - x_{if} or x_{if} is missing
 - $x_{if} = x_{if} = 0$ and f is asymmetric binary
 - Set $\delta_{ii}^{(f)} = 1$ otherwise

Attributes of Mixed Type

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

Choice of d_{ij}^(f)

when f is binary or nominal:

 $d_{ij^{\left(f\right)}}=0~\text{ if }x_{if}=x_{jf}$, $d_{ij^{\left(f\right)}}=1~\text{otherwise}$

- when f is numeric: use the normalized distance
- when f is ordinal

• Compute ranks
$$r_{if}$$
 and $Z_{if} = \frac{r_{if} - 1}{M_f - 1}$

Treat z_{if} as interval-scaled

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	base ball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Issue: very long and sparse
- Treat documents as vectors, and compute a cosine similarity

Cosine Similarity

Cosine measure: If x and y are two vectors (e.g., term-frequency vectors), then

$$\cos(x, y) = (x \bullet y) / ||x|| ||y||$$

where

- indicates vector dot product, $x \cdot y = \sum_{i=1}^{p} x_i y_i$ ||x||: the L2 norm (length) of vector $\mathbf{x}^{i=1} ||x|| = \sqrt{x_1^2 + x_2^2 + ... + x_p^2}$
- Remark: when attributes are binary valued:
 - indicates the number of shared features
 - ||x|| ||y|| is the geometric mean between the number of features of x and the number of features of y: sqrt(a) * sqrt(b) = sqrt(a * b)
 - cos (x, y) measures relative possession of common features

Example: Cosine Similarity

- $\cos(x, y) = (x \bullet y) / ||x|| ||y||$
- Ex: Find the **similarity** between documents x and y.
 - $\mathbf{x} = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$ $\mathbf{y} = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$
 - x y = 5*3+0*0+3*2+0*0+2*1+0*1+2*1+0*0+0*1== 25
 - $||x|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = 6.481$
 - $||y|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5} = 4.12$

 $\cos(x, y) = 25 / (6.481 * 4.12) = 0.94$

References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001
- C. Yu et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009