#### Università degli Studi di Milano Master Degree in Computer Science

# Information Management course

Teacher: Alberto Ceselli

Lecture 02 : 02/10/2013

# Data Mining: Concepts and Techniques

#### — Chapter 2 —

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University © 2012 Han, Kamber, and Pei. All rights reserved.

#### Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

#### **Types of Data Sets**

- Record
  - Relational records
  - Data matrix, e.g., numerical matrix, crosstabs
  - Document data: text documents: term-frequency vector
  - Transaction data
- Graph and network
  - World Wide Web
  - Social or information networks
  - Molecular Structures
- Ordered
  - Video data: sequence of images
  - Temporal data: time-series
  - Sequential Data: transaction sequences
  - Genetic sequence data
- Spatial, image and multimedia:
  - Spatial data: maps
  - Image data: .bmp
  - Video data: .avi

| ix,        |   |   |   |   |   |   |   |   |   |   |
|------------|---|---|---|---|---|---|---|---|---|---|
| Document 1 | 3 | 0 | 5 | 0 | 2 | 6 | 0 | 2 | 0 | 2 |
| Document 2 | 0 | 7 | 0 | 2 | 1 | 0 | 0 | 3 | 0 | 0 |
| Document 3 | 0 | 1 | 0 | 0 | 1 | 2 | 2 | 0 | 3 | 0 |

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

#### Important Characteristics of Structured Data

#### Dimensionality

- Curse of dimensionality (the volume of the space grows fast with the number of dimensions, and the available data becomes sparse)
- Sparsity
  - Only presence counts
- Resolution
  - Patterns depend on the scale
- Distribution
  - Centrality and dispersion

#### **Data Objects**

- Data sets are made up of data objects.
- A data object represents an entity (also called samples, examples, instances, data points, objects, tuples ...)
- Examples:
  - sales database: customers, store items, sales
  - medical database: patients, treatments
  - university database: students, professors, courses
- Data objects are described by **attributes** (also called variables, dimensions, features ...)
- In databases: rows -> data objects; columns ->attributes.

## **Attributes**

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
  - E.g., customer \_ID, name, address
- Types:
  - Nominal
  - Binary
  - Ordinal
  - Numeric: quantitative
    - Interval-scaled
    - Ratio-scaled

# **Attribute Types**

- **Nominal:** categories, states, or "names of things"
  - Hair\_color = {auburn, black, blond, brown, grey, red, white}
  - marital status, occupation, ID numbers, zip codes
- Binary
  - Nominal attribute with only 2 states (0 and 1)
  - Symmetric binary: both outcomes equally important
    - e.g., gender
  - <u>Asymmetric binary</u>: outcomes not equally important.
    - e.g., medical test (positive vs. negative)
    - Convention: assign 1 to most important outcome (e.g., HIV positive)
- Ordinal
  - Values have a meaningful order (ranking) but magnitude between successive values is not known.
  - Size = {small, medium, large}, grades, army rankings

# **Numeric Attribute Types**

- Quantity (integer or real-valued)
- Interval
  - Measured on a scale of equal-sized units
  - Values have order
    - E.g., temperature in C°or F°, calendar dates
  - No true zero-point
- Ratio
  - Inherent zero-point
  - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
    - e.g., temperature in Kelvin, length, counts, monetary quantities

# Discrete vs. Continuous Attributes (ML view)

#### Discrete Attribute

- Has only a finite or countably infinite set of values
  - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

#### Continuous Attribute

- Has real numbers as attribute values
  - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

#### Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

### Basic Statistical Descriptions of Data

#### Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
  - median, max, min, quantiles, outliers, variance...
- Numerical dimensions correspond to sorted intervals
  - Data dispersion: analyzed with multiple granularities of precision
  - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
  - Folding measures into numerical dimensions
  - Boxplot or quantile analysis on the transformed cube

# **Measuring the Central Tendency**

- Mean (algebraic measure) (sample vs. population):
   Note: n is sample size and N is population size.
  - Weighted arithmetic mean
  - Sensitive to outliers: trimmed mean (chopping extreme values)
- Median:
  - Middle value if odd number of values, or  $\frac{age}{1-5}$  average of the middle two values otherwise 6-15
  - Estimated by interpolation (for grouped data): 16–20 21, 50

$$median = L_1 + \left(\frac{\frac{n}{2} - (\sum freq)_l}{freq_{median}}\right) width$$
Lower boundary of the median interval
$$f_{values in the dataset}$$
Freq. of the median interval
$$f_{values in the dataset}$$
Freq. of the median interval

 $\overline{x} = \frac{1}{2} \sum_{i=1}^{n} x_i$ 

 $\overline{x} = \frac{i=1}{2}$ 

 $W_i X_i$ 

frequency

200

450

300

# **Measuring the Central Tendency**

#### Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula for moderately skewed:

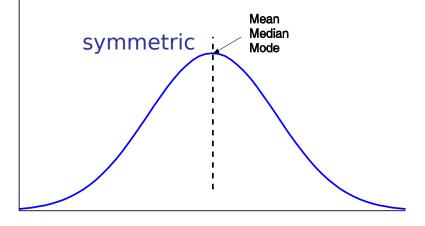
 $mean-mode \simeq 3 \times (mean-median)$ 

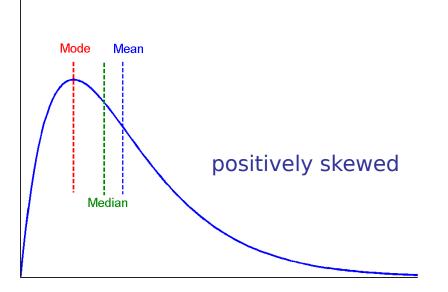
Mean: 58 Median: (52+56)/2 = 54 Mode: 52 and 70 (bimodal) Midrange: (30+110) /2 = 70

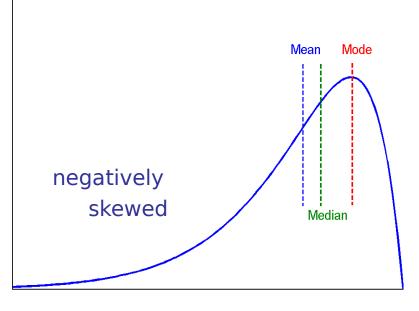
| Employe<br>d | Salary |
|--------------|--------|
| 1            | 30     |
| 2            | 36     |
| 3            | 47     |
| 4            | 50     |
| 5            | 52     |
| 6            | 52     |
| 7            | 56     |
| 8            | 60     |
| 9            | 63     |
| 10           | 70     |
| 11           | 70     |
| 12           | 110    |

### Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data







#### Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
  - Quartiles: Q1 (25th percentile), Q3 (75th percentile)
  - Inter-quartile range: IQR = Q<sub>3</sub> Q<sub>1</sub>
  - Five number summary: min, Q<sub>1</sub>, median, Q<sub>3</sub>, max (nice for skewed distributions)
  - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
  - **Outlier**: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
  - Variance: (algebraic, scalable computation)

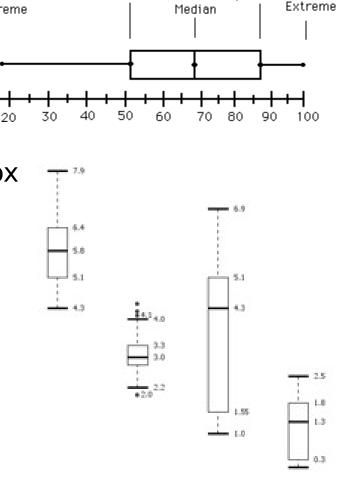
$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \left[ \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$
**Standard deviation** *s* (or  $\sigma$ ) is the square root of variance

### **Boxplot Analysis**

- Five-number summary of a distribution
  - Minimum, Q1, Median, Q3, Maximum Lower Extreme

Boxplot

- Data is represented with a box
- The ends of the box are at the first and the first and the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually



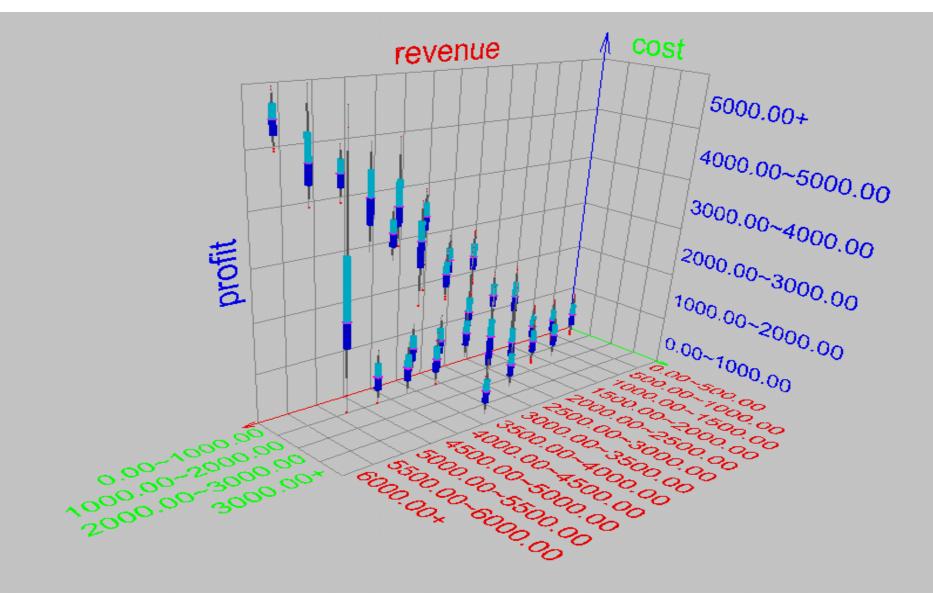
Upper

Quartile Upper

Lower

Quartile

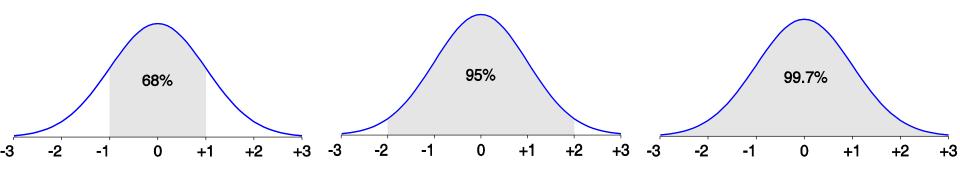
#### Visualization of Data Dispersion: 3-D Boxplots



#### **Properties of Normal Distribution Curve**

#### The normal (distribution) curve

- From μ-σ to μ+σ: contains about 68% of the measurements (μ: mean, σ: standard deviation)
- From  $\mu$ -2 $\sigma$  to  $\mu$ +2 $\sigma$ : contains about 95% of it
- From  $\mu$ -3 $\sigma$  to  $\mu$ +3 $\sigma$ : contains about 99.7% of it

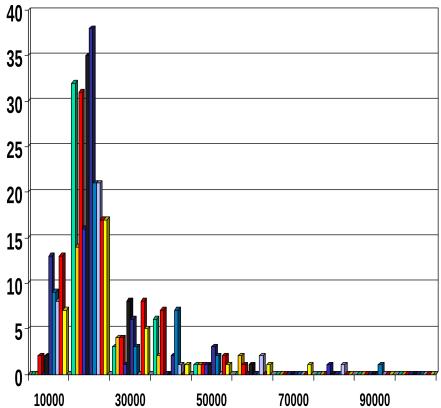


#### Graphic Displays of Basic Statistical Descriptions

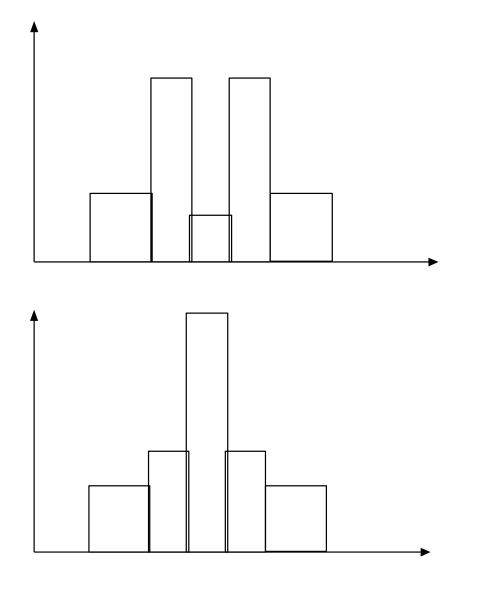
- **Boxplot**: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value  $x_i$  is paired with  $f_i$ indicating that approximately 100  $f_i$ % of data are  $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

# **Histogram Analysis**

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent



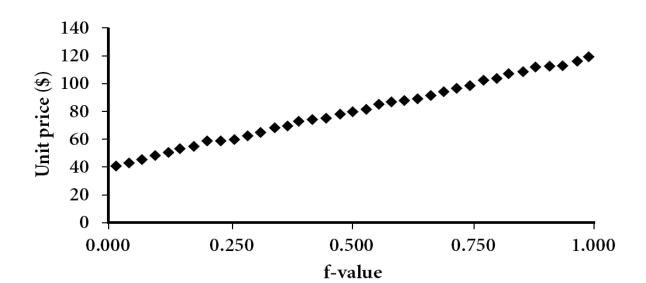
#### Histograms Often Tell More than Boxplots



- The two histograms shown in the left may have the same boxplot representation
  - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

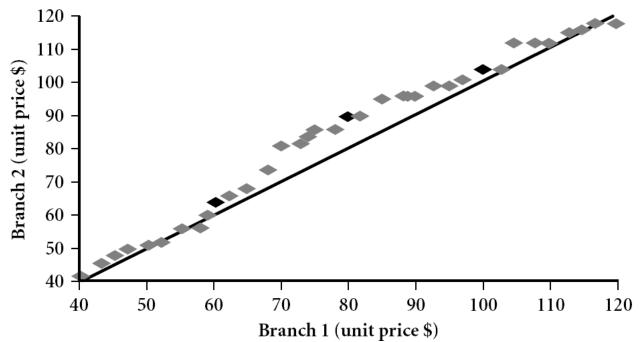
# **Quantile Plot**

- Displays all of the data (assess both the overall behavior and unusual occurrences)
- Plots quantile information
  - Select an attribute x<sub>i</sub>; sort data by non-decreasing x<sub>i</sub> value; plot it equally spaced on the x axis
  - v(f) indicates the value s.t. a fraction f of data has value at most v(f)



# Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

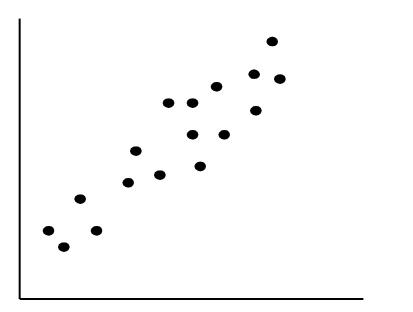


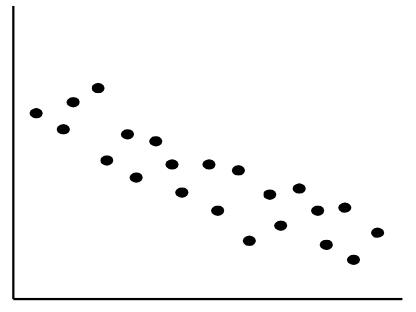
### **Scatter plot**

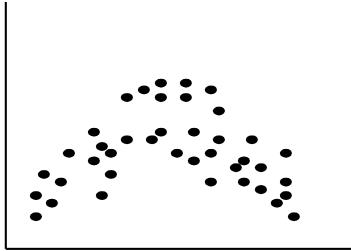
- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane



#### Positively and Negatively Correlated Data

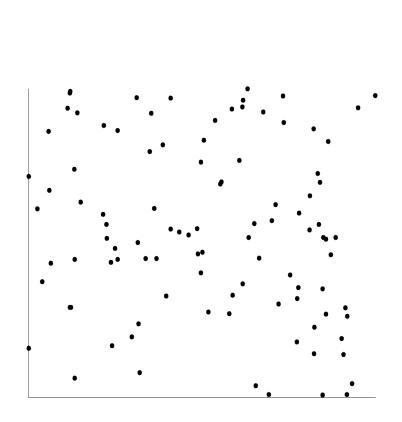


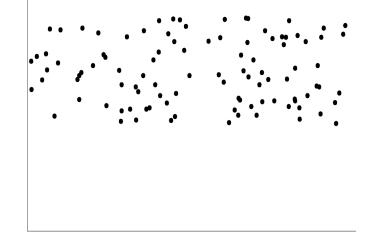


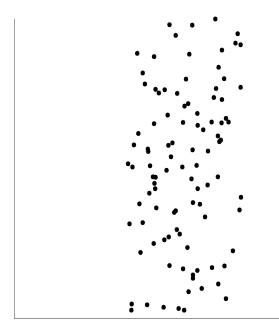


- The left half fragment is positively correlated
- The right half is negative correlated

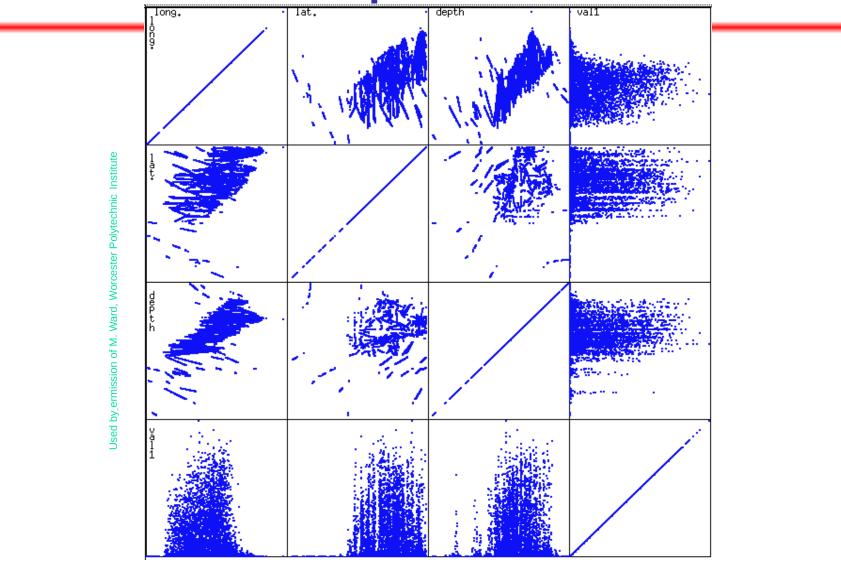
#### **Uncorrelated Data**







#### **Scatterplot Matrices**



Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) scatterplots]

#### Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

# **Similarity and Dissimilarity**

#### Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
  - Numerical measure of how different two data objects are
  - Lower when objects are more alike
  - Minimum dissimilarity is often 0
  - Upper limit varies
- Proximity refers to a similarity or dissimilarity

# Data Matrix and Dissimilarity Matrix

- Data matrix
  - n data points (objects) with p dimensions (features)

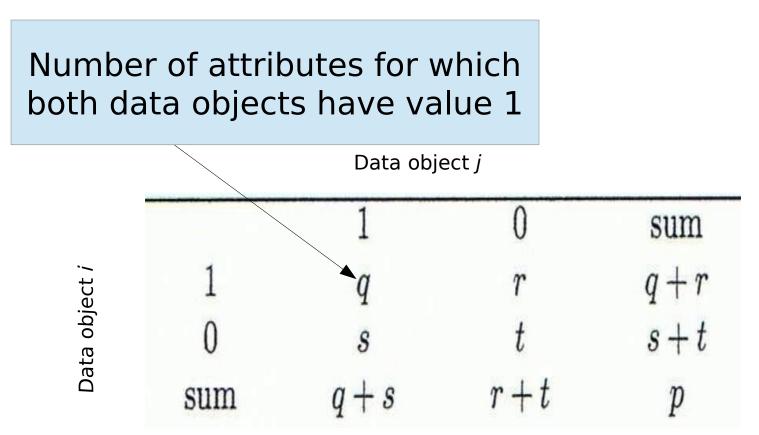
- Dissimilarity matrix
  - n data points, but registers only the distance
  - A triangular matrix

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

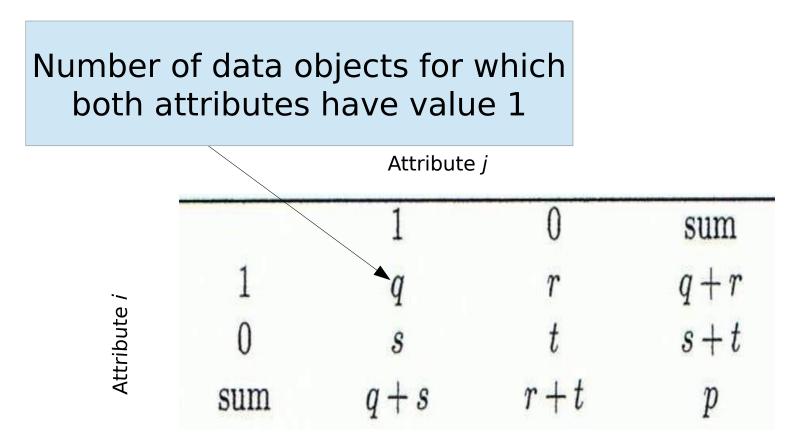
#### **Proximity Measures for Binary Attributes**

• A contingency table for binary data



#### **Proximity Measures for Binary Attributes**

... but we can do the same for attributes (transpose)



#### **Proximity Measures for Binary Attributes**

- A contingency table for binary data
   Joint of the second seco
- Distance measure for symmetric bin.
   vars (0 and 1 equally important):
- Distance measure for asymm. bin. vars (1 more important – e.g. diseases):
- Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):  $sim_{Jaccard}(i, j) = \frac{q}{q+r}$
- Note: Jaccard coefficient is the same as "coherence":

$$coherence(i, j) = \frac{sup(i, j)}{sup(i) + sup(j) - sup(i, j)} = \frac{q}{(q+r) + (q+s) - q}$$

|      | Data d   | bject j     |     |
|------|----------|-------------|-----|
|      | 1        | 0           | sum |
| 1    | q        | r           | q+r |
| 0    | 8        | t           | s+t |
| sum  | q+s      | r+t         | p   |
| d(i, | j) = - q | r + + r + r |     |

$$d(i, j) = \frac{r+s}{q+r+s}$$

### Dissimilarity between Binary Attributes

#### Example

| Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 |
|------|--------|-------|-------|--------|--------|--------|
|      | M      | Y     | Ν     | Р      | N      | N      |
| Mary | F      | Y     | N     | P      | N      | P      |
| Jim  | M      | Y     | P     | N      | N      | N      |

- Gender is a symmetric attribute (let's discard it!)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

$$\frac{1}{2+0+1} = 0.33$$

$$\frac{1}{2+0+1} = 0.67$$

$$\frac{1}{2+0+1} = 0.67$$

$$\frac{1}{2+0+1} = 0.75$$

$$\frac{1}{2+0+1} = 0.75$$

$$\frac{1}{2+0+1} = 0.75$$

#### **Proximity Measures for Categorical** (or "nominal") Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
  - m: # of matches, p: total # of attributes

$$d(i, j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
  - creating a new binary attribute for each of the *M* categories

#### Proximity on Numeric Data: Minkowski Distance

• *Minkowski distance*: A popular distance measure

$$d(i, j) = \sqrt[h]{|x_{i1} - x_{j1}|^h} + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h$$

where  $i = (x_{i1}, x_{i2}, ..., x_{ip})$  and  $j = (x_{j1}, x_{j2}, ..., x_{jp})$  are two *p*-dimensional data objects, and *h* is the order (the distance so defined is also called L-*h* norm)

- Properties
  - d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

- $d(i, j) \le d(i, k) + d(k, j)$  (Triangle Inequality)
- A distance that satisfies these properties is a metric

#### **Special Cases of Minkowski Distance**

- h = 1: Manhattan (city block, L<sub>1</sub> norm) distance
  - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

- h = 2: (L<sub>2</sub> norm) Euclidean distance  $d(i, j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$
- $h \to \infty$ . "supremum" (L<sub>max</sub> norm, L<sub>∞</sub> norm) distance.
  - This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \to \infty} \left( \sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f}^{p} |x_{if} - x_{jf}|$$

# **Example: Minkowski Distance**

| point | attribute 1 | attribute 2 |
|-------|-------------|-------------|
| x1    | 1           | 2           |
| x2    | 3           | 5           |
| x3    | 2           | 0           |
| x4    | 4           | 5           |

#### Manhattan (L<sub>1</sub>)

| L  | x1 | x2 | x3 | x4 |
|----|----|----|----|----|
| x1 | 0  |    |    |    |
| x2 | 5  | 0  |    |    |
| x3 | 3  | 6  | 0  |    |
| x4 | 6  | 1  | 7  | 0  |

#### Euclidean (L<sub>2</sub>)

**Dissimilarity Matrices** 

| L2 | x1   | x2  | x3   | x4 |
|----|------|-----|------|----|
| x1 | 0    |     |      |    |
| x2 | 3.61 | 0   |      |    |
| x3 | 2.24 | 5.1 | 0    |    |
| x4 | 4.24 | 1   | 5.39 | 0  |

#### Supremum (L<sub>inf</sub>)

| L  | x1 | x2 | x3 | x4 |
|----|----|----|----|----|
| x1 | 0  |    |    |    |
| x2 | 3  | 0  |    |    |
| x3 | 2  | 5  | 0  |    |
| x4 | 3  | 1  | 5  | 0  |

#### **Standardizing Numeric Data**

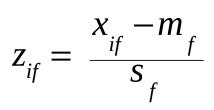
• Z-score: 
$$z = \frac{x - \mu}{\sigma}$$

- X: raw data,  $\mu$ : mean of the population,  $\sigma$ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- <0 when the raw score is below the mean, >0 when above
- An alternative way: Calculate the mean absolute deviation

$$s_{f} = \frac{1}{n} (|x_{1f} - m_{f}| + |x_{2f} - m_{f}| + \dots + |x_{nf} - m_{f}|)$$
  
where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$$

standardized measure (*z-score*):



mean absolute deviation is more robust than std dev

#### **Ordinal Variables**

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
  - replace  $x_{if}$  by their rank  $r_{if} \in \{1, ..., M_f\}$
  - map (normalize) the range of each variable onto
     [0, 1] by replacing x<sub>if</sub> by

$$\mathbf{z}_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using distance measures for numeric attributes

#### **Attributes of Mixed Type**

- A database may contain all attribute types
  - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects  $\mathbf{p} = (\mathbf{f}) (\mathbf{f})$

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(T)} d_{ij}^{(T)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- Choice of  $\delta_{ij}^{(f)}$  Set  $\delta_{ij}^{(f)} = 0$  if
  - - x<sub>if</sub> or x<sub>if</sub> is missing
    - $x_{if} = x_{if} = 0$  and f is asymmetric binary
  - Set  $\delta_{ii}^{(f)} = 1$  otherwise

#### **Attributes of Mixed Type**

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

Choice of d<sub>ij</sub><sup>(f)</sup>

when f is binary or nominal:

 $d_{ij^{\left(f\right)}}=0~\text{ if }x_{if}=x_{jf}$  ,  $d_{ij^{\left(f\right)}}=1~\text{otherwise}$ 

- when f is numeric: use the normalized distance
- when f is ordinal

• Compute ranks 
$$r_{if}$$
 and  $Z_{if} = \frac{r_{if} - 1}{M_f - 1}$ 

Treat z<sub>if</sub> as interval-scaled

# **Cosine Similarity**

 A document can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

| Document  | team | coach | hockey | base ball | soccer | penalty | score | win | loss | season |
|-----------|------|-------|--------|-----------|--------|---------|-------|-----|------|--------|
| Document1 | 5    | 0     | 3      | 0         | 2      | 0       | 0     | 2   | 0    | 0      |
| Document2 | 3    | 0     | 2      | 0         | 1      | 1       | 0     | 1   | 0    | 1      |
| Document3 | 0    | 7     | 0      | 2         | 1      | 0       | 0     | 3   | 0    | 0      |
| Document4 | 0    | 1     | 0      | 0         | 1      | 2       | 2     | 0   | 3    | 0      |

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Issue: very long and sparse
- Treat documents as vectors, and compute a cosine similarity

# **Cosine Similarity**

Cosine measure: If x and y are two vectors (e.g., term-frequency vectors), then

$$\cos(x, y) = (x \bullet y) / ||x|| ||y||$$

where

- indicates vector dot product,  $x \cdot y = \sum_{i=1}^{p} x_i y_i$ ||x||: the L2 norm (length) of vector  $\mathbf{x}^{i=1} ||x|| = \sqrt{x_1^2 + x_2^2 + ... + x_p^2}$
- Remark: when attributes are binary valued:
  - indicates the number of shared features
  - ||x|| ||y|| is the geometric mean between the number of features of x and the number of features of y: sqrt(a) \* sqrt(b) = sqrt(a \* b)
  - cos (x, y) measures relative possession of common features

# **Example: Cosine Similarity**

- $\cos(x, y) = (x \bullet y) / ||x|| ||y||$
- Ex: Find the **similarity** between documents x and y.
  - $\mathbf{x} = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$  $\mathbf{y} = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$
  - x y = 5\*3+0\*0+3\*2+0\*0+2\*1+0\*1+2\*1+0\*0+0\*1== 25
  - $||x|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = 6.481$
  - $||y|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5} = 4.12$

 $\cos(x, y) = 25 / (6.481 * 4.12) = 0.94$ 

#### References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2<sup>nd</sup> ed., Graphics Press, 2001
- C. Yu et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009