
Università degli Studi di Milano
Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 03 : 09/10/2013

Data Mining: Concepts and Techniques

(3rd ed.)

— Chapter 3 —

Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign &
Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview

 - Data Quality
 - Major Tasks in Data Preprocessing

- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

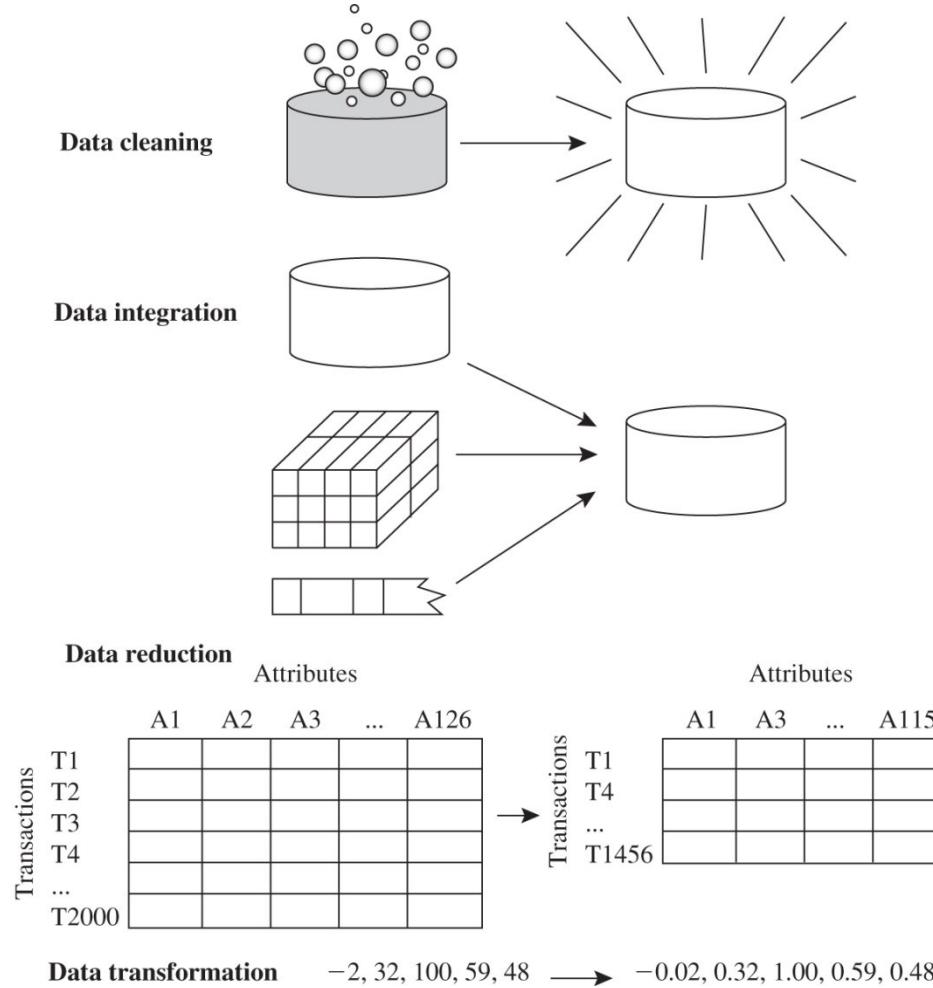
Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

- **Data cleaning**
 - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- **Data integration**
 - Integration of multiple databases, data cubes, or files
- **Data reduction**
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- **Data transformation and data discretization**
 - Normalization
 - Concept hierarchy generation

Major Tasks in Data Preprocessing



Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Cleaning

- Data in the Real World Is Dirty (instrument faulty, human or computer error, transmission error ...)
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., *Occupation*=“ ” (missing data)
 - noisy: containing noise, errors, or outliers
 - e.g., *Salary*=“-10” (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - *Age*=“42”, *Birthday*=“03/07/2010”
 - Was rating “1, 2, 3”, now rating “A, B, C”
 - discrepancy between duplicate records
 - Intentional (e.g., *disguised missing data*)
 - Jan. 1 as everyone’s birthday?

Incomplete (Missing) Data

- Data is not always available
 - E.g., no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data

How to Handle Missing Data?

- Ignore the tuple (e.g. when class label is missing and doing classification) → simple, but loss of data
- Fill in the missing value manually
→ tedious + infeasible?
- Fill in it automatically with
 - global const (e.g., “unknown”) → a new class?!
 - the attribute mean or median
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

- **Noise**: random error or variance in a measured variable
- **Incorrect attribute values** may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- **Other data problems** which require data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

- Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

- Data discrepancy detection
 - Use knowledge about data → use **metadata** (e.g., domain, range, dependency, distribution) i.e. **know your data!**
 - Check field overloading
 - Check uniqueness rule, consecutive rule and null rule
 - Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers) → already “data mining”
- Data migration and integration
 - Data migration tools: allow transformations to be specified
 - ETL (Extraction/Transformation>Loading) tools (GUI)
- Integration of the two processes
 - Iterative and interactive (e.g., Potter's Wheels)

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Integration

- **Data integration:**
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id \equiv B.cust-#
 - Integrate metadata from different sources
- **Entity identification problem:**
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - *Object identification:* The same attribute or object may have different names in different databases
 - *Derivable data:* One attribute may be a “derived” attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by *correlation analysis* and *covariance analysis*

Correlation Analysis (Nominal Data)

■ **χ^2 (chi-square) test**

- Attribute A has c values ($a_1 \dots a_c$)
- Attribute B has r values ($b_1 \dots b_r$)
- Build a contingency table $[o_{ij}]$, having 1 row for each a_i , one col for each b_j
- o_{ij} is the observed frequency (number of tuples having value a_i for A and b_j for B)

$$e_{ij} = \frac{\text{count}(A=a_i) \times \text{count}(B=b_j)}{\text{num. data tuples}}$$

$$\chi^2 = \sum_i \sum_j \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

Correlation Analysis (Nominal Data)

- The larger the χ^2 value, the more likely the variables are related
- The cells that contribute the most to the χ^2 value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

- χ^2 (chi-square) calculation (numbers in parenthesis are e_{ij})

$$\chi^2 = \frac{(250-90)^2}{90} + \frac{(50-210)^2}{210} + \frac{(200-360)^2}{360} + \frac{(1000-840)^2}{840} = 507.93$$

- 2x2 table = 1 degree of freedom
- From chi-square distribution, the value for rejecting hypothesis of independency at 0.001 significance level is 10.828 → **strong correlation**

Deg. freedom	1	0.00	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83	
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60		5.99	9.21	13.82	
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25		7.82	11.34	16.27	
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78		9.49	13.28	18.47	
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24		11.07	15.09	20.52	
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64		12.59	16.81	22.46	
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02		14.07	18.48	24.32	
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36		15.51	20.09	26.12	
9	3.32	4.17	5.38		6.39	8.34	10.66	12.24	14.68		16.92	21.67	27.88
1 - Cum. Distr. Funct. = significance level													
10	3.94	4.00	0.10		7.27	9.34	11.78	13.44	15.99		18.31	23.21	29.59
p-val	0.95	0.9	0.8	0.7	0.5	0.3	0.2	0.1		0.05	0.01	0.001	

Covariance (Numeric Data)

- Covariance:
 - Attributes A and B
 - $n \rightarrow$ number of tuples
 - \bar{A} and $\bar{B} \rightarrow$ respective means of A and B
 - σ_A and $\sigma_B \rightarrow$ the respective standard deviation of A and B

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^n (a_i - \bar{A})(b_i - \bar{B})}{n}$$

$$Cov(A, B) = \frac{\sum_{i=1}^n (a_i b_i)}{n} - \bar{A} \cdot \bar{B}$$

Covariance (Numeric Data)

- Covariance:

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^n (a_i - \bar{A})(b_i - \bar{B})}{n}$$

- **Positive covariance:** If $Cov_{A,B} > 0$, then A and B both tend to be larger than their expected values.
- **Negative covariance:** If $Cov_{A,B} < 0$ then if A is larger than its expected value, B is likely to be smaller than its expected value.
- **Independence:** $Cov_{A,B} = 0$ but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) a covariance of 0 does imply independence

Co-Variance: An Example

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^n (a_i - \bar{A})(b_i - \bar{B})}{n}$$

- It can be simplified in computation as

$$Cov(A, B) = \sum_{i=1}^n (a_i b_i) / n - \bar{A} \cdot \bar{B}$$

- Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
 - $E(A) = (2 + 3 + 5 + 4 + 6) / 5 = 20/5 = 4$
 - $E(B) = (5 + 8 + 10 + 11 + 14) / 5 = 48/5 = 9.6$
 - $Cov(A, B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14) / 5 - 4 \times 9.6 = 4$
- Thus, A and B rise together since $Cov(A, B) > 0$.

Correlation Analysis (Numeric Data)

- Correlation coefficient (also called **Pearson's product moment coefficient**)
 - Attributes A and B
 - $n \rightarrow$ number of tuples
 - \bar{A} and $\bar{B} \rightarrow$ respective means of A and B
 - σ_A and $\sigma_B \rightarrow$ the respective standard deviation of A and B

$$\rho_{X,Y} = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

$$r_{A,B} = \frac{\sum_{i=1}^n (a_i - \bar{A})(b_i - \bar{B})}{n \sigma_A \sigma_B}$$

Correlation Analysis (Numeric Data)

- Correlation coefficient (also called **Pearson's product moment coefficient**)

$$r_{A,B} = \frac{\sum_{i=1}^n (a_i - \bar{A})(b_i - \bar{B})}{n\sigma_A \sigma_B}$$

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

Correlation (viewed as linear relationship)

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, A and B, and then take their dot product

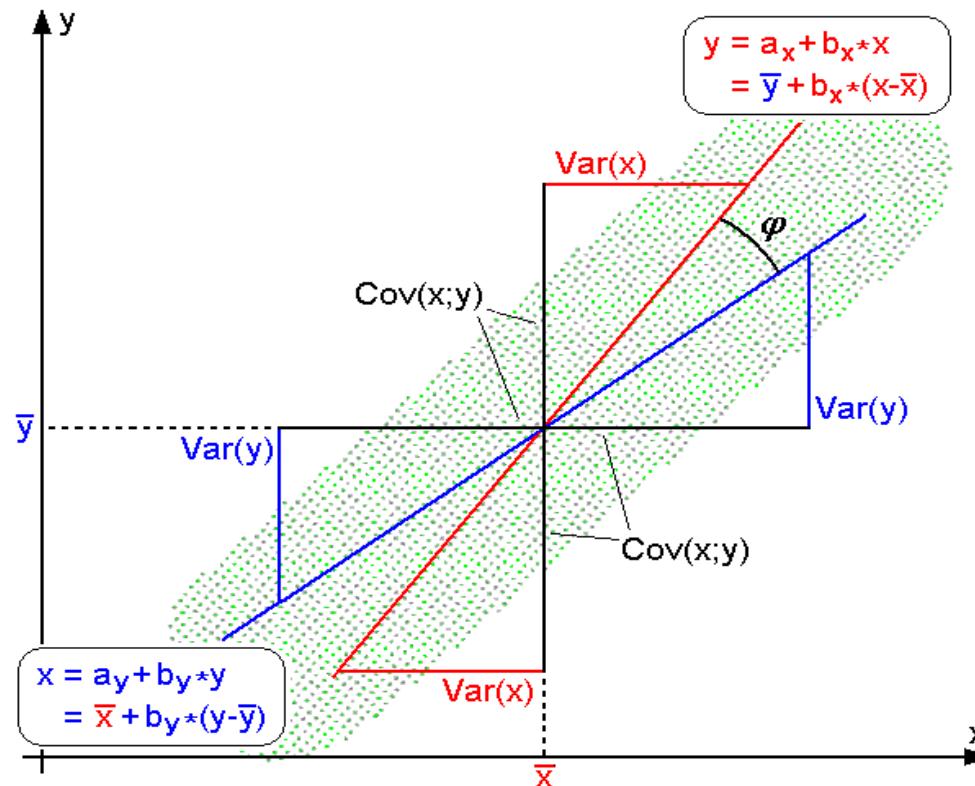
$$a'_k = (a_k - \text{mean}(A)) / \text{std}(A)$$

$$b'_k = (b_k - \text{mean}(B)) / \text{std}(B)$$

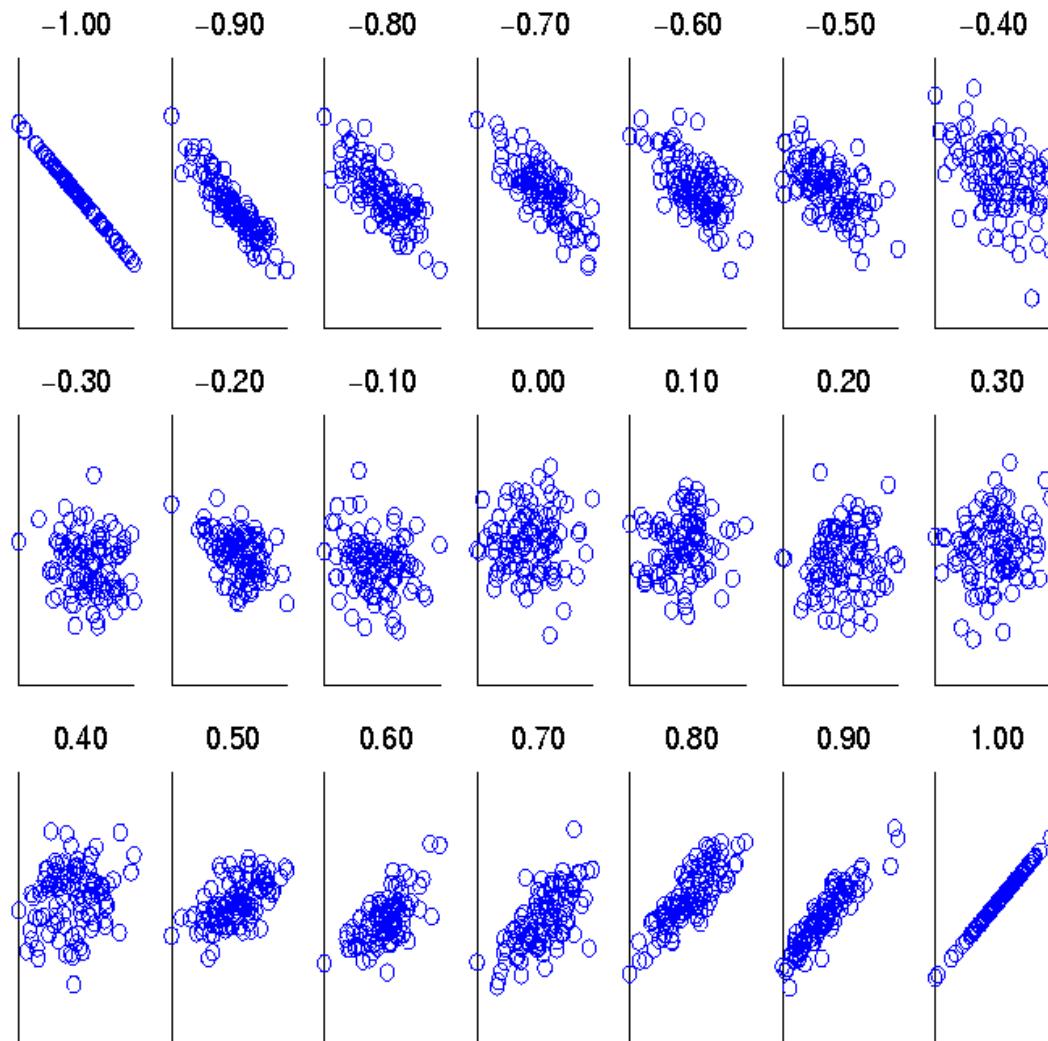
$$\text{correlation}(A, B) = A' \bullet B'$$

Correlation Analysis (Numeric Data)

- Geometrically: the cosine of the angle between the two vectors, after centering (or possible regression lines)

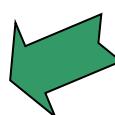


Visually Evaluating Correlation



**Scatter plots
showing the
similarity from
-1 to 1.**

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction 
- Data Transformation and Data Discretization
- Summary

Data Reduction Strategies

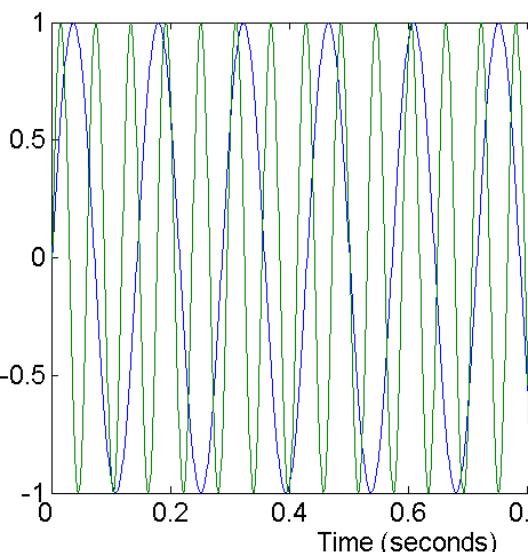
- **Data reduction:** Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? Computational issues in big data!
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression

Data Reduction 1: Dimensionality Reduction

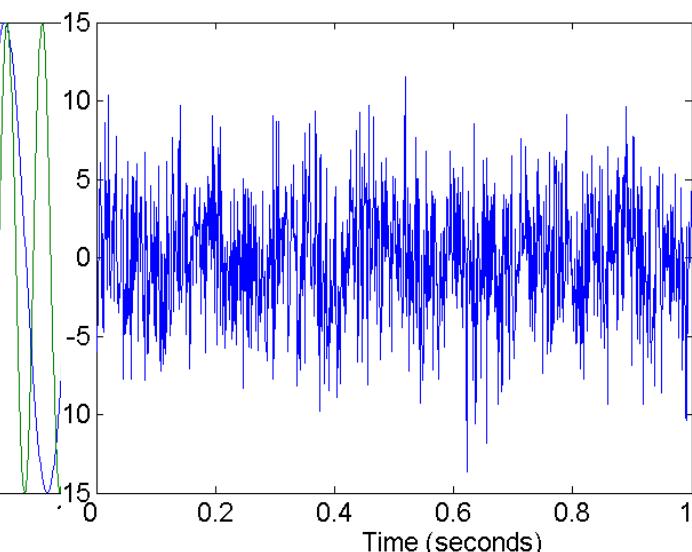
- **Curse of dimensionality**
 - When dimensionality increases, data becomes increasingly sparse
 - Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
 - The possible combinations of subspaces will grow exponentially
- **Dimensionality reduction**
 - Avoid the curse of dimensionality
 - Help eliminate irrelevant features and reduce noise
 - Reduce time and space required in data mining
 - Allow easier visualization
- **Dimensionality reduction techniques**
 - Wavelet transforms
 - Principal Component Analysis
 - Supervised and nonlinear techniques (e.g., feature selection)

Mapping Data to a New Space

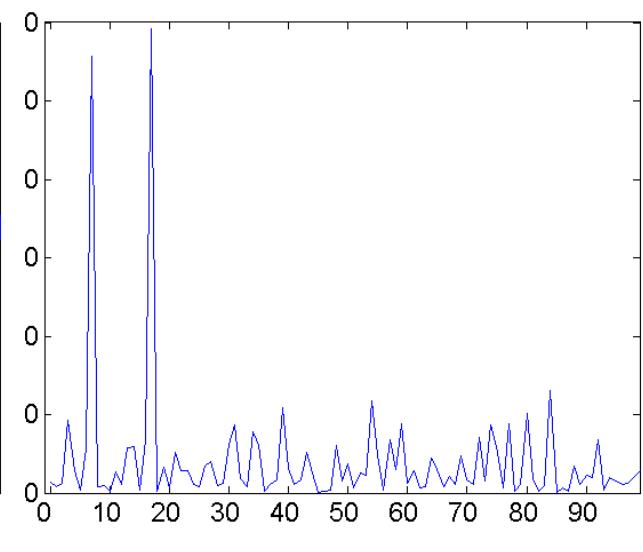
- Fourier transform
- Wavelet transform



Two Sine Waves



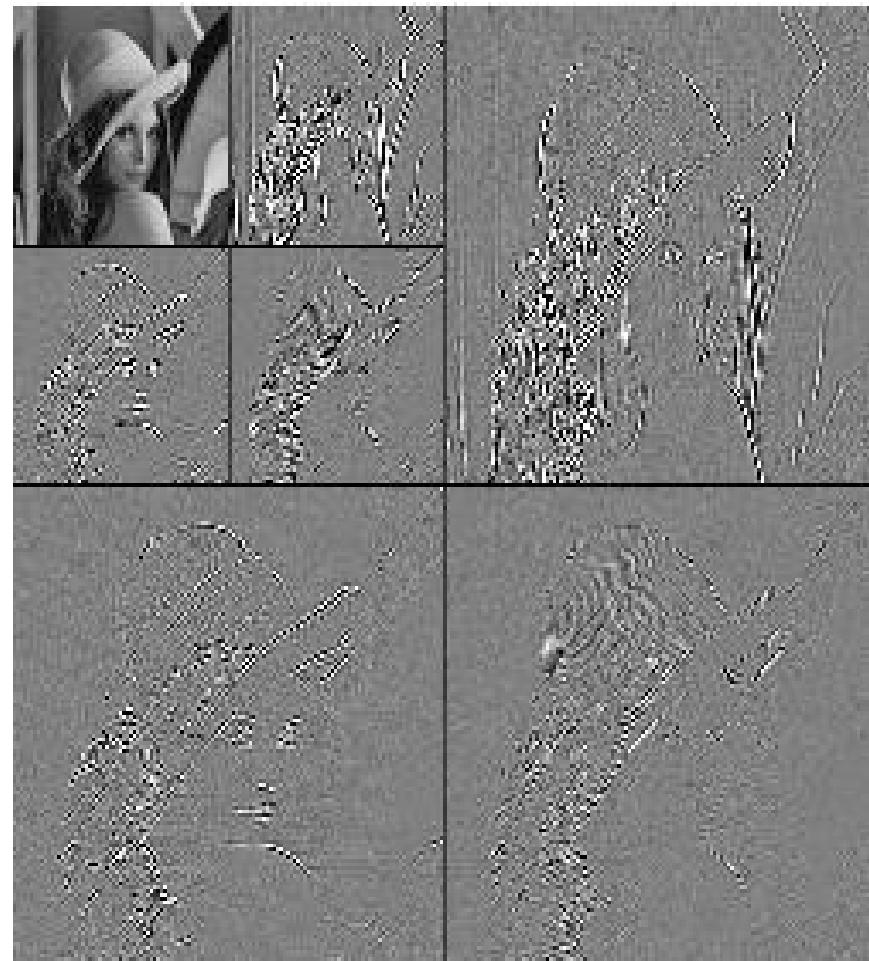
Two Sine Waves + Noise



Frequency

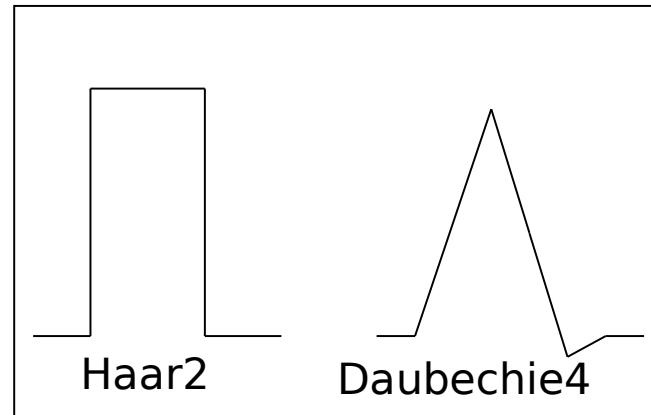
What Is Wavelet Transform?

- Decomposes a signal into different frequency subbands
 - Applicable to n-dimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to become more distinguishable
- Used for image compression



Wavelet Transformation

- Discrete wavelet transform (DWT) for linear signal processing, multi-resolution analysis
- Compressed approximation: store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space



Wavelet Transformation

- DWT Algorithm:
 - Length, L , must be an integer power of 2 (padding with 0's, when necessary)
 - Each transform needs to apply 2 functions: smoothing ($s()$), difference ($d()$)
 - Applies $s()$ and $d()$ to pairs of data $(x_{2i}, x_{2i+1}) \rightarrow$ two sets A and D of length $L/2$
 - Applies both $s()$ and $d()$ recursively to A
 - Until reaching the desired length (e.g. 2), obtaining L values (1 value in A , $L-1$ values in D)
 - Select a few values to represent the wavelet coefficients (e.g. the single value in A and k values in D)

Wavelet Decomposition

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- $S = [2, 2, 0, 2, 3, 5, 4, 4]$ can be transformed to
 $S_w = [2^{3/4}, -1^{1/4}, 1/2, 0, 0, -1, -1, 0]$
- $s() = \text{avg}(); d() = \text{diff} / 2$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

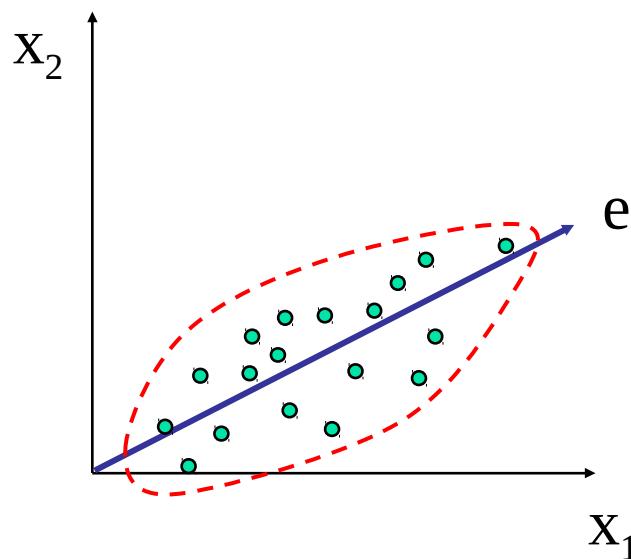
Resolution	Averages	Detail Coefficients
8	$[2, 2, 0, 2, 3, 5, 4, 4]$	
4	$[2, 1, 4, 4]$	$[0, -1, -1, 0]$
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[2\frac{3}{4}]$	$[-1\frac{1}{4}]$

Why Wavelet Transform?

- Use hat-shape filters
 - Emphasize region where points cluster
 - Suppress weaker information in their boundaries
- Effective removal of outliers
 - Insensitive to noise, insensitive to input order
- Multi-resolution
 - Detect arbitrary shaped clusters at different scales
- Efficient
 - Complexity $O(N)$
- Only applicable to low dimensional data

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- How?
 - find $k (< n)$ orthogonal vectors that “best” represent data
 - project data into the space defined by these vectors
- Popular choice: eigenvectors



PCA Algorithm (Steps)

- Given N data vectors from n -dimensions, find $k \leq n$ orthogonal vectors (*principal components*) that can be best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute k orthonormal (unit) vectors, i.e., *principal components*
 - Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing “significance” or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance

PCA Algorithm (remarks)

- Using the strongest principal components, it should be possible to rebuild a good approximation of original data
- Works for numeric data only
- unlike attribute subset selection, **new attributes are found**