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Chapter 2: Getting to Know Your
Data

= Data Objects and Attribute Types
= Basic Statistical Descriptions of Data
= Measuring Data Similarity and Dissimilarity

= Summary



Types of Data Sets

Record
= Relational records

= Data matrix, e.g., numerical matrix,
crosstabs

= Document data: text documents:
term-frequency vector

* Transaction data
Graph and network
=  World Wide Web
= Social or information networks
= Molecular Structures
Ordered TID Items
= Video data: sequence of images Bread, Coke, Milk

=  Temporal data: time-series
P Beer, Bread

* Sequential Data: transaction - -
Beer, Coke, Diaper, Milk

sequences
Beer, Bread, Diaper, Milk

Ul| & W N| =

= Genetic sequence data
Spatial, image and multimedia: Coke, Diaper, Milk

= Spatial data: maps
* |Image data: .bomp
= Video data: .avi



Important Characteristics of
Structured Data

= Dimensionality

= Curse of dimensionality

(the volume of the space grows fast with the number
of dimensions, and the available data becomes sparse)

= Sparsity
= Only presence counts
= Resolution

" Patterns depend on the scale
= Distribution
= Centrality and dispersion



Data Objects

Data sets are made up of data objects.

A data object represents an entity.

Examples:

" sales database: customers, store items, sales

* medical database: patients, treatments

" university database: students, professors, courses

Also called samples , examples, instances, data
points, objects, tuples.

Data objects are described by attributes.
Database rows -> data objects; columns ->attributes.



Attributes

= Attribute (or dimensions, features,
variables): a data field, representing a
characteristic or feature of a data object.

"= E.g., customer ID, name, address
= Types:
= Nominal
= Binary
= Ordinal
= Numeric: quantitative
" Interval-scaled
= Ratio-scaled



Attribute Types

= Nominal: cateqgories, states, or “names of things”
= Hair color = {auburn, black, blond, brown, grey, red,

white}
= marital status, occupation, ID numbers, zip codes
= Binary

= Nominal attribute with only 2 states (0 and 1)

= Symmetric binary: both outcomes equally important
= e.g., gender

= Asymmetric binary: outcomes not equally important.
" e.g., medical test (positive vs. negative)

= Convention: assign 1 to most important outcome (e.q.,
HIV positive)

= Ordinal

= Values have a meaningful order (ranking) but magnitude
between successive values is not known.

= Sjze = {small, medium, large}, grades, army rankings




Numeric Attribute Types

= Quantity (integer or real-valued)
* Interval

= Measured on a scale of equal-sized units
= Values have order
= E.g., temperature in C°or F°, calendar dates
= No true zero-point
= Ratio
" I[nherent zero-point

= We can speak of values as being an order of
magnitude larger than the unit of measurement
(10 K® is twice as high as 5 K°).

" e.g., temperature in Kelvin, length, counts,
monetary quantities



Discrete vs. Continuous
Attributes (ML view)

= Discrete Attribute

= Has only a finite or countably infinite set of
values

= E.g., zip codes, profession, or the set of words
In a collection of documents

= Sometimes, represented as integer variables

= Note: Binary attributes are a special case of
discrete attributes

= Continuous Attribute
= Has real numbers as attribute values
* E.g., temperature, height, or weight

= Practically, real values can only be measured
and represented using a finite number of digits

= Continuous attributes are typically represented
as floating-point variables
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Basic Statistical Descriptions of
Data

® Motivation

B To better understand the data: central tendency,
variation and spread

B Data dispersion characteristics
® median, max, min, quantiles, outliers, variance...
B Numerical dimensions correspond to sorted intervals

® Data dispersion: analyzed with multiple
granularities of precision

® Boxplot or quantile analysis on sorted intervals
B Dispersion analysis on computed measures
® Folding measures into numerical dimensions

® Boxplot or quantile analysis on the transformed
cube 12




Measuring the Central Tendency

® Mean (algebraic measure) (sample vs. population): »_ % i N
Note: n is sample size and N is population size. n 4= :
® Weighted arithmetic mean i W. X
B Sensitive to outliers: trimmed mean (chopping | = _
extreme values) z w,
B Median: =
e age frequency
® Middle value if odd number of values, or 1-5 200
average of the middle two values otherwise 6-15 450
® Estimated by interpolation (for grouped data): 16-20 300
21-50 1500
n 51-80 700
7 (2. freq) 81-110 44

median=L+| ) width

f r eqmedian

Sum of freq. of intervals preceding the median

Lower boundary of the median interval

# values in the dataset Freq. of the median interval
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Measuring the Central Tendency

® Mode

® Value that occurs most frequently in the data

® Unimodal, bimodal, trimodal

B Empirical formula for moderately skewed:
Employed Salary

30
36
47
50
52
52
56
60
63
70
70
110

mean —mode ~3 X  mean— median |

Mean: 58

Median: (524+56)/2 = 54
Mode: 52 and 70 (bimodal)
Midrange: (30+110) /2 =70

© 00 N oo o b W N P

e =
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Symmetric vs.
—.Skewed Data____

= Median, mean and mode of
symmetric, positively and
negatively skewed data

Mode Mean
1 1 1

positively
skewed

: Vo
Median

Mean
Median
Mode

negatively
skewed

Mean Mode
1 1 1




Measuring the Dispersion of
Data

®  Quartiles, outliers and boxplots
® Quartiles: Q, (25t percentile), Qs (75t percentile)
® [nter-quartile range: IQR = Q3-Q;
® Five number summary: min, Q,, median, Qs;, max (nice for
skewed distributions)

® Boxplot: ends of the box are the quartiles; median is marked; add
whiskers, and plot outliers individually

® Qutlier: usually, a value higher/lower than 1.5 x IQR
® Variance and standard deviation (sample: s, population: o)

® Variance: (algebraic, scalable computation)

2_1” —5 )= 2_1 ” Z:ﬁn - 2:ﬁn 22
s—n;(xi X )= nz’ ng‘ o N;(X’ ) N;xl U

= i=1
B Standard deviation s (or o) is the square root of variance

16



Boxplot Analysis

= Five-number summary of a distribution

Lower Upper
Lower Ouartile Ouartile Upper

- M|n|mum, Ql, MEdIan, QB, MaX|mum Extr|’eme Median Extreme

= Boxplot

= Data is represented with a box  ———+————+——+——++++4++]
o] 10 20 a0 40 S0 G Foo80 90 100
"= The ends of the box are at the first and
third quartiles, i.e., the height of the box T~

is IQR T

= The median is marked by a line within i R
the box A T =P

= Whiskers: two lines outside the box
extended to Minimum and Maximum L B

= Qutliers: points beyond a specified R
outlier threshold, plotted individually —

17



: 3-D

ispersion

Visualization of Data D

Boxplots




Properties of Normal Distribution
Curve

" The normal (distribution) curve

" From p-0 to u+0: contains about 68% of the
measurements (U: mean, o: standard deviation)

" From u-20 to u+20: contains about 95% of it
" From u-30 to p+30: contains about 99.7% of it

68% 95% 99.7%

+3
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Graphic Displays of Basic Statistical
Descriptions

® Boxplot: graphic display of five-number summary

B Histogram: x-axis are values, y-axis repres.
frequencies

® Quantile plot: each value x; is paired with f; indicating

that approximately 100 f;% of data are < x;

® Quantile-quantile (q-q) plot: graphs the quantiles of
one univariant distribution against the corresponding
quantiles of another

B Scatter plot: each pair of values is a pair of
coordinates and plotted as points in the plane -



Histogram Analysis

Histogram: Graph display of
tabulated frequencies, shown as bars

It shows what proportion of cases fall
into each of several categories

Differs from a bar chart in that it is
the area of the bar that denotes the
value, not the height as in bar
charts, a crucial distinction when the
categories are not of uniform width

The categories are usually specified

as non-overlapping intervals of some
variable. The categories (bars) must
be adjacent

21



Histograms Often Tell More than
Boxplots

= The two histograms
shown in the left
may have the same
boxplot
representation

" The same values
for: min, Q1,
median, Q3, max

= But they have

rather different data
distributions

22



Quantile Plot

= Displays all of the data (allowing the user to
assess both the overall behavior and unusual
occurrences)

= Plots quantile information

" For a data x; data sorted in increasing order, f;
Indicates that approximately 100 7% of the data

are b&(!ow or equal to the value x;
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Quantile-Quantile (Q-Q) Plot

Graphs the quantiles of one univariate distribution against
the corresponding quantiles of another

View: Is there is a shift in going from one distribution to
another?

Example shows unit price of items sold at Branch 1 vs.
Branch 2 for each quantile. Unit prices of items sold at
Branch 1 tend to be lower than those at Branch 2.

120 -
110
100 -

D
o
|

Branch 2 (unit price $)
%
3
]

40 50 60 70 80 90 100 110 120

Branch 1 (unit price $)
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Scatter plot

*" Provides a first look at bivariate data to see
clusters of points, outliers, etc

= Each pair of values is treated as a pair of
coordinates and plotted as points in the plane

700

600 - o Yotq .
* .0

500 ¢ % »* o
g 400 '
£ 300 . ¢ ¢ 5 ¢
2 *% R *
= 200 -

100

O | | | | | | |
0 20 40 60 80 100 120 140

Unit price ($)
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Positively and Negatively Correlated

= The left half fragment is positively
correlated

= The right half is negative correlated

26
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wall

depth

Scatterplot Matrices

lang.,

DT 0—

el gy T

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k)
scatterplots]
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29



Similarity and Dissimilarity

= Similarity

= Numerical measure of how alike two data objects
are

= Value is higher when objects are more alike
= Often falls in the range [0,1]
= Dissimilarity (e.qg., distance)

= Numerical measure of how different two data
objects are

= Lower when objects are more alike
= Minimum dissimilarity is often O
= Upper limit varies
= Proximity refers to a similarity or dissimilarity

30



Data Matrix and Dissimilarity

Matrix
= Data matrix
" n data points .X11 e Xy e Xy,
(objects) with p
dimensions D
(features) -
"= Two modes X e Xpp e X
= Dissimilarity matrix )
= n data points, but d(21) 0
registers only the d(3,1) d(32) 0
distance : : :
= A triangular matrix d(n,1) d(n.2) 0

= Single mode

31



Proximity Measures for Binary
Attributes

coherence(t, j) = —

Object

A contingency table for binary data _ i 0 —

E 1 q T q+r

g s t 8§41

sum qg+s r+1 p
Distance measure for symmetric bin. r+s
vars (0 and 1 equally important): d(Z? .7) = g+r+s+t
Distance measure for asymm. bin. vars .
(1 more important - e.qg. diseases): d(z, 7) = g+71+ s
Jaccard coefficient (similarity measure
for asymmetric binary variables): SimJaccard(?:a j) — q
| q+7r—+s

Note: Jaccard coefficient is the same as “coherence”:

sup(i, j) q

sup(i) + sup(j) — sup(s,5) . (¢q+7r)+(g+s)—gq

32



Dissimilarity between Binary

Variables
= Example
Name | Gender | Fever | Cough |Test-1 | Test-2 |Test-3 | Test-4
Jack |M Y N P N N N
Mary |F Y N P N P N
Jim |M Y P N N N N

= Gender is a symmetric attribute (let's discard it!)
* The remaining attributes are asymmetric binary
" Let the valuesY and P be 1, and the value N O

+ 1
d(jack, mary) = m =0.33

1+1
d(jack, jim) = — = 0.67
LX) — 1+ 2 —
d(jim,mary) = m =0.75

33



Proximity Measures for Nominal
Attributes

= Can take 2 or more states, e.qg., red, yellow,
blue, green (generalization of a binary
attribute)

= Method 1: Simple matching

" m: # of matches, p: total # of variables

d(i,j)=+—=
= Method 2: Use a large number of binary

attributes

= creating a new binary attribute for each of
the M nominal states

34



Proximity on Numeric Data: Minkowski
Distance

= Minkowski distance: A popular distance measure

dfi, j) = {/\fﬂﬂ — 2P+ |z — Tt 4 4 |2 — 3

where | = (X1, Xi2, ..., X;p) @and J = (X1, Xj2, ..., Xjp) @re two
p-dimensional data objects, and h is the order (the
distance so defined is also called L-h norm)

= Properties
= d(i,j) >0ifi=j,and d(i, i) = 0 (Positive definiteness)
= d(i, j) =d(, 1) (Symmetry)
" d(i, j) =d(i, k) + d(k, j) (Triangle Inequality)

= A distance that satisfies these properties is a metric

35



Special Cases of Minkowski Distance

= h=1. Manhattan (city block, L, norm) distance

= E.g., the Hamming distance: the number of bits that are
different between two binary vectors

d(i’l) X _X1‘+|X _X2‘+"°+‘Xip_xjp‘

= h=2: (L, norm) Euclidean distance

d(i’j):\/(‘Xil_Xj1‘2+‘Xi2_Xj2‘2+”'+|Xip_xjp 2)

" h - . “supremum” (L. NOrm, L, norm) distance.

= This is the maximum difference between any component
(attribute) of the vectors

P %
d(i, j) = lim (Z [Ty — ij|h’) = Hl%x [Zip —2jrl
=1

36



Example: Minkowski Distance




Standardizing Numeric Data

= Z-score: Z= ¥

= X: raw data, 4: mean of the population, o: standard deviation

" the distance between the raw score and the population mean in
units of the standard deviation

<0 when the raw score is below the mean, >0 when above
= An alternative way: Calculate the mean absolute deviation

_1(
Sf_E ‘le_mf‘+‘x2f_mf‘+'°'+‘an_mf’)
where

m, = *(x1f+x2f+...+xnf).

= standardized measure (z-score): Z.. =

mean absolute deviation is more robust than std dev

38



Ordinal Variables

= An ordinal variable can be discrete or continuous
= Order is important, e.qg., rank
= Can be treated like interval-scaled

" replace x;; by their rank r, D{L...,Mf}

= map (hormalize) the range of each variable onto
[0, 1] by replacing x;; by

= compute the dissimilarity using distance
measures for numeric attributes

39



Attributes of Mixed Type

= A database may contain all attribute types

= Nominal, symmetric binary, asymmetric binary,
numeric, ordinal

= One may use a weighted formula to combine their

effects 50 o)yl
d(i’j): )
2 t=10;
= Choice of 6
- Set6 —() It

= X OF X;; IS missing
= Xi = X; = 0 and f is asymmetric binary
= Set 6.. —1 otherwise
7]
40



Attributes of Mixed Type

sp 5(NdH

ale -&-w*

= Choice of d;»
" when f is binary or nominal;
d;® =0 if xi= X, dy» = 1 otherwise
= when f Is numeric: use the normalized distance
" when f is ordinal

[] . _
Compute ranks ry and Z, = m

* Treat z; as interval-scaled

41



Cosine Similarity

= A document can be represented by thousands of attributes,
each recording the frequency of a particular word (such as
keywords) or phrase in the document.

Document  teamcoach hockey baseball soccer penalty score win loss season

Document1 5 0 & 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 i 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 /. 0 3 0

= Other vector objects: gene features in micro-arrays, ...

= Applications: information retrieval, biologic taxonomy, gene
feature mapping, ...
= |ssue: very long and sparse

= Treat documents as vectors, and compute a cosine similarity

42



Cosine Similarity

Cosine measure: If x andy are two vectors (e.g., term-frequency
vectors), then

cos(x, y) = (x* y) /|Ix]| |I¥l

where

" ¢ indicates vector dot product,

= ||x]|: the L2 norm (length) of vector x ||x||z¢xf+x§+...+xi,

Remark: when attributes are binary valued:

" o indicates the number of shared features

= |Ix]| |Iyl| is the geometric mean between the number of
features of x and the number of features of y:

sqrt(a) * sqrt(b) = sqrt(a * b )
= cos (X, Y) measures relative possession of common features

43



Example: Cosine Similarity

" cos(x, y) = (x*y)/lIx|] |lyll

= Ex: Find the similarity between documents x and y.

x= (5,0,3,0,2,0,0, 2,0, 0)
y=1(302060110101)
X ¢y = 5*¥3+0*%0+3*2+0*0+2*1+0*1+0*1+2*14+0*0+0*1=
= 25
||X||=(5*5+O*O+3*3+0*0+2*2_|_O>I<O_|_O>|<O_|_2>|<2+O*O+O*O)O.5=
= 6.481

lyll= (3*34+0%0+2*%2+0%0+1*1+1*1+0*0+1*1+0%0+1*1)%5=
= 4.12

cos(x, y) =25/(6.481 *4.12) = 0.94

44
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