
Università degli Studi di Milano
Master Degree in Computer Science

Information Management 
course

Teacher: Alberto Ceselli

Lecture 20: 19/12/2012



2

Data Mining: 
 Concepts and Techniques

 (3rd ed.)

— Chapter 10 —

Jiawei Han, Micheline Kamber, and Jian Pei

University of Illinois at Urbana-Champaign &

Simon Fraser University

©2011 Han, Kamber & Pei.  All rights reserved.



3

Cluster Analysis: Basic Concepts and 
Methods

 Cluster Analysis: Basic Concepts

 Partitioning Methods

 Hierarchical Methods

 Density-Based Methods

 Grid-Based Methods

 Evaluation of Clustering

 Summary
3



Assessing Clustering Tendency

 Assess if non-random structure exists in the data by measuring the 
probability that the data is generated by a uniform data distribution

 Test spatial randomness by statistic test: Hopkins Static
 Given a dataset D regarded as a sample of a random variable o, 

determine how far away o is from being uniformly distributed in 
the data space

 Sample n points, p1, …, pn, uniformly from the feature space of D. 
 For each pi, find its nearest neighbor in D:  yi = min{dist (pi, v)} 
where v in D

 Sample n points, q1, …, qn, uniformly from D.  For each qi, find its 
nearest neighbor in D – {qi}:  xi = min{dist (qi, v)} where v in D 
and v ≠ qi

 Calculate the Hopkins Statistic:

 If D is uniformly distributed, ∑ xi and ∑ yi will be close to each 
other and H is close to 0.5.  If D is clustered, H is close to 1
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Determine the Number of Clusters

 Empirical method
 # of clusters ≈sqrt(n/2) for a dataset of n points

 Elbow method
 Use the turning point in the curve of sum of within cluster 

variance w.r.t  the # of clusters
 Cross validation method

 Divide a given data set into m parts
 Use m – 1 parts to obtain a clustering model
 Use the remaining part to test the quality of the clustering

 E.g., For each point in the test set, find the closest 
centroid, and use the sum of squared distance between 
all points in the test set and the closest centroids to 
measure how well the model fits the test set

 For any k > 0, repeat it m times, compare the overall 
quality measure w.r.t. different k’s, and find # of clusters 
that fits the data the best 5



Measuring Clustering Quality

 Two methods: extrinsic vs. intrinsic  

 Extrinsic: supervised, i.e., the ground truth (ideal 
clustering, e.g. built by domain experts) is available

 Compare a clustering against the ground truth using 
certain clustering quality measure

 Ex. BCubed precision and recall metrics

 Intrinsic: unsupervised, i.e., the ground truth is 
unavailable

 Evaluate the goodness of a clustering by considering 
how well the clusters are separated, and how 
compact the clusters are

 Ex. Silhouette coefficient
6



Measuring Clustering Quality: Extrinsic 
Methods 

 Clustering quality measure: Q(C, Cg), for a clustering C 
given the ground truth Cg. 

 Q is good if it satisfies the following 4 essential criteria
 Cluster homogeneity: the purer, the better
 Cluster completeness: should assign objects belong 

to the same category in the ground truth to the same 
cluster

 Rag bag: putting a heterogeneous object into a pure 
cluster should be penalized more than putting it into 
a rag bag (i.e., “miscellaneous” or “other” category)

 Small cluster preservation: splitting a small category 
into pieces is more harmful than splitting a large 
category into pieces
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Measuring Clustering Quality: Intrinsic 
Methods 

 Silhouette coefficient: similarity metric between objects 
in the data set

 Let C1 .. Ck be the clusters
 For each object o in a certain cluster t

 let a(o) be the average distance between o and 
the objects of Ct

 let bl(o) be the average distance between o and 
the objects of cluster l; then b(o) = minl ≠ t bl(o)

 The silhouette coefficient is defined as follows:
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s (o)=
b (o)−a(o)

max (a (o) , b(o))
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Summary
 Cluster analysis groups objects based on their similarity  and has wide 

applications
 Measure of similarity can be computed for various types of data
 Clustering algorithms can be categorized into partitioning methods, 

hierarchical methods, density-based methods, grid-based methods, and 
model-based methods

 K-means and K-medoids algorithms are popular partitioning-based clustering 
algorithms

 Birch and Chameleon are interesting hierarchical clustering algorithms, and 
there are also probabilistic hierarchical clustering algorithms

 DBSCAN, OPTICS, and DENCLU are interesting density-based algorithms
 STING and CLIQUE are grid-based methods, where CLIQUE is also a subspace 

clustering algorithm
 Quality of clustering results can be evaluated in various ways 
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