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Classification: A Mathematical 
Mapping

 Classification: predicts categorical class labels
 E.g., Personal homepage classification

 xi = (x1, x2, x3, …), yi = +1 or –1

 x1 : # of word “homepage”

 x2 : # of word “welcome”
 Mathematically, 

 x ∈ X = ℜn, y ∈ Y = {+1, –1}, 
 We want to derive a function f: X  Y 

 Linear Classification
 Binary Classification problem
 Data above the red line belongs to class ‘x’
 Data below red line belongs to class ‘o’
 Examples: SVM, Perceptron, Probabilistic Classifiers
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Perceptron: finding a separating 
hyperplane

Hyperplane: wx = b
 Mathematical model:

find w

s.t. wxk – b >= 0 (forall k: yk = 1)
wxk – b < 0 (forall k: yk = -1)
|| w || = 1

 Mathematical model:

minimize
 

s.t. wxk - b + dk >= 0k (forall k: yk = 1)
wxk – b – dk < 0     (forall k: yk = -1)
|| w || = 1
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SVM—Support Vector Machines

 A relatively new classification method for both 
linear and nonlinear data

 It uses a nonlinear mapping to transform the 
original training data into a higher dimension

 With the new dimension, it searches for the linear 
optimal separating hyperplane (i.e., “decision 
boundary”)

 With an appropriate nonlinear mapping to a 
sufficiently high dimension, data from two classes 
can always be separated by a hyperplane

 SVM finds this hyperplane using support vectors 
(“essential” training tuples) and margins (defined 
by the support vectors)
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SVM—History and Applications

 Vapnik and colleagues (1992)—groundwork from 

Vapnik & Chervonenkis’ statistical learning theory 

in 1960s

 Features: training can be slow but accuracy is high 

owing to their ability to model complex nonlinear 

decision boundaries (margin maximization)

 Used for: classification and numeric prediction

 Applications: 

 handwritten digit recognition, object 

recognition, speaker identification, 

benchmarking time-series prediction tests 
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SVM—General Philosophy

Support Vectors

Small Margin Large Margin
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SVM—When Data Is Linearly 
Separable

m

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training 
tuples associated with the class labels yi

There are infinite lines (hyperplanes) separating the two classes but 
we want to find the best one (the one that minimizes classification 
error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., 
maximum marginal hyperplane (MMH)
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SVM—Linearly Separable

A hyperplane: wx = b 

where w ={w1, w2, …, wn} is a weight vector and b a scalar 

(bias)
 For 2-D it can be written as

w0 + w1 x1 + w2 x2 = 0

 The hyperplane defining the sides of the margin: 

H1: w0 + w1 x1 + w2 x2 ≥ 1    for yi = +1, and

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the 

sides defining the margin) are support vectors
 This becomes a constrained (convex) quadratic optimization 

problem: Quadratic objective function and linear constraints  
Quadratic Programming (QP)  Lagrangian multipliers
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SVM – A QP model

A hyperplane: wx = b 

where w ={w1, w2, …, wn} is a weight vector and b a scalar 

(bias)

 Separating margin: 

 Find an optimal hyperplane (linearly separable):

 Find an optimal hyperplane (general):

D=
2

∥w∥
∥w∥=√∑

i=1

n

(wi)
2

min
1
2
∥w∥2

s.t. y k (w x k−b)⩾1∀ k=1...m

min
1
2
∥w∥

2
+C∑

k=1

m

d k

s.t. y k (w x k−b)+d k⩾1∀ k=1...m

d k⩾0∀ k=1...m
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SVM – A QP model

 Find an optimal hyperplane (general):

 Langrangean (dual) function:

 Derivatives:

min
1
2
∥w∥

2
+C∑

k=1

m

d k

s.t. y k (w x k−b)+d k⩾1∀ k=1...m

d k⩾0∀ k=1...m

L=min
1
2
∥w∥

2
+C∑

k=1

m

d k−∑
k=1

m

αk ( y k (w x k−b)+d k−1)−∑
k=1

m

μk d k

∂ L
∂w

=w−∑
k=1

m

αk y k x k

∂ L
∂b

=∑
k=1

m

αk y k

∂ L
∂d k

=C−αk−μk
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SVM – A QP model

 Langrangean (dual) function:

 Optimality conditions:

 Dual problem: … (blackboard discussion)
 Interpretation of KKT conditions: … (blackboard discussion)

L=min
1
2
∥w∥

2
+C∑

k=1

m

d k−∑
k=1

m

αk ( y k (w x k−b)+d k−1)−∑
k=1

m

μk d k

∂ L
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=w−∑
k=1

m

αk y k x k=0

∂ L
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=∑
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m

αk y k=0

∂ L
∂d k
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Why Is SVM Effective on High Dimensional 
Data?

 The complexity of trained classifier is characterized by the # of 

support vectors rather than the dimensionality of the data

 The support vectors are the essential or critical training examples 

—they lie closest to the decision boundary (MMH)

 If all other training examples are removed and the training is 

repeated, the same separating hyperplane would be found

 The number of support vectors found can be used to compute an 

(upper) bound on the expected error rate of the SVM classifier, 

which is independent of the data dimensionality

 Thus, an SVM with a small number of support vectors can have good 

generalization, even when the dimensionality of the data is high
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SVM—Linearly Inseparable

 Transform the original input data into a higher 
dimensional space

 Search for a linear separating hyperplane in the 
new space

A 1

A 2
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SVM:  Different Kernel 
functions

 Instead of computing the dot product on the 
transformed data, it is math. equivalent to applying a 

kernel function K(Xi, Xj) to the original data, i.e., K(Xi, 

Xj) = Φ(Xi) Φ(Xj) 

 Typical Kernel Functions

 SVM can also be used for classifying multiple (> 2) 
classes and for regression analysis (with additional 
parameters)
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“geometric” Classifiers

 Advantages
 Prediction accuracy is generally high 

 As compared to Bayesian methods – in general
 Robust, works when training examples contain errors
 Fast evaluation of the learned target function

 Bayesian networks are normally slow 
 Criticism

 Long training time
 Difficult to understand the learned function (weights)

 Bayesian networks can be used easily for pattern 
discovery

 Not easy to incorporate domain knowledge
 Easy in the form of priors on the data or 

distributions
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SVM vs. Neural Network

 SVM

 Deterministic algorithm

 Nice generalization 
properties

 Hard to learn – learned in 
batch mode using 
quadratic programming 
techniques

 Using kernels can learn 
very complex functions

 Neural Network
 Nondeterministic 

algorithm
 Generalizes well but 

doesn’t have strong 
mathematical foundation

 Can easily be learned in 
incremental fashion

 To learn complex 
functions—use multilayer 
perceptron (nontrivial)
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SVM Related Links

 SVM Website: http://www.kernel-machines.org/

 Representative implementations

 LIBSVM: an efficient implementation of SVM, multi-

class classifications, nu-SVM, one-class SVM, 

including also various interfaces with java, python, 

etc.

 SVM-light: simpler but performance is not better 

than LIBSVM, support only binary classification and 

only in C 

 SVM-torch: another recent implementation also 

written in C
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Model Evaluation and Selection

 Evaluation metrics: How can we measure 
accuracy?  Other metrics to consider?

 Use test set of class-labeled tuples instead of 
training set when assessing accuracy

 Methods for estimating a classifier’s accuracy: 
 Holdout method, random subsampling
 Cross-validation
 Bootstrap

 Comparing classifiers:
 Confidence intervals
 Cost-benefit analysis and ROC Curves

27



Classifier Evaluation Metrics: 
Confusion Matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

 Given m classes, an entry, CMi,j  in a confusion 
matrix indicates # of tuples in class i  that were 
labeled by the classifier as class j

 May have extra rows/columns to provide totals

Confusion Matrix:
Actual class\Predicted 

class
C1 ¬ C1

C1 True Positives (TP) False Negatives 
(FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

28



Classifier Evaluation Metrics: Accuracy, 
Error Rate, Sensitivity and Specificity

 Classifier Accuracy, or 
recognition rate: percentage of test 
set tuples that are correctly 
classified

Accuracy = (TP + TN)/All
 Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

 Class Imbalance Problem: 
 One class may be rare, e.g. 

fraud, or HIV-positive
 Significant majority of the 

negative class and minority 
of the positive class

 Sensitivity: True Positive 
recognition rate

 Sensitivity = TP/P
 Specificity: True Negative 

recognition rate
 Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All
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Classifier Evaluation Metrics: 
Precision and Recall, and F-measures

 Precision: coherence – what % of tuples that the 
classifier labeled as positive are actually positive

 Recall: completeness – what % of positive tuples did 
the classifier label as positive?

 Perfect score is 1.0
 Inverse relationship between precision & recall
 F measure (F1 or F-score): harmonic mean of 

precision and recall,

 Fß:  weighted measure of precision and recall
 assigns ß times as much weight to recall as to 

precision

30
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Classifier Evaluation Metrics: 
Example

31

 Precision = 90/230 = 39.13%
Recall = 90/300 = 30.00%

Actual Class\Predicted 
class

cancer = 
yes

cancer = 
no

Total Recognition(%)

cancer = yes 90 210 300 30.00 
(sensitivity

cancer = no 140 9560 9700 98.56 
(specificity)

Total 230 9770 10000 96.40 
(accuracy)



Evaluating Classifier Accuracy:
Holdout & Cross-Validation Methods

 Holdout method
 Given data is randomly partitioned into two independent 

sets
 Training set (e.g., 2/3) for model construction
 Test set (e.g., 1/3) for accuracy estimation

 Random sampling: a variation of holdout
 Repeat holdout k times, accuracy = avg. of the 

accuracies obtained
 Cross-validation (k-fold, where k = 10 is most popular)

 Randomly partition the data into k mutually exclusive 
subsets, each approximately equal size

 At i-th iteration, use Di as test set and others as training set
 Leave-one-out: k folds where k = # of tuples, for small sized 

data
 *Stratified cross-validation*: folds are stratified so that 

class dist. in each fold is approx. the same as that in the 
initial data
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Evaluating Classifier Accuracy: 
Bootstrap

 Bootstrap
 Works well with small data sets
 Samples the given training tuples uniformly with replacement

 i.e., each time a tuple is selected, it is equally likely to be 
selected again and re-added to the training set

 Several bootstrap methods, and a common one is .632 boostrap
 A data set with d tuples is sampled d times, with replacement, 

resulting in a training set of d samples.  The data tuples that did 
not make it into the training set end up forming the test set.  
About 63.2% of the original data end up in the bootstrap, and the 
remaining 36.8% form the test set (since (1 – 1/d)d ≈ e-1 = 0.368)

 Repeat the sampling procedure k times, overall accuracy of the 
model:
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Model Selection: ROC 
Curves

 ROC (Receiver Operating 
Characteristics) curves: for visual 
comparison of classification models

 Originated from signal detection 
theory

 Shows the trade-off between the true 
positive rate and the false positive 
rate

 The area under the ROC curve is a 
measure of the accuracy of the model

 Rank the test subsets in decreasing 
order: the one that is most likely to 
belong to the positive class appears 
at the top of the list

 The closer to the diagonal line (i.e., 
the closer the area is to 0.5), the less 
accurate is the model

 Vertical axis 
represents the true 
positive rate

 Horizontal axis rep. 
the false positive 
rate

 The plot also shows 
a diagonal line

 A model with perfect 
accuracy will have 
an area of 1.0
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Issues Affecting Model Selection

 Accuracy
 classifier accuracy: predicting class label

 Speed
 time to construct the model (training time)
 time to use the model (classification/prediction time)

 Robustness: handling noise and missing values
 Scalability: efficiency in disk-resident databases 
 Interpretability

 understanding and insight provided by the model
 Other measures, e.g., goodness of rules, such as 

decision tree size or compactness of classification rules

40
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Ensemble Methods: Increasing the 
Accuracy

 Ensemble methods
 Use a combination of models to increase accuracy
 Combine a series of k learned models, M1, M2, …, Mk, 

with the aim of creating an improved model M*
 Popular ensemble methods

 Bagging: averaging the prediction over a collection of 
classifiers

 Boosting: weighted vote with a collection of 
classifiers

 Ensemble: combining a set of heterogeneous 
classifiers 42



Bagging: Boostrap Aggregation

 Analogy: Diagnosis based on multiple doctors’ majority vote
 Training

 Given a set D of d tuples, at each iteration i, a training set Di of d 
tuples is sampled with replacement from D (i.e., bootstrap)

 A classifier model Mi is learned for each training set Di

 Classification: classify an unknown sample X 
 Each classifier Mi returns its class prediction
 The bagged classifier M* counts the votes and assigns the class 

with the most votes to X
 Prediction: can be applied to the prediction of continuous values by 

taking the average value of each prediction for a given test tuple
 Accuracy

 Often significantly better than a single classifier derived from D
 For noise data: not considerably worse, more robust 
 Proved improved accuracy in prediction
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Boosting
 Analogy: Consult several doctors, based on a combination of 

weighted diagnoses—weight assigned based on the previous 
diagnosis accuracy

 How boosting works?
 Weights are assigned to each training tuple
 A series of k classifiers is iteratively learned
 After a classifier Mi is learned, the weights are updated to 

allow the subsequent classifier, Mi+1, to pay more attention 
to the training tuples that were misclassified by Mi

 The final M* combines the votes of each individual 
classifier, where the weight of each classifier's vote is a 
function of its accuracy

 Boosting algorithm can be extended for numeric prediction
 Comparing with bagging: Boosting tends to have greater 

accuracy, but it also risks overfitting the model to misclassified 
data

44
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Adaboost (Freund and Schapire, 
1997)

 Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)
 Initially, all the weights of tuples are set the same (1/d)
 Generate k classifiers in k rounds.  At round i,

 Tuples from D are sampled (with replacement) to form a 
training set Di of the same size

 Each tuple’s chance of being selected is based on its weight
 A classification model Mi is derived from Di

 Its error rate is calculated using Di as a test set
 If a tuple is misclassified, its weight is increased, o.w. it is 

decreased
 Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier 

Mi error rate is the sum of the weights of the misclassified tuples: 

 The weight of classifier Mi’s vote is log
1−error (M i )

error (M i )

error (M i )=∑
j

d

w j×err ( X j )



Random Forest (Breiman 2001) 

 Random Forest: 
 Each classifier in the ensemble is a decision tree classifier and is 

generated using a random selection of attributes at each node to 
determine the split

 During classification, each tree votes and the most popular class 
is returned

 Two Methods to construct Random Forest:
 Forest-RI (random input selection):  Randomly select, at each 

node, F attributes as candidates for the split at the node. The 
CART methodology is used to grow the trees to maximum size

 Forest-RC (random linear combinations):  Creates new attributes 
(or features) that are a linear combination of the existing 
attributes (reduces the correlation between individual classifiers)

 Comparable in accuracy to Adaboost, but more robust to errors and 
outliers 

 Insensitive to the number of attributes selected for consideration at 
each split, and faster than bagging or boosting
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Classification of Class-Imbalanced Data 
Sets

 Class-imbalance problem: Rare positive example but numerous 
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc. 

 Traditional methods assume a balanced distribution of classes 
and equal error costs: not suitable for class-imbalanced data

 Typical methods for imbalance data in 2-class classification: 
 Oversampling: re-sampling of data from positive class
 Under-sampling: randomly eliminate  tuples from negative 

class
 Threshold-moving: moves the decision threshold, t, so 

that the rare class tuples are easier to classify, and hence, 
less chance of costly false negative errors

 Ensemble techniques: Ensemble multiple classifiers 
introduced above

 Still difficult for class imbalance problem on multiclass tasks

47
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Summary (I)

 Classification is a form of data analysis that extracts 
models describing important data classes. 

 Effective and scalable methods have been developed 
for decision tree induction, Naive Bayesian 
classification, rule-based classification, and many 
other classification methods.

 Evaluation metrics include: accuracy, sensitivity, 

specificity, precision, recall, F measure, and Fß 

measure.

 Stratified k-fold cross-validation is recommended for 
accuracy estimation.  Bagging and boosting can be 
used to increase overall accuracy by learning and 
combining a series of individual models.

49



Summary (II)

 Significance tests and ROC curves are useful for 

model selection.

 There have been numerous comparisons of the 

different classification methods; the matter remains 

a research topic

 No single method has been found to be superior 

over all others for all data sets

 Issues such as accuracy, training time, robustness, 

scalability, and interpretability must be considered 

and can involve trade-offs, further complicating the 

quest for an overall superior method 50
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Issues: Evaluating Classification 
Methods

 Accuracy
 classifier accuracy: predicting class label
 predictor accuracy: guessing value of predicted 

attributes
 Speed

 time to construct the model (training time)
 time to use the model (classification/prediction 

time)
 Robustness: handling noise and missing values
 Scalability: efficiency in disk-resident databases 
 Interpretability

 understanding and insight provided by the 
model

 Other measures, e.g., goodness of rules, such as 
decision tree size or compactness of classification 
rules
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Gain Ratio for Attribute Selection 
(C4.5) (MK:contains errors)

 Information gain measure is biased towards 
attributes with a large number of values

 C4.5 (a successor of ID3) uses gain ratio to 
overcome the problem (normalization to 
information gain)

 GainRatio(A) = Gain(A)/SplitInfo(A)
 Ex.

 gain_ratio(income) = 0.029/0.926 = 0.031
 The attribute with the maximum gain ratio is 

selected as the splitting attribute

SplitInfoA(D )=−∑
j=1

v ∣D j∣

∣D∣
× log2 (

∣D j∣

∣D∣
)

SplitInfoA(D )=−
4
14

× log2 (
4
14

)−
6
14

× log 2(
6
14

)−
4
14

×log 2(
4
14

)=0 .926
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Gini index (CART, IBM 
IntelligentMiner)

 Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no”

 Suppose the attribute income partitions D into 10 in D1: {low, 

medium} and 4 in D2

but gini{medium,high} is 0.30 and thus the best since it is the lowest

 All attributes are assumed continuous-valued
 May need other tools, e.g., clustering, to get the possible split 

values
 Can be modified for categorical attributes

gini (D )=1−( 914 )
2

−( 514 )
2

=0 . 459

gini income∈{low ,medium }(D )=(1014 )Gini( D1)+( 414 )Gini (D1 )
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Predictor Error Measures

 Measure predictor accuracy: measure how far off the predicted 
value is from the actual known value

 Loss function: measures the error betw. yi and the predicted 

value yi’

 Absolute error: | yi – yi’| 

 Squared error:  (yi – yi’)2 

 Test error (generalization error): the average loss over the test 
set

 Mean absolute error:                  Mean squared error:

 Relative absolute error:               Relative squared error:

The mean squared-error exaggerates the presence of outliers

Popularly use (square) root mean-square error, similarly, root 
relative squared error
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Scalable Decision Tree 
Induction Methods

 SLIQ (EDBT’96 — Mehta et al.)
 Builds an index for each attribute and only class 

list and the current attribute list reside in 
memory

 SPRINT (VLDB’96 — J. Shafer et al.)
 Constructs an attribute list data structure 

 PUBLIC (VLDB’98 — Rastogi & Shim)
 Integrates tree splitting and tree pruning: stop 

growing the tree earlier
 RainForest (VLDB’98 — Gehrke, Ramakrishnan & 

Ganti)
 Builds an AVC-list (attribute, value, class label)

 BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & 
Loh)
 Uses bootstrapping to create several small 

samples
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Data Cube-Based Decision-Tree 
Induction

 Integration of generalization with decision-tree 
induction (Kamber et al.’97)

 Classification at primitive concept levels
 E.g., precise temperature, humidity, outlook, etc.

 Low-level concepts, scattered classes, bushy 
classification-trees

 Semantic interpretation problems

 Cube-based multi-level classification
 Relevance analysis at multi-levels

 Information-gain analysis with dimension + level
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