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Classification methods

 Classification: Basic Concepts

 Decision Tree Induction

 Bayes Classification Methods

 Support Vector Machines

 Model Evaluation and Selection

 Rule-Based Classification

 Techniques to Improve Classification 

Accuracy: Ensemble Methods
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Bayesian Classification: 
Why?

 A statistical classifier: performs probabilistic prediction, 
i.e., predicts class membership probabilities

 Foundation: Based on Bayes’ Theorem. 
 Performance: A simple Bayesian classifier, naïve 

Bayesian classifier, has comparable performance with 
decision tree and selected neural network classifiers

 Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is 
correct — prior knowledge can be combined with 
observed data

 Standard: Even when Bayesian methods are 
computationally intractable, they can provide a 
standard of optimal decision making against which 
other methods can be measured
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Bayesian Classification Rationale
 Let P(Ci|X) be the conditional probability of observing 

class Ci provided the set of attributes values of my 
element is X

 Final aim: obtaining (an estimation of) P(C i|X) for each i 
and for each X (classification model is the set of these 
values)

 P(Ci|X) = P(Ci ∩ X) / P(X)

 How to compute P(X)?
 We would need a sufficient number of elements in 

the training set whose attribute values are X
 … and therefore some elements for each possible 

combination of the attribute values (unrealistic)
 How to compute P(Ci ∩ X)? Same problems
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Bayesian Theorem: Basics

 Let X be a data sample (“evidence”): class label is 
unknown

 Let H be a hypothesis that X belongs to class C 
 Classification is to determine P(H|X), (posteriori 

probability),  the probability that the hypothesis holds 
given the observed data sample X

 P(H) (prior probability), the initial probability
 E.g., X buys computer, regardless of age, income

 P(X): probability that sample data is observed
 P(X|H) (likelyhood), the probability of observing the 

sample X, given that the hypothesis holds
 E.g., Given that X buys computer, the prob. that X is 

31..40, medium income
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Bayesian Theorem

 Given training data X, posteriori probability of a 
hypothesis H, P(H|X), follows the Bayes theorem

 Informally, this can be written as 

posteriori = likelihood x prior/evidence

 Predicts X belongs to C2 iff the probability P(Ci|X) is 

the highest among all the P(Ck|X) for all the k 

classes

 Practical difficulty: require initial knowledge of 
many probabilities, significant computational cost

P (H ∣X )=
P ( X ∣H )P (H )

P ( X )
=P ( X ∣H )×P (H )/P ( X )
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Bayesian Classification
 Let D be a training set of tuples and their 

associated class labels, and each tuple is 
represented by an n-D attribute vector

X = (x1, x2, …, xn)

 Suppose there are m classes C1, C2, …, Cm.
 Classification is to derive the maximum posteriori, 

i.e., the maximal P(Ci|X)
 This can be derived from Bayes’ theorem

 Since P(X) is constant for all classes, only max

needs to be found (Maximum A Posteriori method)

P (C i∣X )=
P ( X ∣C i )P (C i )

P ( X )

P (C i∣X )=P ( X ∣C i)P (C i )
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The “Optimal” Bayesian 
Classifier

 From a theoretical point of view, the Bayesian MAP 
classifier is optimal: no classifier can exist 
achieving a smaller error rate

 In order to compute

we need

→ “easy”: just scan the DB once
and

→ if we have k classes and m attributes, each 
taking n possible values: k*nm probability values!

P (C i∣X )=P ( X ∣C i)P (C i )

P (C i )

P ( X ∣C i )
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Derivation of Naïve Bayes 
Classifier 

 A simplified assumption: attributes are conditionally 
independent (i.e., no dependence relation between 
attributes) and identically distributed (iid):

 This greatly reduces the computation cost: Only counts 
the class distribution (k*n*m probabilities)

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having 
value xk for Ak divided by |Ci, D| (# of tuples of Ci in D)

 If Ak is continuous-valued, P(xk|Ci) is usually computed 
based on Gaussian distribution with a mean μ and 
standard deviation σ

and P(xk|Ci) is 

P ( X ∣C i )=∏
k=1

n

P ( x
k
∣C i)=P ( x

1
∣C i )×P ( x

2
∣C i )×. . .×P ( x

n
∣C i )

g ( x , μ , σ )=
1

√2π σ
e
−

( x− μ )2

2σ2

P ( X ∣C i )=g ( x k , μC
i
, σ C

i
)
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Avoiding the Zero-Probability 
Problem

 Naïve Bayesian prediction requires each 
conditional prob. be non-zero.  Otherwise, the 
predicted prob. will be zero

 Ex. Suppose a dataset with 1000 tuples, 
income=low (0), income= medium (990), and 
income = high (10)

 Use Laplacian correction (or Laplacian 
estimator)

 Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

P ( X ∣C i )=∏
k=1

n

P ( x k∣C i )
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Naïve Bayesian Classifier: 
Comments

 Advantages 
 Easy to implement and computationally efficient
 Good results obtained in most of the cases

 Disadvantages
 Assumption: class conditional independence, 

therefore loss of accuracy
 Practically, dependencies exist among variables 

 E.g.,  hospitals: patients: Profile: age, family 
history, etc. 

 Symptoms: fever, cough etc., Disease: lung 
cancer, diabetes, etc. 

 Dependencies among these cannot be 
modeled by Naïve Bayesian Classifier

 How to deal with these dependencies?
→  Bayesian Belief Networks
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Bayesian Belief Networks

 Bayesian belief networks (also known as 

Bayesian networks, probabilistic networks): 

allow class conditional independencies between 

subsets of variables

 A (directed acyclic) graphical model of causal 

relationships
 Represents dependency among the variables 
 Gives a specification of joint probability 

distribution 
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Bayesian Belief Networks

● Nodes: random variables
● Links: dependency
● X and Y are the parents of Z, and Y is the 

parent of P
● No dependency between Z and P
● Has no loops/cycles

X Y

Z
P
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Bayesian Belief Network: An 
Example

Family
History (FH)

LungCancer
(LC)

PositiveXRay

Smoker (S)

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Network

CPT: Conditional Probability 
Table for variable LungCancer:

P ( x1 , .. . , xn )=∏
i=1

n

P ( x i∣Parents( x i ))

shows the conditional probability 
for each possible combination of its 
parents
Derivation of the probability of a 
particular combination of values 
of X, from CPT:
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Training Bayesian Networks: 
Several Scenarios

 Scenario 1:  Given both the network structure and all 
variables observable: compute only the CPT entries

 Scenario 2: Network structure known, some variables hidden: 
gradient descent (greedy hill-climbing) method, i.e., search 
for a solution along the steepest descent of a criterion 
function 

 Weights are initialized to random probability values
 At each iteration, it moves towards what appears to be the 

best solution at the moment, w.o. backtracking
 Weights are updated at each iteration & converge to local 

optimum
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Training Bayesian Networks: 
Several Scenarios

 Scenario 3: Network structure unknown, all variables 
observable: search through the model space to reconstruct 
network topology 

 Scenario 4: Unknown structure, all hidden variables: No good 
algorithms known for this purpose

 D. Heckerman.  
A Tutorial on Learning with Bayesian Networks.  In Learning in 
Graphical Models, M. Jordan, ed.. MIT Press, 1999.
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Bayesian Belief Networks: 
Comments

 Advantages 
 Computationally heavier than naïve classifier, but 

still tractable
 Handle (approximating) dependencies
 Very good results (provided a meaningful network 

is designed & tuned)
 Disadvantages

 Need expert problem knowledge or external 
mining algorithms for designing the network
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