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Classification methods

 Classification: Basic Concepts

 Decision Tree Induction

 Bayes Classification Methods

 Support Vector Machines

 Model Evaluation and Selection

 Rule-Based Classification

 Techniques to Improve Classification 

Accuracy: Ensemble Methods
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Bayesian Classification: 
Why?

 A statistical classifier: performs probabilistic prediction, 
i.e., predicts class membership probabilities

 Foundation: Based on Bayes’ Theorem. 
 Performance: A simple Bayesian classifier, naïve 

Bayesian classifier, has comparable performance with 
decision tree and selected neural network classifiers

 Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is 
correct — prior knowledge can be combined with 
observed data

 Standard: Even when Bayesian methods are 
computationally intractable, they can provide a 
standard of optimal decision making against which 
other methods can be measured
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Bayesian Classification Rationale
 Let P(Ci|X) be the conditional probability of observing 

class Ci provided the set of attributes values of my 
element is X

 Final aim: obtaining (an estimation of) P(C i|X) for each i 
and for each X (classification model is the set of these 
values)

 P(Ci|X) = P(Ci ∩ X) / P(X)

 How to compute P(X)?
 We would need a sufficient number of elements in 

the training set whose attribute values are X
 … and therefore some elements for each possible 

combination of the attribute values (unrealistic)
 How to compute P(Ci ∩ X)? Same problems
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Bayesian Theorem: Basics

 Let X be a data sample (“evidence”): class label is 
unknown

 Let H be a hypothesis that X belongs to class C 
 Classification is to determine P(H|X), (posteriori 

probability),  the probability that the hypothesis holds 
given the observed data sample X

 P(H) (prior probability), the initial probability
 E.g., X buys computer, regardless of age, income

 P(X): probability that sample data is observed
 P(X|H) (likelyhood), the probability of observing the 

sample X, given that the hypothesis holds
 E.g., Given that X buys computer, the prob. that X is 

31..40, medium income
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Bayesian Theorem

 Given training data X, posteriori probability of a 
hypothesis H, P(H|X), follows the Bayes theorem

 Informally, this can be written as 

posteriori = likelihood x prior/evidence

 Predicts X belongs to C2 iff the probability P(Ci|X) is 

the highest among all the P(Ck|X) for all the k 

classes

 Practical difficulty: require initial knowledge of 
many probabilities, significant computational cost

P (H ∣X )=
P ( X ∣H )P (H )

P ( X )
=P ( X ∣H )×P (H )/P ( X )
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Bayesian Classification
 Let D be a training set of tuples and their 

associated class labels, and each tuple is 
represented by an n-D attribute vector

X = (x1, x2, …, xn)

 Suppose there are m classes C1, C2, …, Cm.
 Classification is to derive the maximum posteriori, 

i.e., the maximal P(Ci|X)
 This can be derived from Bayes’ theorem

 Since P(X) is constant for all classes, only max

needs to be found (Maximum A Posteriori method)

P (C i∣X )=
P ( X ∣C i )P (C i )

P ( X )

P (C i∣X )=P ( X ∣C i)P (C i )
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The “Optimal” Bayesian 
Classifier

 From a theoretical point of view, the Bayesian MAP 
classifier is optimal: no classifier can exist 
achieving a smaller error rate

 In order to compute

we need

→ “easy”: just scan the DB once
and

→ if we have k classes and m attributes, each 
taking n possible values: k*nm probability values!

P (C i∣X )=P ( X ∣C i)P (C i )

P (C i )

P ( X ∣C i )
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Derivation of Naïve Bayes 
Classifier 

 A simplified assumption: attributes are conditionally 
independent (i.e., no dependence relation between 
attributes) and identically distributed (iid):

 This greatly reduces the computation cost: Only counts 
the class distribution (k*n*m probabilities)

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having 
value xk for Ak divided by |Ci, D| (# of tuples of Ci in D)

 If Ak is continuous-valued, P(xk|Ci) is usually computed 
based on Gaussian distribution with a mean μ and 
standard deviation σ

and P(xk|Ci) is 

P ( X ∣C i )=∏
k=1

n

P ( x
k
∣C i)=P ( x

1
∣C i )×P ( x

2
∣C i )×. . .×P ( x

n
∣C i )

g ( x , μ , σ )=
1

√2π σ
e
−

( x− μ )2

2σ2

P ( X ∣C i )=g ( x k , μC
i
, σ C

i
)
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Avoiding the Zero-Probability 
Problem

 Naïve Bayesian prediction requires each 
conditional prob. be non-zero.  Otherwise, the 
predicted prob. will be zero

 Ex. Suppose a dataset with 1000 tuples, 
income=low (0), income= medium (990), and 
income = high (10)

 Use Laplacian correction (or Laplacian 
estimator)

 Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

P ( X ∣C i )=∏
k=1

n

P ( x k∣C i )
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Naïve Bayesian Classifier: 
Comments

 Advantages 
 Easy to implement and computationally efficient
 Good results obtained in most of the cases

 Disadvantages
 Assumption: class conditional independence, 

therefore loss of accuracy
 Practically, dependencies exist among variables 

 E.g.,  hospitals: patients: Profile: age, family 
history, etc. 

 Symptoms: fever, cough etc., Disease: lung 
cancer, diabetes, etc. 

 Dependencies among these cannot be 
modeled by Naïve Bayesian Classifier

 How to deal with these dependencies?
→  Bayesian Belief Networks
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Bayesian Belief Networks

 Bayesian belief networks (also known as 

Bayesian networks, probabilistic networks): 

allow class conditional independencies between 

subsets of variables

 A (directed acyclic) graphical model of causal 

relationships
 Represents dependency among the variables 
 Gives a specification of joint probability 

distribution 



17

Bayesian Belief Networks

● Nodes: random variables
● Links: dependency
● X and Y are the parents of Z, and Y is the 

parent of P
● No dependency between Z and P
● Has no loops/cycles

X Y

Z
P
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Bayesian Belief Network: An 
Example

Family
History (FH)

LungCancer
(LC)

PositiveXRay

Smoker (S)

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Network

CPT: Conditional Probability 
Table for variable LungCancer:

P ( x1 , .. . , xn )=∏
i=1

n

P ( x i∣Parents( x i ))

shows the conditional probability 
for each possible combination of its 
parents
Derivation of the probability of a 
particular combination of values 
of X, from CPT:
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Training Bayesian Networks: 
Several Scenarios

 Scenario 1:  Given both the network structure and all 
variables observable: compute only the CPT entries

 Scenario 2: Network structure known, some variables hidden: 
gradient descent (greedy hill-climbing) method, i.e., search 
for a solution along the steepest descent of a criterion 
function 

 Weights are initialized to random probability values
 At each iteration, it moves towards what appears to be the 

best solution at the moment, w.o. backtracking
 Weights are updated at each iteration & converge to local 

optimum
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Training Bayesian Networks: 
Several Scenarios

 Scenario 3: Network structure unknown, all variables 
observable: search through the model space to reconstruct 
network topology 

 Scenario 4: Unknown structure, all hidden variables: No good 
algorithms known for this purpose

 D. Heckerman.  
A Tutorial on Learning with Bayesian Networks.  In Learning in 
Graphical Models, M. Jordan, ed.. MIT Press, 1999.
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Bayesian Belief Networks: 
Comments

 Advantages 
 Computationally heavier than naïve classifier, but 

still tractable
 Handle (approximating) dependencies
 Very good results (provided a meaningful network 

is designed & tuned)
 Disadvantages

 Need expert problem knowledge or external 
mining algorithms for designing the network
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