Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 13: 27/11/2012

Data Mining: Concepts and Techniques

— Chapter 6 —
 Jiawei Han, Micheline Kamber, and Jian Pei
 University of Illinois at Urbana-Champaign &
 Simon Fraser University
 © 2011 Han, Kamber & Pei. All rights reserved.

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach ,
- ECLAT: Frequent Pattern Mining with Vertical Data
 Format
- Mining Close Frequent Patterns and Maxpatterns

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
 - Depth-first search
 - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
 - Divide et impera
 - Compress the DB using a tree data structure
 - Divide the compressed DB in *conditional DBs* and proceed recursively

Construct FP-tree from a Transaction Database, then mine the tree

<u>TID</u> 100 200 300 400 500	<u>Items bought</u> (or {f, a, c, d, g, i, m, p} {a, b, c, f, l, m, o} {b, f, h, j, o, w} {b, c, k, s, p} {a, f, c, e, l, p, m, n}	rdered) frequent item. {f, c, a, m, p} {f, c, a, b, m} {f, b} {c, b, p} {f, c, a, m, p}	<u>s</u> min_support = 3
freque	DB once, find nt 1-itemset e item pattern)	Header Table Item frequency header f 4 c 4	ad $3f:4$ $3c:1$
	equent items in ncy descending f-list	$\begin{bmatrix} a & 3 \\ b & 3 \\ m & 3 \\ 2 \end{bmatrix}$	
	DB again, uct FP-tree F-lis	p = 3 t = f-c-a-b-m-p	m:2 $b:1'p:2'$ $m:1$

1.

2.

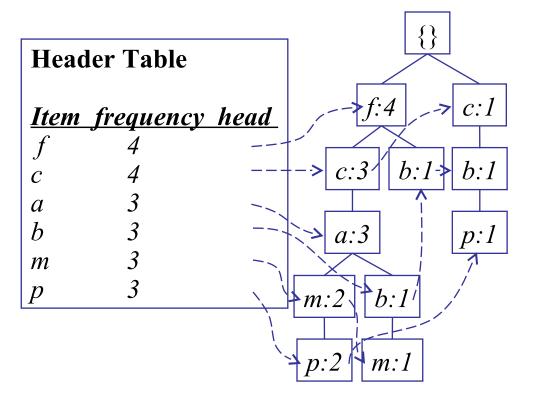
3.

Partition Patterns and Databases

- Start with each frequent length-1 pattern
 → as an initial suffix pattern
- Build its conditional pattern base
 - \rightarrow a sub-DB containing all its prefix paths in the FP-tree
- The conditional pattern base is a DB → build its (conditional) FP-tree
- Apply FP growth recursively (stop with empty support)
- Append to the mining results the suffix pattern

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base



Conditional pattern basesitemcond. pattern basecf:3afc:3bfca:1, f:1, c:1mfca:2, fcab:1

fcam:2, cb:1

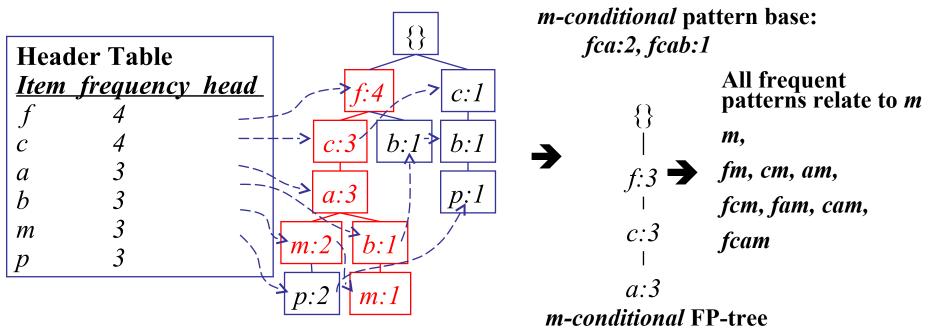
p

Starting with least frequent items is better!

- Frequent patterns can be partitioned into subsets according to f-list (Completeness and non-redundency)
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Least frequent items are leaves of the FPtree (once processed can be removed ...)

From Conditional Pattern-bases to Conditional FPtrees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base



Recursion: Mining Each Conditional FPtree

cm-conditional FP-tree

Cond. pattern base of "cam": (f:3) $\begin{cases} \\ \\ \\ f:3 \end{cases}$

cam-conditional FP-tree

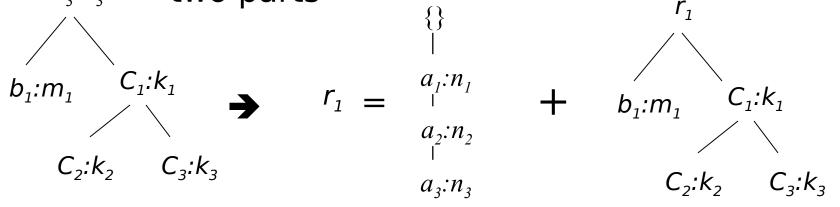
A Special Case: Single Prefix Path in FPtree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts

 $\{\}$

 $a_1:n_1$

- Reduction of the single prefix path into one node
- $a_2:n_2$ Concatenation of the mining results of the $a_3:n_3$ two parts



Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the *count* field)

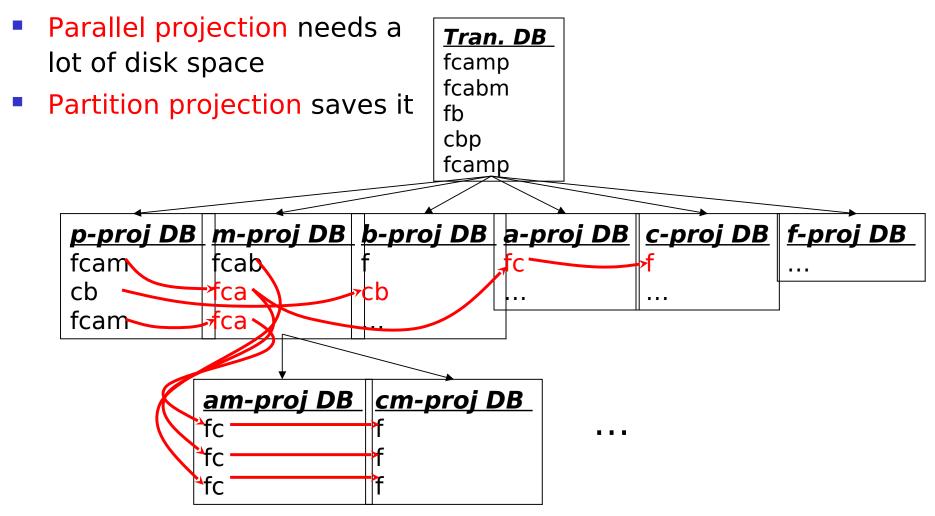
The Frequent Pattern Growth Mining Method (summary)

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

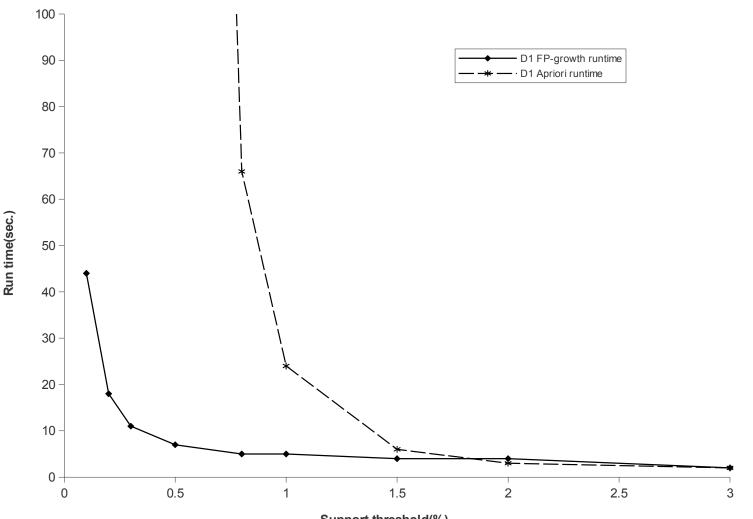
Scaling FP-growth by Database Projection

- What about if FP-tree cannot fit in memory?
 - DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. partition projection techniques
 - Parallel projection
 - Project the DB in parallel for each frequent item
 - Parallel projection is space costly
 - All the partitions can be processed in parallel
 - Partition projection
 - Partition the DB based on the ordered frequent items
 - Passing the unprocessed parts to the subsequent partitions

Partition-Based Projection



Performance of FPGrowth in Large Datasets



Support threshold(%)

Advantages of the Pattern Growth Approach

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Other factors
 - No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database
 - Basic ops: counting local freq items and building sub FPtree, no pattern search and matching
- A good open-source implementation and refinement of FPGrowth
 - FPGrowth+ (Grahne and J. Zhu, FIMI'03)

Further Improvements of Mining Methods

- AFOPT (Liu, et al. @ KDD'03)
 - A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD'03)
 - Mine data sets with small rows but numerous columns
 - Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI'03)
 - Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- TD-Close (Liu, et al, SDM'06)

Extension of Pattern Growth Mining Methodology

- Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD'00), FPclose, and FPMax (Fimi'03)
- Mining sequential patterns
 - PrefixSpan (ICDE'01), CloSpan (SDM'03), BIDE (ICDE'04)
- Mining graph patterns
 - gSpan (ICDM'02), CloseGraph (KDD'03)
- Constraint-based mining of frequent patterns
 - Convertible constraints (ICDE'01), gPrune (PAKDD'03)
- Computing iceberg data cubes with complex measures
 - H-tree, H-cubing, and Star-cubing (SIGMOD'01, VLDB'03)
- Pattern-growth-based Clustering
 - MaPle (Pei, et al., ICDM'03)
- Pattern-Growth-Based Classification
 - Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)

Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test

Approach

- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data
 Format
- Mining Close Frequent Patterns and Maxpatterns

20

Equivalence CLAss Transformation: Mining by Exploring Vertical Data Format

- Vertical format: $t(ab) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - $t(X) \subset t(Y)$: transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = {T₂}
- ECLAT (Zaki et al. @KDD'97)
- Mining Closed patterns using vertical format: CHARM (Zaki & Hsiao@SDM'02)

Equivalence CLAss Transformation: Mining by Exploring Vertical Data Format

I	DB:	
	T100	11, 12, 15
	T200	12, 14
	T300	12, 13
	T400	11, 12, 14
	T500	11, 13
	T600	12, 13
	T700	11, 13
	T800	11, 12, 13, 15
	Т900	11, 12, 13

 $min_supp = 2$

11	T100, T400, T500, T700, T800, T900								
12	T100, T200, T300, T400, T600, T800, T900								
13	T300, T5	00, T600, T7	00, T800, T900						
14	T200, T4	00							
15	T100, T8	00							
11	I, I2	T100, T400,	T800, T900						
11	I, I3	T500, T700,	T800, T900						
11	I, I4	T400							
11	I, I5	T100, T800							
12	2, 13	T300, T600,	T800, T900						
12	2, 14	T200, T400							
12	2, 15	T100, T800							
13	3, 1 5	T800							
11	I, I2, I3		T800, T900						
11	I, I2, I5		T100, T800						

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data
 Format
- Mining Close Frequent Patterns and Maximal patterns

Mining Frequent Closed Patterns: CLOSET

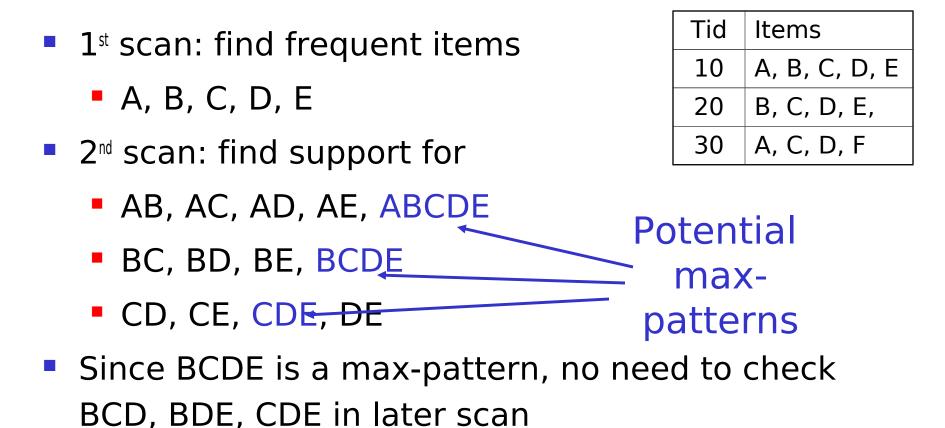
- Flist: list of all frequent items in support asc. order
 - Flist: d-a-f-e-c
- Divide search space
 - Patterns having d
 - Patterns having d but no a, etc.
- Find frequent closed pattern recursively
 - Every transaction having d also has cfa → cfad is a frequent closed pattern
- J. Pei, J. Han & R. Mao. "CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets" (2000)

_	Minsup=2								
	TID	Items							
	10	a, c, d, e, f							
	20	a, b, e							
	30	c, e, f							
	40	a, c, d, f							
	50	c, e, f							

CLOSET+: Mining Closed Itemsets by Pattern-Growth

- Itemset merging: if every occurrence of X contains Y, but not every proper subset of Y, then X U Y is a frequent closed itemset (no need to search for itemsets containing X but not Y)
- Sub-itemset pruning: if $Y \supset X$, and sup(X) = sup(Y), X and all of X's descendants in the set enumeration tree can be pruned
- Item skipping: if a local frequent item has the same support in several header tables at different levels, one can prune it from the header table at higher levels
- Efficient subset checking
- Hybrid tree projection
 - bottomup physical / topdown pseudo tree-projection

MaxMiner: Mining Max-Patterns

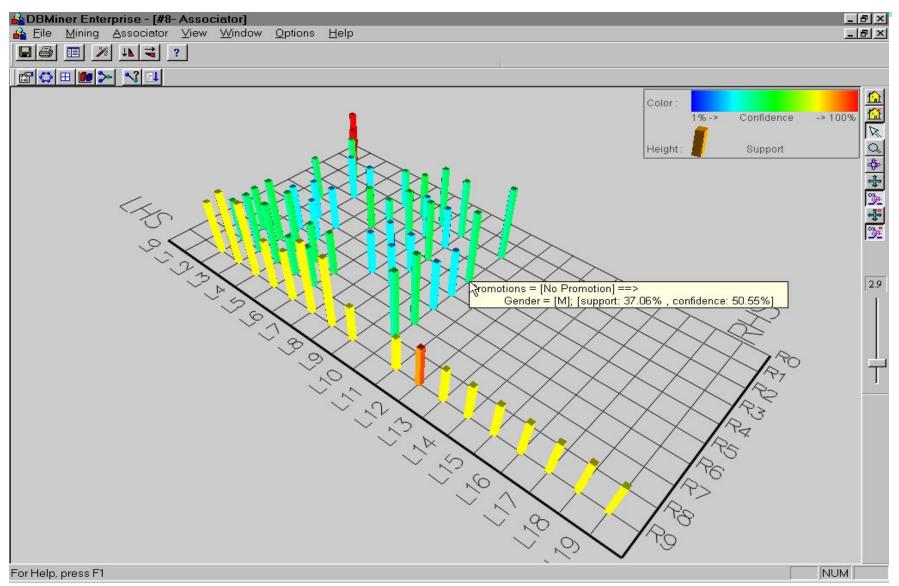


 R. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98

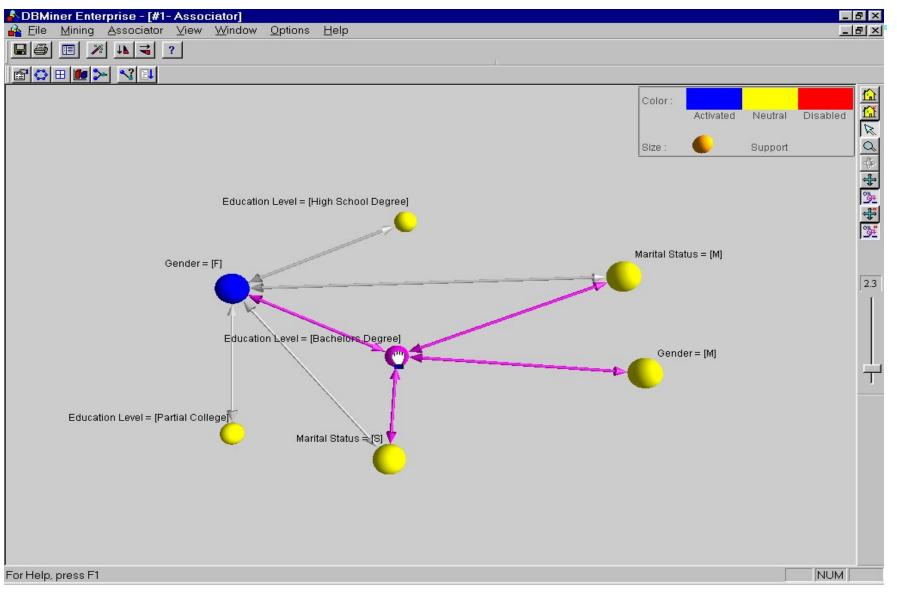
CHARM: Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving closed patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - t(X) ⊂ t(Y): transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = {T₂}
- Eclat/MaxEclat ('97), VIPER('00), CHARM ('02)

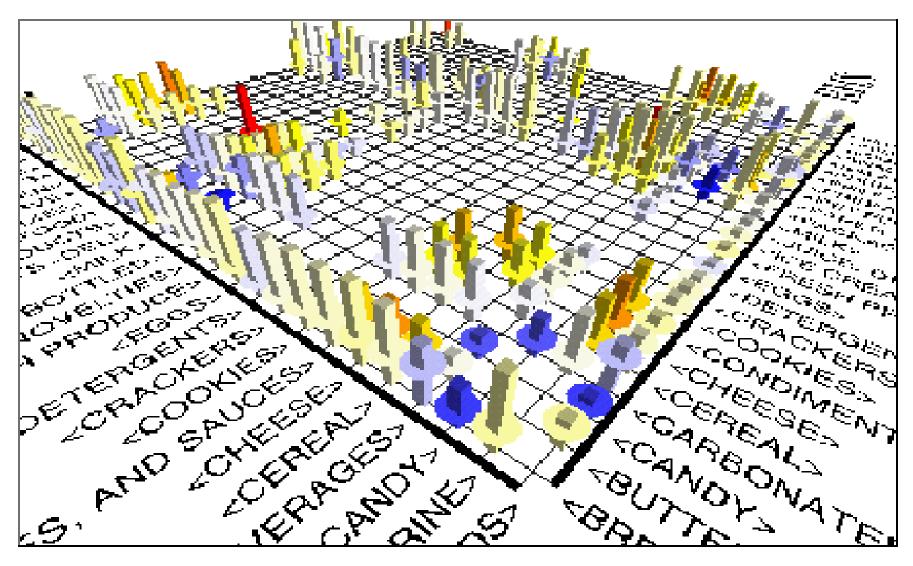
Visualization of Association Rules: Plane Graph



Visualization of Association Rules: Rule Graph



Visualization of Association Rules (SGI/MineSet 3.0)



Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

Interestingness Measure: Correlations (Lift)

- play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Idea: put rules as " $A \rightarrow B$ [support, confidence, correlation]"
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)}$$
Cereal
$$Cereal = \frac{2000/5000}{3000/5000 * 3750/5000} = 0.89$$

$$Sum(col.) = \frac{1000/5000}{5000} = 0.89$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000 * 1250/5000} = 1.33$$

N.B. A and B are independent if P (A U B) = P(A) * P(B)

Interestingness Measure: Correlations (Chi-Square)

Chi-square test:

Σ (observed – expected)² / expected

and compare to tables

Are *lift* and χ^2 Good Measures of Correlation?

- "Buy walnuts \Rightarrow buy milk [1%, 80%]" is misleading if 85% of customers buy milk
- Support and confidence are not enough to indicate correlations
- Over 20

 interestingness
 measures have been
 proposed (see Tan
 et al @KDD'02)
- Which are good ones?

symbol	measure	range	formula
ϕ	ϕ -coefficient	-11	$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
Q	Yule's Q	-1 1	$\frac{P(A,B)P(\overline{A},\overline{B}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},\overline{B}) + P(A,\overline{B})P(\overline{A},B)}$
Y	Yule's Y	-11	$\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$
k	Cohen's	-11	$\frac{P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$
PS	Piatetsky-Shapiro's	-0.25 0.25	P(A, B) - P(A)P(B)
F	Certainty factor	-11	$\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$
AV	added value	$-0.5 \dots 1$	$\max(P(B A) - P(B), P(A B) - P(A))$
K	Klosgen's Q	-0.330.38	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$
g	Goodman-kruskal's	$0 \dots 1$	$\frac{\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))}{\sum_{j \max_{k} P(A_{j},B_{k}) + \sum_{k} \max_{j} P(A_{j},B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
M	Mutual Information	$0 \dots 1$	$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{J})}}{\min(-\sum_{i}P(A_{i})\log P(A_{i})\log P(A_{i}),-\sum_{i}P(B_{i})\log P(B_{i})\log P(B_{i}))}$
J	J-Measure	$0 \dots 1$	$\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log P(B_i)) \\ \max(P(A, B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}))$
0	5 Wiedbure	01	$\frac{\operatorname{max}(P(A, B) \log(\frac{P(B)}{P(B)}) + P(AB) \log(\frac{P(\overline{A} B)}{P(\overline{B})})}{P(\overline{A}B) \log(\frac{P(A B)}{P(\overline{A})}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})}$
G	Gini index	$0 \dots 1$	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$
			$P(B)[P(A B)^2 + P(\overline{A} B)^2] + P(\overline{B}[P(A \overline{B})^2 + P(\overline{A} \overline{B})^2] - P(A)^2 - P(\overline{A})^2)$
s	support	$0 \dots 1$	P(A,B)
c	confidence	$0 \dots 1$	max(P(B A), P(A B))
L	Laplace	$0 \dots 1$	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
IS	Cosine	$0 \dots 1$	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
γ	$\operatorname{coherence}(\operatorname{Jaccard})$	$0 \dots 1$	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
α	all_confidence	$0 \dots 1$	$\frac{P(A,B)}{\max(P(A),P(B))}$
0	odds ratio	$0 \dots \infty$	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$
V	Conviction	$0.5 \ldots \infty$	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
λ	lift	$0\ldots\infty$	$\frac{P(A,B)}{P(A)P(B)}$
S	Collective strength	$0 \dots \infty$	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$
χ^2	χ^2	$0\ldots\infty$	$\sum_{i} \frac{(P(A_i) - E_i)^2}{E_i}$

Null-invariant measures

- Bad property for a measure:
 - given A and B, and a rule $A \rightarrow B$
 - Is the correlation measure affected by the transactions containing neither A nor B (null-transactions)?
- If it's not \rightarrow null-invariant property
- E.g. lift and chi-square are <u>not null-invariant</u>

Null-invariant measures (range [0,1])

All confidence:

all_conf(A, B) =

- $= \sup (A \cup B) / \max \{ \sup(A), \sup(B) \} =$
- $= \min\{ P(A|B), P(B|A) \}$
- Max confidence:

 $max_conf(A, B) = max\{ P(A|B), P(B|A) \}$

Kulczynski

 $Kulc(A, B) = \frac{1}{2} * (P(A|B) + P(B|A))$

Cosine

cos(A, B) = P(A U B) / sqrt(P(A) * P(B)) =

= sup (A U B) / sqrt(sup(A) * sup(B)) = = sqrt(P(A|B) * P(B|A))

Null-Invariant Measures

Table 6: I	Properties	of interestingness measures.	Note that	none of the measures	satisfies all the	properties.

Symbol	Measure	Range	P1	P2	P3	01	O2	O3	Ō3'	04
ϕ	ϕ -coefficient	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Goodman-Kruskal's	$0 \cdots 1$	Yes	No	No	Yes	No	No*	Yes	No
α	odds ratio	$0 \cdots 1 \cdots \infty$	Yes^*	Yes	Yes	Yes	Yes	Yes^*	Yes	No
Q	Yule's Q	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Ý	Yule's Y	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
κ	Cohen's	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	$0 \cdots 1$	Yes	Yes	Yes	No**	No	No*	Yes	No
J	J-Measure	$0 \cdots 1$	Yes	No	No	No ^{**}	No	No	No	No
G	Gini index	$0 \cdots 1$	Yes	No	No	No ^{**}	No	No*	Yes	No
s	Support	$0 \cdots 1$	No	Yes	No	Yes	No	No	No	No
c	Confidence	$0 \cdots 1$	No	Yes	No	No**	No	No	No	Yes
L	Laplace	$0 \cdots 1$	No	Yes	No	No ^{**}	No	No	No	No
V	Conviction	$0.5 \cdots 1 \cdots \infty$	No	Yes	No	No ^{**}	No	No	Yes	No
Ι	Interest	$0 \cdots 1 \cdots \infty$	Yes^*	Yes	Yes	Yes	No	No	No	No
IS	Cosine	$0 \cdots \sqrt{P(A, B)} \cdots 1$	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	$-0.25 \cdots 0 \cdots 0.25$	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	No**	No	No	Yes	No
AV	Added value	$-0.5 \cdots 0 \cdots 1$	Yes	Yes	Yes	No**	No	No	No	No
S	Collective strength	$0\cdots 1\cdots\infty$	No	Yes	Yes	Yes	No	Yes^*	Yes	No
ζ	Jaccard	$0 \cdots 1$	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$\left(\frac{2}{\sqrt{3}}-1\right)^{1/2}\left[2-\sqrt{3}-\frac{1}{\sqrt{3}}\right]\cdots 0\cdots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No**	No	No	No	No
	where: P1:	$O(\mathbf{M}) = 0$ if $det(\mathbf{M}) = 0$, <i>i.e.</i> , whenever A	A and E	are st	tatistic	ally ind	epende	nt.		
	P2:	$O(\mathbf{M_2}) > O(\mathbf{M_1})$ if $\mathbf{M_2} = \mathbf{M_1} + [k - k;$	$-k \ k$].							
	P3:	$O(\mathbf{M_2}) < O(\mathbf{M_1})$ if $\mathbf{M_2} = \mathbf{M_1} + [0 \ k; \ 0]$			$M_1 +$	$[0 \ 0; k]$	- k].			
	O1:	Property 1: Symmetry under variable per	mutatio	on.						
	O2:									
	O3:									
	O3':	Property 4: Inversion invariance.								
	O4:	Property 5: Null invariance.								
	Yes*:	Yes if measure is normalized.								
	No*:	Symmetry under row or column permutat	ion.							
	No** ·	No unless the measure is symmetrized by	taking	may()	$\Lambda(\Lambda E$	M(R)	4))			

No^{**}: No unless the measure is symmetrized by taking $\max(M(A, B), M(B, A))$.

Comparison of Interestingness Measures (milk → coffee)

Null-(transaction) invariance is crucial for correlation analysis

5 null-invariant measures								
	Milk	No Milk	Sum (row)					
Coffee	m, c	~m, c	С					
No Coffee	m, ~c	~m, ~c	~C					

~m

Sum(col.)

m

Σ

Measure	Definition	Range	Null-Invariant
$\chi^2(a, b)$	$\sum_{i,j=0,1} \frac{(e(a_i,b_j) - o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0,\infty]$	No
Lift(a, b)	$\frac{P(ab)}{P(a)P(b)}$	$[0,\infty]$	No
AllConf(a, b)	$\frac{sup(ab)}{max\{sup(a), sup(b)\}}$	[0, 1]	Yes
Coherence(a, b)	$\frac{sup(ab)}{sup(a)+sup(b)-sup(ab)}$	[0, 1]	Yes
Cosine(a,b)	$\frac{sup(ab)}{\sqrt{sup(a)sup(b)}}$	[0, 1]	Yes
Kulc(a,b)	$\tfrac{sup(ab)}{2}(\tfrac{1}{sup(a)}+\tfrac{1}{sup(b)})$	[0, 1]	Yes
MaxConf(a,b)	(-1)(-1)	[0, 1]	Yes
Table 3	. Interestingness measured	re defi	nitions.

Null-transactions				Table 3. Interestingness measure definitions.							
	<u>.r.t. m</u>	_							Null-ir	nvaria	ant
Data set	mc	\overline{mc}	$m\overline{s}$	\overline{mc}	χ^2	Lift	AllConf	Coherence	Cesine	Kulc	MaxConf
D_1	10,000	1,000	1,000	00,000	90557	9.26	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0	1	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1	100,000		8.44	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	24740	25.75	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	8173	9.18	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	965	1.97	0.01	0.01	0.10	0.5	0.99
			r	Table	2 . Ex	ampl	le data	sets. S	ubtle: 1	hey	disagree

Which Null-Invariant Measure Is Better?

 IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications (IR = 0 if the two directional implications between A and B are the same)

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)}$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - D₄ is balanced & neutral
 - D₅ is imbalanced & neutral
 - D₆ is very imbalanced & neutral

Data	mc	$\overline{m}c$	$m\overline{c}$	\overline{mc}	$all_conf.$	$max_conf.$	Kulc.	cosine	\mathbf{IR}
D_1	10,000	1,000	1,000	100,000	0.91	0.91	0.91	0.91	0.0
D_2	10,000	1,000	1,000	100	0.91	0.91	0.91	0.91	0.0
D_3	100	1,000	1,000	100,000	0.09	0.09	0.09	0.09	0.0
D_4	1,000	1,000	1,000	100,000	0.5	0.5	0.5	0.5	0.0
D_5	1,000	100	10,000	100,000	0.09	0.91	0.5	0.29	0.89
D_{R}	1.000	10	100.000	100.000	0.01	0.99	0.5	0.10	0.99

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

- Basic concepts: association rules, supportconfident framework, closed and max-patterns
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (ECLAT, CHARM, ...)
- Which patterns are interesting?
 - Pattern evaluation methods

Ref: Basic Concepts of Frequent Pattern Mining

- (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93
- (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99
- (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95

Ref: Apriori and Its Improvements

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95
- H. Toivonen. Sampling large databases for association rules.
 VLDB'96
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating

Ref: Depth-First, Projection-Based FP Mining

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. J. Parallel and Distributed Computing, 2002.
- G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. FIMI'03
- B. Goethals and M. Zaki. An introduction to workshop on frequent itemset mining implementations. *Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03),* Melbourne, FL, Nov. 2003
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD' 00
- J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD'02
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM'02
- I Wang I Han and I Pei CLOSET+ Searching for the Best

Ref: Vertical Format and Row Enumeration Methods

- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association rules. DAMI:97.
- M. J. Zaki and C. J. Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining, SDM'02.
- C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints.
 KDD'02.
- F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki, CARPENTER: Finding Closed Patterns in Long Biological Datasets. KDD'03.
- H. Liu, J. Han, D. Xin, and Z. Shao, Mining Interesting Patterns from Very High Dimensional Data: A Top-Down Row

Ref: Mining Correlations and Interesting Rules

- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97.
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94.
- R. J. Hilderman and H. J. Hamilton. *Knowledge Discovery and Measures of Interest*. Kluwer Academic, 2001.
- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98.
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02.
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03.
- T. Wu, Y. Chen, and J. Han, "Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework", Data Mining and Knowledge Discovery, 21(3):371-397, 2010