
Università degli Studi di Milano
Master Degree in Computer Science

Information Management
course

Teacher: Alberto Ceselli

Lecture 11: 20/11/2012

22

Data Mining:
 Concepts and

Techniques
 (3rd ed.)

— Chapter 6 —
Jiawei Han, Micheline Kamber, and Jian Pei

University of Illinois at Urbana-Champaign &

Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

3

Chapter 5: Mining Frequent Patterns, Association
and Correlations: Basic Concepts and Methods

 Basic Concepts

 Frequent Itemset Mining Methods

 Which Patterns Are Interesting?—Pattern

Evaluation Methods

 Summary

4

What Is Frequent Pattern
Analysis?

 Frequent pattern: a pattern (a set of items, subsequences,

substructures, etc.) that occurs frequently in a data set

 First proposed by Agrawal, Imielinski, and Swami (1993) in the

context of frequent itemsets and association rule mining

 Motivation: Finding inherent regularities in data

 What products were often purchased together? Beer and

diapers?!

 What are the subsequent purchases after buying a PC?

 What kinds of DNA are sensitive to this new drug?

 Can we automatically classify web documents?

 Applications

 Basket data analysis, cross-marketing ..., Web log (click stream)

analysis, and DNA sequence analysis.

5

Why Is Freq. Pattern Mining
Important?

 Freq. pattern: An intrinsic and important property of
datasets

 Foundation for many essential data mining tasks
 Association, correlation, and causality analysis
 Sequential, structural (e.g., sub-graph) patterns
 Pattern analysis in spatiotemporal, multimedia, time-

series, and stream data
 Classification: discriminative, frequent pattern

analysis
 Cluster analysis: frequent pattern-based clustering
 Data warehousing: iceberg cube and cube-gradient
 Semantic data compression: fascicles
 Broad applications

6

Basic Concepts: Frequent
Patterns

 itemset: A set of one or
more items

 k-itemset X = {x1, …, xk}
 (absolute) support, or,

support count of X: number
of occurrences of an itemset
X in the dataset

 (relative) support, s, is the
fraction of transactions that
contains X (i.e., the
probability that a
transaction contains X)

 An itemset X is frequent if
X’s support is no less than a
minsup threshold

Customer
buys diaper

Customer
buys both

Customer
buys beer

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs,
Milk

7

Basic Concepts: Association Rules

 Find all the rules X  Y fixing
a minimum support and
confidence
 support, s, probability that

a transaction contains X ∪
Y

 confidence, c, conditional
probability that a
transaction having X also
contains Y

Customer
buys
diaper

Customer
buys both

Customer
buys beer

Nuts, Eggs, Milk40
Nuts, Coffee, Diaper, Eggs, Milk50

Beer, Diaper, Eggs30

Beer, Coffee, Diaper20

Beer, Nuts, Diaper10

Items boughtTid

Association rules: (many more!)
 Beer  Diaper (60%, 100%)
 Diaper  Beer (60%, 75%)

Let minsup = 50%, minconf = 50%
Freq. Pat.: Beer:3, Nuts:3, Diaper:4,
Eggs:3, {Beer, Diaper}:3

8

Closed Patterns and Max-
Patterns

 A (long) pattern contains a combinatorial number
of sub-patterns, e.g., {a1, …, a100} contains

 sub-patterns!
 Idea: restrict to closed and maximal patterns

 An itemset X is a closed p. if X is frequent and
there exists no super-pattern Y ⊃ X, with the
same support as X

 An itemset X is a maximal p. if X is frequent and
there exists no frequent superpattern Y ⊃ X

 Closed pattern is a lossless compression of freq.
Patterns: reducing the # of patterns and rules

(100
1)+(100

2)+...+(100
100)=2100−1=1.27⋅1030

9

Closed Patterns and Max-
Patterns

 Exercise.
DB = {<a1, …, a100>, < a1, …, a50>}

 Min_sup = 1.
 What is the set of closed itemset?

 <a1, …, a100>: 1

 < a1, …, a50>: 2

 What is the set of maximal pattern?
 <a1, …, a100>: 1

 What is the set of all patterns? !!

10

Computational Complexity of Frequent
Itemset Mining

 How many itemsets are potentially to be generated in the worst
case?

 The number of frequent itemsets to be generated is sensitive
to the minsup threshold

 When minsup is low, there exist potentially an exponential
number of frequent itemsets

 The worst case: MN where M: # distinct items, and N: max
length of transactions

 The worst case complexty vs. the expected probability
 Ex. Suppose Walmart has 104 kinds of products

 The chance to pick up one product 10-4

 The chance to pick up a particular set of 10 products: ~10-40

 What is the chance this particular set of 10 products to be
frequent 103 times in 109 transactions?

11

Chapter 5: Mining Frequent Patterns, Association
and Correlations: Basic Concepts and Methods

 Basic Concepts

 Frequent Itemset Mining Methods

 Which Patterns Are Interesting?—Pattern

Evaluation Methods

 Summary

12

Scalable Frequent Itemset Mining
Methods

 Apriori: Candidate Generate&Test Approach

 Improving the Efficiency of Apriori

 FPGrowth: A Frequent Pattern-Growth

Approach

 ECLAT: Frequent Pattern Mining with

Vertical Data Format

13

The Downward Closure Property and
Scalable Mining Methods

 The downward closure property of frequent patterns
 Any subset of a frequent itemset is frequent
 If {beer, diaper, nuts} is frequent, so is {beer,

diaper}
 i.e., every transaction having {beer, diaper, nuts}

also contains {beer, diaper}
 Scalable mining methods: Three major approaches

 Apriori (Agrawal & Srikant@VLDB’94)
 Freq. pattern growth (FPgrowth—Han, Pei & Yin

@SIGMOD’00)
 Vertical data format approach (Charm—Zaki &

Hsiao @SDM’02)

14

Apriori: A Candidate Generate & Test
Approach

 Apriori pruning principle: If there is any itemset
which is infrequent, its superset should not be
generated/tested! (Agrawal & Srikant @VLDB’94,
Mannila, et al. @ KDD’ 94)

 Method:

 Initially, scan DB once to get frequent 1-itemset
 Generate length (k+1) candidate itemsets from

length k frequent itemsets
 Test the candidates against DB

 Terminate when no frequent or candidate set can
be generated

15

The Apriori Algorithm—An Example

Database TDB

1st scan

C1
L1

L2

C2 C2
2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

16

The Apriori Algorithm (Pseudo-
Code)

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=∅; k++) do begin

 Ck+1 = candidates generated from Lk;

 for each transaction t in database do
 increment the count of all candidates in Ck+1

that are contained in t
 Lk+1 = candidates in Ck+1 with enough support

 end
return ∪k Lk;

17

Implementation of Apriori

 How to generate candidates?
 Step 1: self-joining Lk

 Step 2: pruning
 Example of Candidate-generation

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3*L3

 abcd from abc and abd
 acde from acd and ace

 Pruning:
 acde is removed because ade is not in L3

 C4 = {abcd}

18

How to Count Supports of Candidates?

 Why counting supports of candidates is a problem?
 The total number of candidates can be very huge
 Each transaction may contain many candidates

 Method:
 Candidate itemsets are stored in a hash-tree
 Leaf node of hash-tree contains a list of itemsets

and counts
 Interior node contains a hash table
 Subset function: finds all the candidates contained

in a transaction

19

Counting Supports of Candidates
Using Hash Tree

1,4,7

2,5,8

3,6,9
Subset function

2 3 4
5 6 7

1 4 5
1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

Transaction: 1 2 3 5 6

1 + 2 3 5 6

1 2 + 3 5 6

1 3 + 5 6

Build: store only frequent candidates and their count; do it
incrementally while building Lk

Query for a candidate: visit the tree;
Query for an itemset: perform a visit for each sub-itemset;

20

Generating Association Rules from
frequent itemsets

 When all frequent itemsets are found, generate
strong association rules:
 Pick each frequent itemset f, generate all its

nonempty subsets
 For each such subset s, test the rule

 s → (f \ s)
 support(s → (f \ s)) is above the threshold (as f is

frequent by construction)
 confidence (s → (f \ s)) = P((f \ s) | s) =

count(f) / count(s)
 count(f) and count(s) are known, and so

checking is quick

21

Candidate Generation: An SQL
Implementation

 SQL Implementation of candidate generation
 Suppose the items in Lk-1 are listed in an order

 Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 <
q.itemk-1

 Step 2: pruning
forall itemsets c in Ck do

forall (k-1)-subsets s of c do
if (s is not in Lk-1) then delete c from Ck

 Use object-relational extensions like UDFs, BLOBs, and Table
functions for efficient implementation [See: S. Sarawagi, S. Thomas,
and R. Agrawal. Integrating association rule mining with relational
database systems: Alternatives and implications. SIGMOD’98]

22

Scalable Frequent Itemset Mining
Methods

 Apriori: A Candidate Generation-and-Test Approach

 Improving the Efficiency of Apriori

 FPGrowth: A Frequent Pattern-Growth Approach

 ECLAT: Frequent Pattern Mining with Vertical Data

Format

 Mining Close Frequent Patterns and Maxpatterns

23

Further Improvement of the Apriori Method

 Major computational challenges

 Multiple scans of transaction database

 Huge number of candidates

 Tedious workload of support counting for

candidates

 Improving Apriori: general ideas

 Reduce passes of transaction database scans

 Shrink number of candidates

 Facilitate support counting of candidates

Partition: Scan Database Only
Twice

 Any itemset that is potentially frequent in DB must
be frequent in at least one of the partitions of DB
 Scan 1: partition database and find local

frequent patterns
 Scan 2: consolidate global frequent patterns

 A. Savasere, E. Omiecinski and S. Navathe ’95

26

Sampling for Frequent Patterns

 Select a sample of original database, mine

frequent patterns within sample using Apriori

 Scan database once to verify frequent itemsets

found in sample, only borders of closure of

frequent patterns are checked

 Example: check abcd instead of ab, ac, …, etc.

 Scan database again to find missed frequent

patterns

 H. Toivonen. Sampling large databases for

association rules. In VLDB’96

27

Dynamic Itemset Counting:
 Reduce Number of Scans

ABCD

ABC ABD ACD BCD

AB AC BC AD BD CD

A B C D

{}

Itemset lattice

 Once both A and D are determined
frequent, the counting of AD begins

 Once all length-2 subsets of BCD are
determined frequent, the counting of
BCD begins

Transactions

1-itemsets
2-itemsets

…
Apriori

1-itemsets
2-items

3-itemsDIC
S. Brin R. Motwani, J. Ullman,
and S. Tsur. Dynamic itemset
counting and implication
rules for market basket data.
SIGMOD’97

	Slide 1
	Data Mining: Concepts and Techniques (3rd ed.) — Chapter 6 —
	Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods
	What Is Frequent Pattern Analysis?
	Why Is Freq. Pattern Mining Important?
	Basic Concepts: Frequent Patterns
	Basic Concepts: Association Rules
	Closed Patterns and Max-Patterns
	Slide 9
	Computational Complexity of Frequent Itemset Mining
	Slide 11
	Scalable Frequent Itemset Mining Methods
	The Downward Closure Property and Scalable Mining Methods
	Apriori: A Candidate Generation & Test Approach
	The Apriori Algorithm—An Example
	The Apriori Algorithm (Pseudo-Code)
	Implementation of Apriori
	How to Count Supports of Candidates?
	Counting Supports of Candidates Using Hash Tree
	Slide 20
	Candidate Generation: An SQL Implementation
	Slide 22
	Further Improvement of the Apriori Method
	Partition: Scan Database Only Twice
	Sampling for Frequent Patterns
	DIC: Reduce Number of Scans

