Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 11: 20/11/2012

Data Mining: Concepts and Techniques

— Chapter 6 —
 Jiawei Han, Micheline Kamber, and Jian Pei
 University of Illinois at Urbana-Champaign &
 Simon Fraser University
 © 2011 Han, Kamber & Pei. All rights reserved.

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami (1993) in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing ..., Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Frequent Patterns

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs]
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	
,	Customer buys both buys diaper	

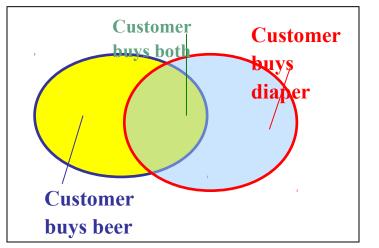
Customer

buys beer

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- *(absolute) support*, or, *support count* of X: number of occurrences of an itemset X in the dataset
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk



Let minsup = 50%, minconf = 50% Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Find all the rules $X \rightarrow Y$ <u>fixing</u> a minimum support and confidence
 - support, s, probability that a transaction contains X U
 Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Association rules: (many more!)

- Beer → Diaper (60%, 100%)
- Diaper \rightarrow Beer (60%, 75%)

Closed Patterns and Max-Patterns

- A (long) pattern contains a combinatorial number of sub-patterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{1} + \binom{100}{2} + ... + \binom{100}{100} = 2^{100} - 1 = 1.27 \cdot 10^{30}$ sub-patterns!
- Idea: restrict to closed and maximal patterns
 - An itemset X is a closed p. if X is frequent and there exists no super-pattern Y ⊃ X, with the same support as X
 - An itemset X is a maximal p. if X is frequent and there exists no frequent superpattern Y ⊃ X
- Closed pattern is a lossless compression of freq.
 Patterns: reducing the # of patterns and rules

Closed Patterns and Max-Patterns

- Exercise.
 DB = { <a₁, ..., a₁₀₀ >, < a₁, ..., a₅₀ > }
 - Min_sup = 1.
- What is the set of closed itemset?

What is the set of maximal pattern?

What is the set of all patterns? !!

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: $\sim 10^{-40}$
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

Scalable Frequent Itemset Mining Methods

- Apriori: Candidate Generate&Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth
 Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format

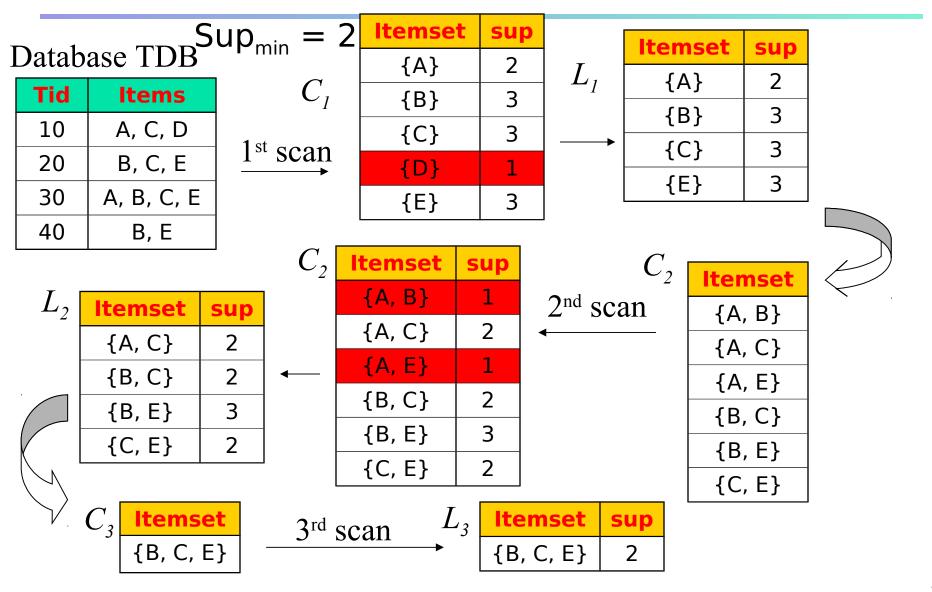
The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset is frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generate & Test Approach

- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example



The Apriori Algorithm (Pseudo-Code)

- *C*_k: Candidate itemset of size k
- L_k : frequent itemset of size k

return $\cup_{k} L_{k}$;

 $L_1 = \{ \text{frequent items} \};$ **for** $(k = 1; L_k != \emptyset; k++)$ **do begin** C_{k+1} = candidates generated from L_k ; for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t L_{k+1} = candidates in C_{k+1} with enough support end

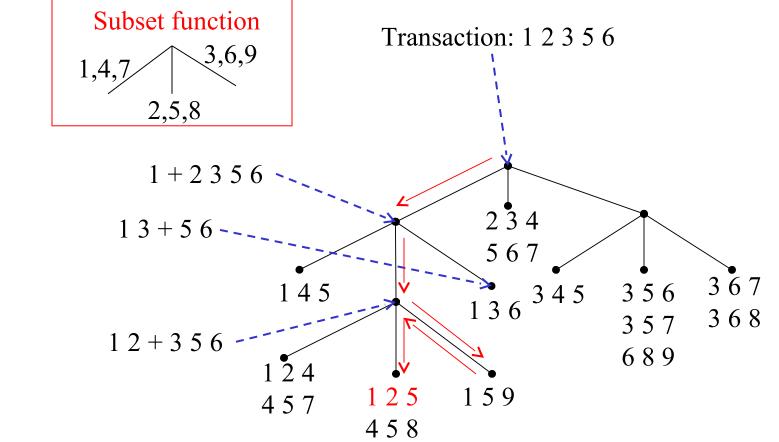
Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - C₄ = {abcd}

How to Count Supports of Candidates?

- Why counting supports of candidates is a problem?
 - The total number of candidates can be very huge
 - Each transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Counting Supports of Candidates Using Hash Tree



<u>Build</u>: store only frequent candidates and their count; do it incrementally while building L_k

<u>Query for a candidate:</u> visit the tree; <u>Query for an itemset:</u> perform a visit for each sub-itemset;

Generating Association Rules from frequent itemsets

- When all frequent itemsets are found, generate strong association rules:
 - Pick each frequent itemset f, generate all its nonempty subsets
 - For each such subset s, test the rule

s → (f \ s)

- support(s → (f \ s)) is above the threshold (as f is frequent by construction)
- - count(f) and count(s) are known, and so checking is quick

Candidate Generation: An SQL Implementation

- SQL Implementation of candidate generation
 - Suppose the items in L_{k1} are listed in an order
 - Step 1: self-joining L_{k-1}
 - insert into C_k
 - select *p.item*₁, *p.item*₂, ..., *p.item*_{k1}, *q.item*_{k1}
 - from $\boldsymbol{L}_{k\cdot 1}$ \boldsymbol{p} , $\boldsymbol{L}_{k\cdot 1}$ \boldsymbol{q}

where $p.item_1 = q.item_1$, ..., $p.item_{k2} = q.item_{k2}$, $p.item_{k1} < q.item_{k1}$

Step 2: pruning

forall *itemsets c in C*_k do

forall (k-1)-subsets s of c do

if (s is not in L_{k-1}) then delete c from C_k

 Use object-relational extensions like UDFs, BLOBs, and Table functions for efficient implementation [See: S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98]

Scalable Frequent Itemset Mining Methods

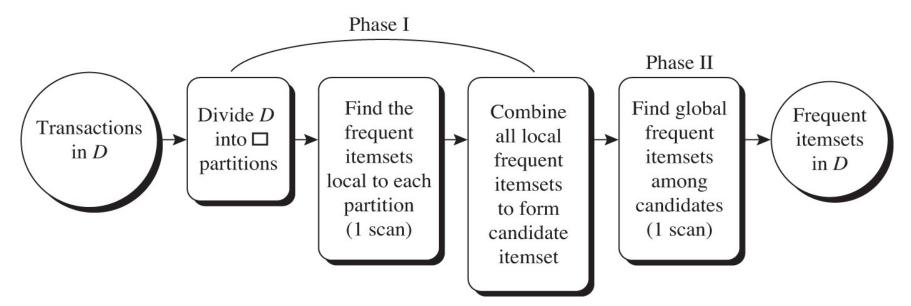
- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data
 Format
- Mining Close Frequent Patterns and Maxpatterns

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

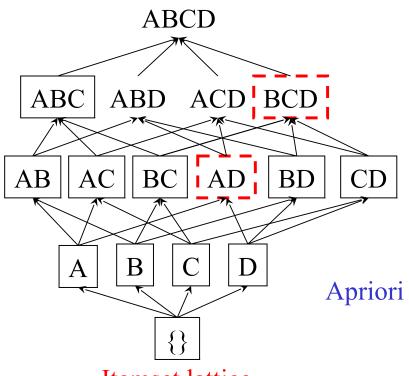
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski and S. Navathe '95



Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only *borders* of closure of frequent patterns are checked
 - Example: check abcd instead of ab, ac, ..., etc.
- Scan database again to find missed frequent patterns
- H. Toivonen. Sampling large databases for association rules. In VLDB'96

Dynamic Itemset Counting: Reduce Number of Scans



Itemset lattice

S. Brin R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset DIC counting and implication rules for market basket data. SIGMOD'97

- Once both A and D are determined frequent, the counting of AD begins
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins

