
Università degli Studi di Milano
Master Degree in Computer Science

Information Management 
course

Teacher: Alberto Ceselli

Lecture 09: 13/11/2012



22

L. C. Molina, L. Belanche, A. Nebot
“Feature Selection Algorithms: A Survey and 
Experimental Evaluation”, IEEE ICDM (2002)

and

L. Belanche, F. Gonzales “Review and 
Evaluation of Feature Selection Algorithms in 
Synthetic Problems”, arXiv – available online 
(2011)



3

Feature Selection Algorithms

 Introduction

 Relevance of a feature

 Algorithms

 Description of fundamental FSAs

 Generating weighted feature orders

 Empirical and experimental evaluation



4

Algorithms for Feature Selection
 A FSA can be seen as a “computational approach to a 

definition of relevance”
 Let X be the original set of features, |X| = n
 Let J(X') be an evaluation measure to be optimized:

J: X'⊆X → ℝ

(1)Set |X'| = m < n; find X' ⊂ X such that J(X') is maximum

(2)Set a value J0; find X' ⊂ X such that |X'| is minimum, and 
J(X') ≥ J0

 Find a compromise between (1) and (2)
 Remark: an optimal subset of features in not necessarily 

unique
 Characterization of FSAs
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Characterization of FSAs
search organization

 General strategy with which the space of hypothesis is 
explored

 Search space: all possible subsets of features
 A partial order in the search space can be defined, as

S1 ≺ S2 if S1 ⊂ S2
 Aim of search: explore only a part of all subsets of features 

→  for each subset relevance should be upper and lower 
bounded (estimates or heuristics)

 Let L be a (labeled) list of (weighted) subsets of features 
→ states

 L maintains the current list of (partial) solutions, and the 
labels indicate the corresponding evaluation measure
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Characterization of FSAs
search organization

We consider three types of search:
 Exponential search (|L| > 1):

 Search cost O(2n)
 Extreme case: exhaustive search
 If given S1 and S2 with S1 ⊆ S2 then J(S1) ≥ J(S2)

→ then J() is monotonic and branch-and-bound is optimal!
 A* with heuristics is another option

 Sequential search (|L| = 1):
 Start with a certain state and select a certain successor
 Never backtrack
 Search cost is polynomial, but no optimality guarantee

 Random search (|L| > 1):
 Pick a state and change it somehow (local search)
 Escape from local minima with random (worsening) moves
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Characterization of FSAs
generation of successors

Five operators can be used to move from a state to the next
 Forward: start with X' = empty set

 Given a state X', pick a feature x ∉ X' such that
J(X' U {x}) is largest

 Stop when J(X' U {x}) = J(X'), or |X'| = certain card., or …
 Backward: start with X' = X

 Given a state X', pick a feature x ∊ X such that
J(X' \ {x}) is largest

 Stop when J(X' \ {x}) = J(X'), or |X'| = certain card., or …
 Generalized Forward and Backward: consider sets of features 

for addition / removal at each step
 Compound: perform f consecutive forward moves and b 

consecutive backward moves
 Random
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Characterization of FSAs
evaluation measures

 Several problem dependent approaches
 What counts is the relative values assigned to different 

subsets: e.g. classification
 Probability of error: what's the behavior of a classifier 

using the subset of features?
 Divergence: probabilistic distance among the class-

conditional probability densities
 Dependence: covariance or correlation coefficients
 Interclass distance: e.g. dissimilarity
 Information or Uncertainty: exploit entropy 

measurements on single features
 Consistency: an inconsistency in X' and S is defined as 

two instances in S that are equal when considering only 
the features in X', but actually belong to different classes 
(aim: find the minimum subset of features leading to 
zero inconsistencies)
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Characterization of FSAs
evaluation measures

 Example: Consistency
 an inconsistency in X' and S is defined as two instances 

in S that are equal when considering only the features in 
X', but actually belong to different classes (aim: find the 
minimum subset of features leading to zero 
inconsistencies)

ICX'(A) = X'(A) – maxk X'k(A)

X'(A) = number of instances of S equal to A when only 
the features in X' are considered

X'k(A) = number of instances of S of class k equal to A 
when only the features in X' are considered

 Inconsistency rate:

IR(X') = ∑A∊S ICX'(A) / |S|

 J(X') = 1 / ( IR(X') + 1 )
 N.B. IR is a monotonic measure
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General schemes for feature selection

 Main forms of relation between FSA and “inducer”
 Embedded scheme: the external method has its own FSA 

(e.g. decision trees or ANN)
 Filter scheme: the feature selection takes place before 

the induction step
 Wrapper scheme: FSA uses subalgorithms (e.g. learning 

algorithms) as internal routines  
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General algorithm for feature selection
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Characterization of a FSA

Each algo can be represented as a triple <Org, GS, J>
 Org: search organization
 GS: Generation of Successors
 J: Evaluation measure
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Las Vegas Filter (LVF) <random, random, any>
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Las Vegas Incremental (LVI) <random, random, consist.>

Rule of thumb: p = 10%
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SBG/SFG <sequential, F/B, any>
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SBG/SFG <sequential, F/B, any>
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Focus <exponential, forward, consist.>
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Sequential Floating FS <exponential, F+B, consist.>
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(Auto) branch&bound <exponential,backward,monotonic>
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Quick branch&bound <rndm/exp,rndm/back,monotonic>

 Use LVF to find a good solution
 Use ABB to explore efficiently the remaining 
search space
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Relief <random, weighting, distance>

Random_Element

Closest element to A in 
S in the same (hit) or a 
different (miss) class
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