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Algorithms for Feature Selection

= A FSA can be seen as a “computational approach to a
definition of relevance”

= Let X be the original set of features, |X| =n
= Let J(X"') be an evaluation measure to be optimized:
J: X'eX-R
(1)Set |[X'| = m < n; find X' € X such that J(X') is maximum
(2)Set a value J; find X' € X such that |X'| is minimum, and
JIX') = ],
= Find a compromise between (1) and (2)

= Remark: an optimal subset of features in not necessarily
unique

= Characterization of FSAs
= Search organization
= Generation of successors
= Evaluation measure



Characterization of FSAs
search organization

General strategy with which the space of hypothesis is
explored

Search space: all possible subsets of features

A partial order in the search space can be defined, as
S1 <S2ifS1 cS2

Aim of search: explore only a part of all subsets of features
— for each subset relevance should be upper and lower
bounded (estimates or heuristics)

= Let L be a (labeled) list of (weighted) subsets of features
— States

= L maintains the current list of (partial) solutions, and the
labels indicate the corresponding evaluation measure
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Figure 1. States in the binary search space
involving 4 features. A black square repre-
sents the inclusion of a feature in the state
and a white square represents its exclusion.



Characterization of FSAs
search organization

We consider three types of search:

Exponential search (|L| > 1):

= Search cost O(2")

= Extreme case: exhaustive search

= |f given S1 and S2 with S1 € S2 then J(S1) = J(52)

— then J() is monotonic and branch-and-bound is optimal!

= A* with heuristics is another option

Sequential search (|L| = 1):

= Start with a certain state and select a certain successor

= Never backtrack

= Search cost is polynomial, but no optimality guarantee
Random search (|L| > 1):

= Pick a state and change it somehow (local search)

= Escape from local minima with random (worsening) moves




Characterization of FSAs
generation of successors

Five operators can be used to move from a state to the next
Forward: start with X' = empty set

= Given a state X', pick a feature x & X' such that
J(X"'U {x}) is largest

= Stop when J(X' U {x}) = J(X"), or |X'| = certain card., or ...
Backward: start with X' = X

= Given a state X', pick a feature x € X such that
J(X"\ {x}) is largest

= Stop when J(X"\ {x}) = J(X'), or |X'| = certain card., or ...

Generalized Forward and Backward: consider sets of features
for addition / removal at each step

Compound: perform f consecutive forward moves and b
consecutive backward moves

Random



Characterization of FSAs
evaluation measures

= Several problem dependent approaches

= What counts is the relative values assigned to different
subsets: e.qg. classification

Probability of error: what's the behavior of a classifier
using the subset of features?

Divergence: probabilistic distance among the class-
conditional probability densities

Dependence: covariance or correlation coefficients
Interclass distance: e.qg. dissimilarity

Information or Uncertainty: exploit entropy
measurements on single features

Consistency: an inconsistency in X' and S is defined as
two instances in S that are equal when considering only
the features in X', but actually belong to different classes
(aim: find the minimum subset of features leading to
zero inconsistencies)



Characterization of FSAs
evaluation measures

Example: Consistency
= an inconsistency in X' and S is defined as two instances

In S that are equal when considering only the features in
X', but actually belong to different classes (aim: find the
minimum subset of features leading to zero
inconsistencies)

IC (A) = X'(A) - max, X' (A)

X'(A) = number of instances of S equal to A when only
the features in X' are considered

X' (A) = number of instances of S of class k equal to A

when only the features in X' are considered

" |nconsistency rate:

IR(X") = 3, IC(A) / |S]

= J(X)=1/(IR(X")+ 1)
N.B. IR is a monotonic measure
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General schemes for feature selection

Main forms of relation between FSA and “inducer”

= Embedded scheme: the external method has its own FSA
(e.g. decision trees or ANN)

= Filter scheme: the feature selection takes place before
the induction step

= Wrapper scheme: FSA uses subalgorithms (e.g. learning
algorithms) as internal routines
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General algorithm for feature selection

Input:
S — data sample with features X, |X|=mn
J — evaluation measure to be maximized
GS — successor generation operator
Output:
Solution — (weighed) feature subset

L:= Start Point(X):

Solution := {best of L according to .J}:
repeat
L:= Search Strategy (L,GS(J),X):
X' := {best of L according to .J}:

if J(X") > J(Solution) or (J(X')= J(Solution)
and |X'| < |Solution|)
then Solution := X'
until Stop(.J, L)
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Characterization of a FSA

Each algo can be represented as a triple <Org, GS, |>
= Org: search organization

= GS: Generation of Successors

= |: Evaluation measure

Evaluation Measure

—Divergence
—Accuracy
—Consistency
—Information
—Dependence
—Distance

Exp?neutial Seqlueu‘rial Random

Forward Search
Backward Organization
‘ompound
Weighting
Random

Generation of
Successors
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Las Vegas Filter (LVF) <random, random, any>

Input:
maz — the maximum number of 1terations
J — evaluation measure
S(X) — a sample § described by X . |[X|=mn
Output:
IL — all equivalent solutions found
L =[] /| L stores equally good sets
Best := X /| Initialize best solution
Jo = J(S(X)) /! minimum allowed value of J

repeat maxr times
X" := Random_SubSet(Best) //|X'| < |Best|
if J(S(X'))>.J, then
if |X'| <|Best| then
Best = X'
L = [X'] /1 L is reinitialized
else if |X'| =|Best| then
I. := append(L,X")
end
end
end
end




LaS VegaS Incremental (LVI) <random, random, consist.>

Input:
max — the maximum number of iterations
J — evaluation measure
S(X) — a sample S described by X,|X|=n
p — 1nitial percentage

Output:
X" — solution found

So := portion (S,p) // Initial portion

S1 = S\ S /] Testset

Jo = J(S(X)) /| Minimum allowed value of J

repeat forever
X" := LVF (max, J,So(X))
if J(S(X'))>.Jy then stop

else
C := {elements 1n S; with low
contribution to .J using X'}
So = SouC
S1 = 51\0

end Rule of thumb: p = 10%

end




S BG/S FG <sequential, F/B, any>

Input:
S(X) — a sample S described by X,
J — evaluation measure

Output:
X" — solution found

X

= T

X' =0 //forward
X' =X [//backward
repeat
' = argmazx{J(S(X"'U{x})) |z e X\ X"} //forward
' = argmazx{J(S(X'\{z})) |z € X'} [//backward
X':=X"U{z"} /! forward
X' = X"\ {2} //backward
until no improvement 1n .J 1n last j steps
or X' =X [/forward
or X' =0 //backward
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S BG/S FG <sequential, F/B, any>

Input:
S(X) — a sample S described by X,
J — evaluation measure

Output:
X" — solution found

X

= T

X' =0 //forward
X' =X [//backward
repeat
' = argmazx{J(S(X"'U{x})) |z e X\ X"} //forward
' = argmazx{J(S(X'\{z})) |z € X'} [//backward
X':=X"U{z"} /! forward
X' = X"\ {2} //backward
until no improvement 1n .J 1n last j steps
or X' =X [/forward
or X' =0 //backward
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FOCUS <exponential, forward, consist.>

Input:
S(X) — a sample S described by X,|X|=n
J — evaluation measure (consistency)
Jo — minimum allowed value of .J
Output:
X" — solution found

for i€ [l.n] do
for each X' C X, with |[X'| =i do
if J(S(X'))>.o then stop
end
end
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Sequent|a| FlOat|ng FS <exponential, F+B, consist.>

Input:
S(X) — a sample § described by X, |X| =n
J — evaluation measure
d — desired size of the solution
D — maximum deviation allowed with
respect to d
Output:
solution of size d+ D
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feature bacle

Apply a step
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exclude a feature
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(AUtO) bl‘anCh&bOund <exponential,backward,monotonic>

Input:
S(X) a sample S described by X,|X|=mn
J evaluation measure (monotonic)
Output:
I all equivalent solutions found
procedure ABB (S(X): sample; var L': list
of set)
for each » 1n X do
enqueue ((J, X \ {x}) [/ remove a feature at a time
end
while not empty(()) do
X':= dequeue (Q)
/1 X' is legitimate if it is not a subset of a pruned state
I':= append(L', X")
ABB(S{X'), L")

end
end
end
begin
Q=1 /'l Queue of pending states
I = |[X] /I List of solutions

Jo = J(S(X)) // Minimum allowed value of J

ABB (S{(X),L") 1/ mitial call to ABB

k:= smallest size of a subset in I’

I.:= set of elements of L' of size k
end
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QL“CI( branCh&bOu nd <rndm/exp,rndm/back,monotonic>

= Use LVF to find a good solution
= Use ABB to explore efficiently the remaining
search space
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Figure 2. A path of states in the continu-
ous search space involving 4 features. Rele-
vances are represented as a degree of filling.



Re|IEf <random, weighting, distance>

Input:
p — sampling percentage
d — distance measure

S(X) — a sample S described by X, |X|=mn
Output:
W — array of feature weights

initialize W [] to zero

do p|S| times Closest element to A in

A := Random_Element :/ S in the same (hit) or a
A o= Near—Hit (A.S) i i

different (miss) class

Anm = Near—Miss (A, 9)
for each i €[l..n] do
Wi o= Wi + di (A, Aun) — di(A, Aur)
end
end
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