Universita degli Studi di Milano
Master Degree in Computer Science

Information Management
course

Teacher: Alberto Ceselll

Lecture 09: 13/11/2012

L. C. Molina, L. Belanche, A. Nebot
“Feature Selection Algorithms: A Survey and
Experimental Evaluation”, IEEE ICDM (2002)

and

L. Belanche, F. Gonzales “Review and
Evaluation of Feature Selection Algorithms in
Synthetic Problems”, arXiv - available online
(2011)

Feature Selection Algorithms

Introduction

Relevance of a feature

Algorithms ¢

Description of fundamental FSAs
Generating weighted feature orders

Empirical and experimental evaluation

Algorithms for Feature Selection

= A FSA can be seen as a “computational approach to a
definition of relevance”

= Let X be the original set of features, |X| =n
= Let J(X"') be an evaluation measure to be optimized:
J: X'eX-R
(1)Set |[X'| = m < n; find X' € X such that J(X') is maximum
(2)Set a value J; find X' € X such that |X'| is minimum, and
JIX') =],
= Find a compromise between (1) and (2)

= Remark: an optimal subset of features in not necessarily
unique

= Characterization of FSAs
= Search organization
= Generation of successors
= Evaluation measure

Characterization of FSAs
search organization

General strategy with which the space of hypothesis is
explored

Search space: all possible subsets of features

A partial order in the search space can be defined, as
S1 <S2ifS1 cS2

Aim of search: explore only a part of all subsets of features
— for each subset relevance should be upper and lower
bounded (estimates or heuristics)

= Let L be a (labeled) list of (weighted) subsets of features
— States

= L maintains the current list of (partial) solutions, and the
labels indicate the corresponding evaluation measure

I

| |

RN ool | (e]

] o (B | (W (W |

] e (] (el |

W (A
||

Figure 1. States in the binary search space
involving 4 features. A black square repre-
sents the inclusion of a feature in the state
and a white square represents its exclusion.

Characterization of FSAs
search organization

We consider three types of search:

Exponential search (|L| > 1):

= Search cost O(2")

= Extreme case: exhaustive search

= |f given S1 and S2 with S1 € S2 then J(S1) = J(52)

— then J() is monotonic and branch-and-bound is optimal!

= A* with heuristics is another option

Sequential search (|L| = 1):

= Start with a certain state and select a certain successor

= Never backtrack

= Search cost is polynomial, but no optimality guarantee
Random search (|L| > 1):

= Pick a state and change it somehow (local search)

= Escape from local minima with random (worsening) moves

Characterization of FSAs
generation of successors

Five operators can be used to move from a state to the next
Forward: start with X' = empty set

= Given a state X', pick a feature x & X' such that
J(X"'U {x}) is largest

= Stop when J(X' U {x}) = J(X"), or |X'| = certain card., or ...
Backward: start with X' = X

= Given a state X', pick a feature x € X such that
J(X"\ {x}) is largest

= Stop when J(X"\ {x}) = J(X'), or |X'| = certain card., or ...

Generalized Forward and Backward: consider sets of features
for addition / removal at each step

Compound: perform f consecutive forward moves and b
consecutive backward moves

Random

Characterization of FSAs
evaluation measures

= Several problem dependent approaches

= What counts is the relative values assigned to different
subsets: e.qg. classification

Probability of error: what's the behavior of a classifier
using the subset of features?

Divergence: probabilistic distance among the class-
conditional probability densities

Dependence: covariance or correlation coefficients
Interclass distance: e.qg. dissimilarity

Information or Uncertainty: exploit entropy
measurements on single features

Consistency: an inconsistency in X' and S is defined as
two instances in S that are equal when considering only
the features in X', but actually belong to different classes
(aim: find the minimum subset of features leading to
zero inconsistencies)

Characterization of FSAs
evaluation measures

Example: Consistency
= an inconsistency in X' and S is defined as two instances

In S that are equal when considering only the features in
X', but actually belong to different classes (aim: find the
minimum subset of features leading to zero
inconsistencies)

IC (A) = X'(A) - max, X' (A)

X'(A) = number of instances of S equal to A when only
the features in X' are considered

X' (A) = number of instances of S of class k equal to A

when only the features in X' are considered

" |nconsistency rate:

IR(X") = 3, IC(A) / |S]

= J(X)=1/(IR(X")+ 1)
N.B. IR is a monotonic measure

10

General schemes for feature selection

Main forms of relation between FSA and “inducer”

= Embedded scheme: the external method has its own FSA
(e.g. decision trees or ANN)

= Filter scheme: the feature selection takes place before
the induction step

= Wrapper scheme: FSA uses subalgorithms (e.g. learning
algorithms) as internal routines

11

General algorithm for feature selection

Input:
S — data sample with features X, |X|=mn
J — evaluation measure to be maximized
GS — successor generation operator
Output:
Solution — (weighed) feature subset

L:= Start Point(X):

Solution := {best of L according to .J}:
repeat
L:= Search Strategy (L,GS(J),X):
X' := {best of L according to .J}:

if J(X") > J(Solution) or (J(X')= J(Solution)
and |X'| < |Solution|)
then Solution := X'
until Stop(.J, L)

12

Characterization of a FSA

Each algo can be represented as a triple <Org, GS, |>
= Org: search organization

= GS: Generation of Successors

= |: Evaluation measure

Evaluation Measure

—Divergence
—Accuracy
—Consistency
—Information
—Dependence
—Distance

Exp?neutial Seqlueu‘rial Random

Forward Search
Backward Organization
‘ompound
Weighting
Random

Generation of
Successors

13

Feature Selection Algorithms

Introduction

Relevance of a feature

Algorithms

Description of fundamental FSAS‘
Generating weighted feature orders

Empirical and experimental evaluation

14

Las Vegas Filter (LVF) <random, random, any>

Input:
maz — the maximum number of 1terations
J — evaluation measure
S(X) — a sample § described by X . |[X|=mn
Output:
IL — all equivalent solutions found
L =[] /| L stores equally good sets
Best := X /| Initialize best solution
Jo = J(S(X)) /! minimum allowed value of J

repeat maxr times
X" := Random_SubSet(Best) //|X'| < |Best|
if J(S(X'))>.J, then
if |X'| <|Best| then
Best = X'
L = [X'] /1 L is reinitialized
else if |X'| =|Best| then
I. := append(L,X")
end
end
end
end

LaS VegaS Incremental (LVI) <random, random, consist.>

Input:
max — the maximum number of iterations
J — evaluation measure
S(X) — a sample S described by X,|X|=n
p — 1nitial percentage

Output:
X" — solution found

So := portion (S,p) // Initial portion

S1 = S\ S /] Testset

Jo = J(S(X)) /| Minimum allowed value of J

repeat forever
X" := LVF (max, J,So(X))
if J(S(X'))>.Jy then stop

else
C := {elements 1n S; with low
contribution to .J using X'}
So = SouC
S1 = 51\0

end Rule of thumb: p = 10%

end

S BG/S FG <sequential, F/B, any>

Input:
S(X) — a sample S described by X,
J — evaluation measure

Output:
X" — solution found

X

= T

X' =0 //forward
X' =X [//backward
repeat
' = argmazx{J(S(X"'U{x})) |z e X\ X"} //forward
' = argmazx{J(S(X'\{z})) |z € X'} [//backward
X':=X"U{z"} /! forward
X' = X"\ {2} //backward
until no improvement 1n .J 1n last j steps
or X' =X [/forward
or X' =0 //backward

17

S BG/S FG <sequential, F/B, any>

Input:
S(X) — a sample S described by X,
J — evaluation measure

Output:
X" — solution found

X

= T

X' =0 //forward
X' =X [//backward
repeat
' = argmazx{J(S(X"'U{x})) |z e X\ X"} //forward
' = argmazx{J(S(X'\{z})) |z € X'} [//backward
X':=X"U{z"} /! forward
X' = X"\ {2} //backward
until no improvement 1n .J 1n last j steps
or X' =X [/forward
or X' =0 //backward

18

FOCUS <exponential, forward, consist.>

Input:
S(X) — a sample S described by X,|X|=n
J — evaluation measure (consistency)
Jo — minimum allowed value of .J
Output:
X" — solution found

for i€ [l.n] do
for each X' C X, with |[X'| =i do
if J(S(X'))>.o then stop
end
end

19

Sequent|a| FlOat|ng FS <exponential, F+B, consist.>

Input:
S(X) — a sample § described by X, |X| =n
J — evaluation measure
d — desired size of the solution
D — maximum deviation allowed with
respect to d
Output:
solution of size d+ D

Futthe
exzcluded
feature bacle

Apply a step
of ZFGusing

ST

Conditionall v

exclude a feature

found applwng Ezclude the
a step of SBG feature
nsing =0T permman ently

Iz

this the best
subset of k-1

o

features found
s fary

20

(AUtO) bl‘anCh&bOund <exponential,backward,monotonic>

Input:
S(X) a sample S described by X,|X|=mn
J evaluation measure (monotonic)
Output:
I all equivalent solutions found
procedure ABB (S(X): sample; var L': list
of set)
for each » 1n X do
enqueue ((J, X \ {x}) [/ remove a feature at a time
end
while not empty(()) do
X':= dequeue (Q)
/1 X' is legitimate if it is not a subset of a pruned state
I':= append(L', X")
ABB(S{X'), L")

end
end
end
begin
Q=1 /'l Queue of pending states
I = |[X] /I List of solutions

Jo = J(S(X)) // Minimum allowed value of J

ABB (S{(X),L") 1/ mitial call to ABB

k:= smallest size of a subset in I’

I.:= set of elements of L' of size k
end

21

QL“CI(branCh&bOu nd <rndm/exp,rndm/back,monotonic>

= Use LVF to find a good solution
= Use ABB to explore efficiently the remaining
search space

22

Feature Selection Algorithms

Introduction

Relevance of a feature

Algorithms

Description of fundamental FSAs
Generating weighted feature orders

Empirical and experimental evaluation

23

LOEE EOEE o)

Celn. @rEn / Fems) \
oo ——\],.f p—
00 \Cwom) EEED

0 WPEEm [ComO

-
- - -

Figure 2. A path of states in the continu-
ous search space involving 4 features. Rele-
vances are represented as a degree of filling.

Re|IEf <random, weighting, distance>

Input:
p — sampling percentage
d — distance measure

S(X) — a sample S described by X, |X|=mn
Output:
W — array of feature weights

initialize W [] to zero

do p|S| times Closest element to A in

A := Random_Element :/ S in the same (hit) or a
A o= Near—Hit (A.S) i i

different (miss) class

Anm = Near—Miss (A, 9)
for each i €[l..n] do
Wi o= Wi + di (A, Aun) — di(A, Aur)
end
end

25

	Slide 1
	Data Mining: Concepts and Techniques (3rd ed.) — Chapter 4 —
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

