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Data (Dimension) Reduction

 In large datasets it is unlikely that all attributes are 
independent: multicollinearity

 Worse mining quality:
 Instability in multiple regression (significant overall, but 

poor wrt significant attributes)
 Overemphasize particular attributes (multiple counts)
 Violates principle of parsimony (too many unnecessary 

predictors in a relation with a response var)
 Curse of dimensionality:

 Sample size needed to fit a multivariate function 
grows exponentially with number of attributes

 e.g. in 1-dimensional distrib. 68% of normally 
distributed values lie between -1 and 1; in 10-
dimensional distrib. only 0.02%  within the radius 1 
hypersphere



Principal Component Analysis (PCA)

 Try to explain correlation using a small set of 
linear combination of attributes

 Geometrically:
 Look at the attributes as variables forming a 

coordinate system
 Principal Components are a new coordinate 

system, found by rotating the original 
system along the directions of maximum 
variability



PCA – Step 1: standardize data

 Notation (review):
 Dataset with n rows and m columns
 Attributes (columns): Xi
 Mean of each attrib:

 Variance of each attrib:

 Covariance between two attrib:

 Correlation coefficient:
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PCA – Step 1: standardize data

 Definitions
 Standard Deviation Matrix:

 (Symmetric) Covariance Matrix:

 Correlation Matrix:

 Standardization in matrix form:

 N.B. E(Z) = vector of zeros; Cov(Z) = ρ

V 1 /2=[
σ11 0 ... 0
0 σ22 ... ...
... ... ... ...
... ... ... σmm

]
Cov=[

σ11
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2 ... σ1m
2
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2

... ... ... ...

... ... ... σmm
2 ]

Z=(V 1 /2)−1( X−μ) Z ik=(X k
i−μi)/σii

ρ=[r ij]



PCA – Step 2: compute 
eigenvalues and eigenvectors

 Eigenvalues of ρ are
 scalars λ1 ... λm such that
 det(ρ – λI) = 0

 Given a matrix ρ and its eigenvalue λi,
 ei is a corresponding eigenvector if
 ρ ei = λiei

 We are interested in eigenvalues / 
eigenvectors of the correlation matrix



PCA – Step 3: compute principal 
components

 Consider the vectors
 Yi = ei

T Z

 e.g. Y1 = e11 Z1 + e12 Z2 + … + e1m Zm

 Sort Yi by value of variance:

 Var(Yi) = ei
T ρ ei

 Then

1)Start with an empty sequence of principal 
components

2)Select the vector ei that

1)maximizes Var(Yi)

2)Is independent from all selected components

3)Goto (2)



PCA – Properties
 Property 1: The total variability in the standardized 

data set 
 equals the sum of the variances for each Z-

vector,
 which equals the sum of the variances for each 

component,
 which equals the sum of the eigenvalues, 
 Which equals the number of variables

∑i=1

m

Var (Y i)=∑i=1

m

Var (Z i)=∑i=1

m

λi=m



PCA – Properties
 Property 2: The partial correlation between a given 

component and a given variable is a function of an 
eigenvector and an eigenvalue.
 In particular, Corr(Yi, Zj) = eij sqrt(λi)

 Property 3: The proportion of the total variability in 
Z that is explained by the ith principal component 
is the ratio of the ith eigenvalue to the number of 
variables,
  that is the ratio λi/m



PCA – Experiment on real data
 Open R and read “cadata.txt”
 Keep first attribute (say 0) as response, remaining 

ones as predictors
 Know Your Data: Barplot and scatterplot attributes
 Normalize Data
 Scatterplot normalized data
 Compute correlation matrix
 Compute eigenvalues and eigenvectors
 Compute components (eigenvectors) – attribute 

correlation matrix
 Compute cumulative variance explained by 

principal components
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