Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 06: 24/10/2012

Data Mining: Methods and Models

— Chapter 1 — Daniel T. Larose © 2006 John Wiley and Sons

Data (Dimension) Reduction

- In large datasets it is unlikely that all attributes are independent: multicollinearity
- Worse mining quality:
 - Instability in multiple regression (significant overall, but poor wrt significant attributes)
 - Overemphasize particular attributes (multiple counts)
 - Violates principle of parsimony (too many unnecessary predictors in a relation with a response var)
- Curse of dimensionality:
 - Sample size needed to fit a multivariate function grows exponentially with number of attributes
 - e.g. in 1-dimensional distrib. 68% of normally distributed values lie between -1 and 1; in 10dimensional distrib. only 0.02% within the radius 1 hypersphere

Principal Component Analysis (PCA)

- Try to explain correlation using a small set of linear combination of attributes
- Geometrically:
 - Look at the attributes as variables forming a coordinate system
 - Principal Components are a new coordinate system, found by rotating the original system along the directions of maximum variability

PCA - Step 1: standardize data

- Notation (review):
 - Dataset with n rows and m columns
 - Attributes (columns): Xi
 - Mean of each attrib:
 - Variance of each attrib:

$$\mu_{i} = \frac{1}{n} \sum_{j=1}^{n} X_{j}^{i}$$

$$\sigma_{ii}^{2} = \frac{1}{n} \sum_{j=1}^{n} (X_{j}^{i} - \mu_{i})^{2}$$

Covariance between two attrib:

$$\sigma_{ij}^{2} = \frac{1}{n} \sum_{k=1}^{n} (X_{k}^{i} - \mu_{i}) \cdot (X_{k}^{j} - \mu_{j})$$

• Correlation coefficient:

$$r_{ij} = \frac{\sigma_{ij}^2}{\sigma_{ii}\sigma_{ji}}$$

PCA - Step 1: standardize data

Definitions

- Standard Deviation Matrix:
- (Symmetric) Covariance Matrix:
- Correlation Matrix:

 $\rho = [r_{ij}]$

Standardization in matrix form:

 $Z = (V^{1/2})^{-1} (X - \mu) \qquad \qquad Z_{ik} = (X_k^i - \mu_i) / \sigma_{ii}$

• N.B. $E(Z) = vector of zeros; Cov(Z) = \rho$

$$V^{1/2} = \begin{vmatrix} \sigma_{11} & 0 & \dots & 0 \\ 0 & \sigma_{22} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \sigma_{mm} \end{vmatrix}$$
$$Cov = \begin{vmatrix} \sigma_{11}^{2} & \sigma_{12}^{2} & \dots & \sigma_{1m}^{2} \\ \sigma_{21}^{2} & \sigma_{22}^{2} & \dots & \sigma_{2m}^{2} \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \sigma_{mm}^{2} \end{vmatrix}$$

PCA - Step 2: compute eigenvalues and eigenvectors

- Eigenvalues of ρ are
 - ${\scriptstyle \bullet}$ scalars $\lambda_1 \hdots \lambda_m$ such that
 - det($\rho \lambda I$) = 0
- Given a matrix ρ and its eigenvalue λ_i ,
 - e_i is a corresponding eigenvector if
 - $\rho e_i = \lambda_i e_i$
- We are interested in eigenvalues / eigenvectors of the correlation matrix

PCA - Step 3: compute principal components

Consider the vectors

•
$$Y_i = e_i^T Z$$

- e.g. $Y_1 = e_{11} Z_1 + e_{12} Z_2 + ... + e_{1m} Z_m$
- Sort Y_i by value of variance:
 - Var(Y_i) = $e_i^T \rho e_i$
- Then
 - 1)Start with an empty sequence of principal components
 - 2)Select the vector e_i that
 - 1)maximizes Var(Y_i)
 - 2)Is independent from all selected components
 - 3)Goto (2)

PCA - Properties

- Property 1: The total variability in the standardized data set
 - equals the sum of the variances for each Zvector,
 - which equals the sum of the variances for each component,
 - which equals the sum of the eigenvalues,
 - Which equals the number of variables

$$\sum_{i=1}^{m} Var(Y_{i}) = \sum_{i=1}^{m} Var(Z_{i}) = \sum_{i=1}^{m} \lambda_{i} = m$$

PCA - Properties

- Property 2: The partial correlation between a given component and a given variable is a function of an eigenvector and an eigenvalue.
 - In particular, $Corr(Y_i, Z_j) = e_{ij} sqrt(\lambda_i)$
- Property 3: The proportion of the total variability in Z that is explained by the ith principal component is the ratio of the ith eigenvalue to the number of variables,
 - that is the ratio λ_i/m

PCA - Experiment on real data

- Open R and read "cadata.txt"
- Keep first attribute (say 0) as response, remaining ones as predictors
- Know Your Data: Barplot and scatterplot attributes
- Normalize Data
- Scatterplot normalized data
- Compute correlation matrix
- Compute eigenvalues and eigenvectors
- Compute components (eigenvectors) attribute correlation matrix
- Compute cumulative variance explained by principal components