Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 06: 24/10/2012

Data Mining: Methods and Models

- Chapter 1 -

Daniel T. Larose
© 2006 John Wiley and Sons

Data (Dimension) Reduction

- In large datasets it is unlikely that all attributes are independent: multicollinearity
- Worse mining quality:
- Instability in multiple regression (significant overall, but poor wrt significant attributes)
- Overemphasize particular attributes (multiple counts)
- Violates principle of parsimony (too many unnecessary predictors in a relation with a response var)
- Curse of dimensionality:
- Sample size needed to fit a multivariate function grows exponentially with number of attributes
- e.g. in 1-dimensional distrib. 68\% of normally distributed values lie between -1 and 1; in 10dimensional distrib. only 0.02% within the radius 1 hypersphere

Principal Component Analysis (PCA)

- Try to explain correlation using a small set of linear combination of attributes
- Geometrically:
- Look at the attributes as variables forming a coordinate system
- Principal Components are a new coordinate system, found by rotating the original system along the directions of maximum variability

PCA - Step 1: standardize data

- Notation (review):
- Dataset with n rows and m columns
- Attributes (columns): Xi
- Mean of each attrib:

$$
\mu_{i}=\frac{1}{n} \sum_{j=1}^{n} X_{j}^{i}
$$

- Variance of each attrib:

$$
\sigma_{i i}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}^{i}-\mu_{i}\right)^{2}
$$

- Covariance between two attrib:
- Correlation coefficient:

$$
\begin{aligned}
& \sigma_{i j}^{2}=\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}^{i}-\mu_{i}\right) \cdot\left(X_{k}^{j}-\mu_{j}\right) \\
& r_{i j}=\frac{\sigma_{i j}^{2}}{\sigma_{i i} \sigma_{j j}}
\end{aligned}
$$

PCA - Step 1: standardize data

- Definitions
- Standard Deviation Matrix:
- (Symmetric) Covariance Matrix:
- Correlation Matrix:

$$
\rho=\left[r_{i j}\right]
$$

$$
\begin{aligned}
& V^{1 / 2}=\left|\begin{array}{cccc}
\sigma_{11} & 0 & \ldots & 0 \\
0 & \sigma_{22} & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \sigma_{m m}
\end{array}\right| \\
& \operatorname{Cov}=\left|\begin{array}{cccc}
\sigma_{11}^{2} & \sigma_{12}^{2} & \ldots & \sigma_{1 \mathrm{~m}}^{2} \\
\sigma_{21}^{2} & \sigma_{22}^{2} & \ldots & \sigma_{2 \mathrm{~m}}^{2} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \sigma_{m m}^{2}
\end{array}\right|
\end{aligned}
$$

- Standardization in matrix form:

$$
Z=\left(V^{1 / 2}\right)^{-1}(X-\mu) \quad Z_{i k}=\left(X_{k}^{i}-\mu_{i}\right) / \sigma_{i i}
$$

- N.B. $E(Z)=$ vector of zeros; $\operatorname{Cov}(Z)=\rho$

PCA - Step 2: compute eigenvalues and eigenvectors

- Eigenvalues of ρ are
- scalars $\lambda_{1} \ldots \lambda_{m}$ such that
- $\operatorname{det}(\rho-\lambda I)=0$
- Given a matrix ρ and its eigenvalue λ_{i},
- e_{i} is a corresponding eigenvector if
- $\rho \mathrm{e}_{\mathrm{i}}=\lambda_{i} \mathrm{e}_{\mathrm{i}}$
- We are interested in eigenvalues / eigenvectors of the correlation matrix

PCA - Step 3: compute principal components

- Consider the vectors
- $Y_{i}=e_{i}{ }^{\top} Z$
- e.g. $Y_{1}=e_{11} Z_{1}+e_{12} Z_{2}+\ldots+e_{1 m} Z_{m}$
- Sort Y_{i} by value of variance:
- $\operatorname{Var}\left(Y_{i}\right)=e_{i}^{\top} \rho e_{i}$
- Then
1)Start with an empty sequence of principal components
2)Select the vector e_{i} that
1)maximizes $\operatorname{Var}\left(Y_{i}\right)$
2)Is independent from all selected components
3)Goto (2)

PCA - Properties

- Property 1: The total variability in the standardized data set
- equals the sum of the variances for each Zvector,
- which equals the sum of the variances for each component,
- which equals the sum of the eigenvalues,
- Which equals the number of variables

$$
\sum_{i=1}^{m} \operatorname{Var}\left(Y_{i}\right)=\sum_{i=1}^{m} \operatorname{Var}\left(Z_{i}\right)=\sum_{i=1}^{m} \lambda_{i}=m
$$

PCA - Properties

- Property 2: The partial correlation between a given component and a given variable is a function of an eigenvector and an eigenvalue.
- In particular, $\operatorname{Corr}\left(Y_{i}, Z_{j}\right)=e_{i j} \operatorname{sqrt}\left(\lambda_{i}\right)$
- Property 3: The proportion of the total variability in Z that is explained by the ith principal component is the ratio of the ith eigenvalue to the number of variables,
- that is the ratio λ_{i} / m

PCA - Experiment on real data

" Open R and read "cadata.txt"

- Keep first attribute (say 0) as response, remaining ones as predictors
- Know Your Data: Barplot and scatterplot attributes
- Normalize Data
- Scatterplot normalized data
- Compute correlation matrix
- Compute eigenvalues and eigenvectors
- Compute components (eigenvectors) - attribute correlation matrix
- Compute cumulative variance explained by principal components

