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Data Quality: Why Preprocess the 
Data?

 Measures for data quality: A multidimensional view

 Accuracy: correct or wrong, accurate or not

 Completeness: not recorded, unavailable, …

 Consistency: some modified but some not, 

dangling, …

 Timeliness: timely update? 

 Believability: how trustable the data are correct?

 Interpretability: how easily the data can be 

understood?
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Major Tasks in Data Preprocessing

 Data cleaning
 Fill in missing values, smooth noisy data, identify or 

remove outliers, and resolve inconsistencies

 Data integration
 Integration of multiple databases, data cubes, or files

 Data reduction

 Dimensionality reduction

 Numerosity reduction

 Data compression

 Data transformation and data discretization

 Normalization 
 Concept hierarchy generation



Major Tasks in Data Preprocessing
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Data Cleaning

 Data in the Real World Is Dirty (instrument faulty, human or 
computer error, transmission error ...)

 incomplete: lacking attribute values, lacking certain 
attributes of interest, or containing only aggregate data

 e.g., Occupation=“ ” (missing data)
 noisy: containing noise, errors, or outliers

 e.g., Salary=“−10” (an error)
 inconsistent: containing discrepancies in codes or names, 

e.g.,
 Age=“42”, Birthday=“03/07/2010”
 Was rating “1, 2, 3”, now rating “A, B, C”
 discrepancy between duplicate records

 Intentional (e.g., disguised missing data)
 Jan. 1 as everyone’s birthday?
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Incomplete (Missing) Data

 Data is not always available
 E.g., no recorded value for several attributes, 

such as customer income in sales data
 Missing data may be due to 

 equipment malfunction
 inconsistent with other recorded data and thus 

deleted
 data not entered due to misunderstanding
 certain data may not be considered important 

at the time of entry
 not register history or changes of the data
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How to Handle Missing 
Data?

 Ignore the tuple (e.g. when class label is missing 
and doing classification) → simple, but loss of data

 Fill in the missing value manually
→ tedious + infeasible?

 Fill in it automatically with
 global const (e.g., “unknown”) → a new class?! 

 the attribute mean or median

 the attribute mean for all samples belonging to 
the same class: smarter

 the most probable value: inference-based such 
as Bayesian formula or decision tree
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Noisy Data

 Noise: random error or variance in a measured 
variable

 Incorrect attribute values may be due to
 faulty data collection instruments
 data entry problems
 data transmission problems
 technology limitation
 inconsistency in naming convention 

 Other data problems which require data cleaning
 duplicate records
 incomplete data
 inconsistent data
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How to Handle Noisy Data?

 Binning
 first sort data and partition into (equal-

frequency) bins
 then one can smooth by bin means,  smooth by 

bin median, smooth by bin boundaries, etc.
 Regression

 smooth by fitting the data into regression 
functions

 Clustering
 detect and remove outliers

 Combined computer and human inspection
 detect suspicious values and check by human 

(e.g., deal with possible outliers)



13

Data Cleaning as a Process

 Data discrepancy detection
 Use knowledge about data → use metadata (e.g., domain, 

range, dependency, distribution) i.e. know your data!
 Check field overloading
 Check uniqueness rule, consecutive rule and null rule
 Use commercial tools

 Data scrubbing: use simple domain knowledge (e.g., 
postal code, spell-check) to detect errors and make 
corrections

 Data auditing: by analyzing data to discover rules and 
relationship to detect violators (e.g., correlation and 
clustering to find outliers) → already “data mining”

 Data migration and integration
 Data migration tools: allow transformations to be specified
 ETL (Extraction/Transformation/Loading) tools (GUI)

 Integration of the two processes
 Iterative and interactive (e.g., Potter’s Wheels)
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Data Integration

 Data integration: 

 Combines data from multiple sources into a coherent store

 Schema integration: e.g., A.cust-id ≡  B.cust-#

 Integrate metadata from different sources

 Entity identification problem: 

 Identify real world entities from multiple data sources, e.g., 

Bill Clinton = William Clinton

 Detecting and resolving data value conflicts

 For the same real world entity, attribute values from 

different sources are different

 Possible reasons: different representations, different 

scales, e.g., metric vs. British units
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Handling Redundancy in Data 
Integration

 Redundant data occur often when integration of 
multiple databases

 Object identification:  The same attribute or 
object may have different names in different 
databases

 Derivable data: One attribute may be a 
“derived” attribute in another table, e.g., 
annual revenue

 Redundant attributes may be able to be detected 
by correlation analysis and covariance analysis
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Correlation Analysis (Nominal Data)

 Χ2 (chi-square) test
 Attribute A has c values (a

1
 … a

c
)

 Attribute B has r values (b
1
 … b

r
)

 Build a contingency table [o
ij
], having 1 row for each 

a
i
, one col for each b

j

 o
ij
 is the observed frequency (number of tuples 

having value ai for A and bj for B)

eij=
count (A=ai)×count (B=b j)

num.data tuples

χ
2
=
∑
i
∑
j

(oij−eij)
2

eij
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Correlation Analysis (Nominal Data)

 The larger the Χ2 value, the more likely the 
variables are related

 The cells that contribute the most to the Χ2 value 
are those whose actual count is very different from 
the expected count

 Correlation does not imply causality
 # of hospitals and # of car-theft in a city are correlated
 Both are causally linked to the third variable: population

∑ −=
Expected

ExpectedObserved 2
2 )(χ
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Chi-Square Calculation: An 
Example

 Χ2 (chi-square) calculation (numbers in parenthesis 
are e

ij
)

 2x2 table  = 1 degree of freedom
 From chi-square distribution, the value for rejecting 

hypotesis of independency at 0.001 significance 
level is 10.828 → strong correlation

93.507
840

)8401000(

360

)360200(

210

)21050(

90

)90250( 2222
2 =−+−+−+−=χ

Play 
chess

Not play 
chess

Sum 
(row)

Like science fiction 250(90) 200(360) 450

Not like science 
fiction

50(210) 1000(840) 1050

Sum(col.) 300 1200 1500



 Covariance:
 Attributes A and B
 n → number of tuples
 A and B → respective means of A and B
 σA and σB → the respective standard deviation of A and B

20

Covariance (Numeric Data)

Cov (A , B)=
∑
i=1

n

(ai bi)

n
− Ā⋅B̄
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Covariance (Numeric Data)

 Covariance:

 Positive covariance: If CovA,B > 0, then A and B both tend to be 

larger than their expected values.
 Negative covariance: If CovA,B < 0 then if A is larger than its 

expected value, B is likely to be smaller than its expected value.
 Independence: CovA,B = 0 but the converse is not true:

 Some pairs of random variables may have a covariance of 0 but are 
not independent. Only under some additional assumptions (e.g., the 
data follow multivariate normal distributions) does a covariance of 0 
imply independence



Co-Variance: An Example

 It can be simplified in computation as

 Suppose two stocks A and B have the following values in one 

week:  (2, 5), (3, 8), (5, 10), (4, 11), (6, 14). 

 Question:  If the stocks are affected by the same industry 

trends, will their prices rise or fall together?

 E(A) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4

 E(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6

 Cov(A,B) = (2×5+3×8+5×10+4×11+6×14)/5 − 4×9.6= 4

 Thus, A and B rise together since Cov(A, B) > 0.

Cov (A , B)=∑
i=1

n

(ai bi)/n− Ā⋅B̄
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Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson’s 
product moment coefficient)
 Attributes A and B
 n → number of tuples
 A and B → respective means of A and B
 σA and σB → the respective standard deviation of A and B

r A , B=
∑i=1

n
( ai−A)( bi−B )

nσ Aσ B
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Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson’s 
product moment coefficient)

 If rA,B > 0, A and B are positively correlated (A’s 

values increase as B’s).  The higher, the stronger 
correlation.

 rA,B = 0: independent;  rAB < 0: negatively correlated

r A , B=
∑i=1

n
( ai−A)( bi−B )

nσ Aσ B
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Correlation Analysis (Numeric Data)

 Geometrically: the cosine of the angle between the 
two vectors, after centering (or possible regression 
lines) 
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Visually Evaluating Correlation

Scatter plots 
showing the 
similarity from 
–1 to 1.
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Correlation (viewed as linear 
relationship)

 Correlation measures the linear relationship 
between objects

 To compute correlation, we standardize 
data objects, A and B, and then take their 
dot product

)(/))((' AstdAmeanaa kk −=

)(/))((' BstdBmeanbb kk −=

''),( BABAncorrelatio •=
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Data Reduction Strategies

 Data reduction: Obtain a reduced representation of the data 
set that is much smaller in volume but yet produces the same 
(or almost the same) analytical results

 Why data reduction? Computational issues in big data!.
 Data reduction strategies

 Dimensionality reduction, e.g., remove unimportant 
attributes

 Wavelet transforms
 Principal Components Analysis (PCA)
 Feature subset selection, feature creation

 Numerosity reduction (some simply call it: Data Reduction)
 Regression and Log-Linear Models
 Histograms, clustering, sampling
 Data cube aggregation

 Data compression
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Data Reduction 1: Dimensionality 
Reduction

 Curse of dimensionality
 When dimensionality increases, data becomes increasingly sparse
 Density and distance between points, which is critical to 

clustering, outlier analysis, becomes less meaningful
 The possible combinations of subspaces will grow exponentially

 Dimensionality reduction
 Avoid the curse of dimensionality
 Help eliminate irrelevant features and reduce noise
 Reduce time and space required in data mining
 Allow easier visualization

 Dimensionality reduction techniques
 Wavelet transforms
 Principal Component Analysis
 Supervised and nonlinear techniques (e.g., feature selection)
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Mapping Data to a New Space

Two Sine Waves Two Sine Waves + Noise Frequency

 Fourier transform
 Wavelet transform 
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What Is Wavelet Transform?

 Decomposes a signal into 
different frequency 
subbands
 Applicable to n-

dimensional signals
 Data are transformed to 

preserve relative distance 
between objects at 
different levels of 
resolution

 Allow natural clusters to 
become more 
distinguishable

 Used for image 
compression
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Wavelet Transformation 

 Discrete wavelet transform (DWT) for linear signal 
processing, multi-resolution analysis

 Compressed approximation: store only a small 
fraction of the strongest of the wavelet coefficients

 Similar to discrete Fourier transform (DFT), but 
better lossy compression, localized in space

 

Haar2 Daubechie4
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Wavelet Transformation 

 DWT Algorithm:
 Length, L, must be an integer power of 2 (padding with 

0’s, when necessary)
 Each transform needs to apply 2 functions:

 smoothing ( s() ), difference ( d() )

 Applies s() and d() to pairs of data (x2i, x2i+1) → 

two sets A and B of length L/2
 Applies both s() and d() recursively
 Until reaching the desired length (e.g. 2), obtaining L 

values
 Select a few values to represent the wavelet coefficients
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Wavelet Decomposition

 Wavelets: A math tool for space-efficient hierarchical 
decomposition of functions 

 S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to S^ = 

[23/4, -11/4, 1/2, 0, 0, -1, -1, 0]

 s() = avg(); d() = diff / 2
 Compression: many small detail coefficients can be 

replaced by 0’s, and only the significant coefficients are 
retained
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Why Wavelet Transform?

 Use hat-shape filters
 Emphasize region where points cluster
 Suppress weaker information in their boundaries 

 
 Effective removal of outliers

 Insensitive to noise, insensitive to input order
 Multi-resolution

 Detect arbitrary shaped clusters at different 
scales

 Efficient
 Complexity O(N)

 Only applicable to low dimensional data
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x2

x1

e

Principal Component Analysis (PCA)

 Find a projection that captures the largest amount of 
variation in data

 How? 
 find k (< n) orthogonal vectors that “best” represent data
 project data into the space defined by these vectors

 Popular choice: eigenvectors
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 Given N data vectors from n-dimensions, find k ≤ n 
orthogonal vectors (principal components) that can be best 
used to represent data 

 Normalize input data: Each attribute falls within the same 
range

 Compute k orthonormal (unit) vectors, i.e., principal 
components

 Each input data (vector) is a linear combination of the k 
principal component vectors

 The principal components are sorted in order of decreasing 
“significance” or strength

 Since the components are sorted, the size of the data can 
be reduced by eliminating the weak components, i.e., 
those with low variance

PCA Algorithm (Steps)
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 Using the strongest principal components, it should be 
possible to rebuild a good approximation of original data

 Works for numeric data only
 unlike attribute subset selection, new attributes are found

PCA Algorithm (remarks)
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