Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 03 : 09/10/2012

Data Mining:

Concepts and

Techniques
(3rd ed.)

- Chapter 3 -

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign \& Simon Fraser University
© 2011 Han, Kamber \& Pei. All rights reserved.

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Quality
- Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view
- Accuracy: correct or wrong, accurate or not
- Completeness: not recorded, unavailable, ...
- Consistency: some modified but some not, dangling, ...
- Timeliness: timely update?
- Believability: how trustable the data are correct?
- Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

- Data cleaning
- Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data integration
- Integration of multiple databases, data cubes, or files
- Data reduction
- Dimensionality reduction
- Numerosity reduction
- Data compression
- Data transformation and data discretization
- Normalization
- Concept hierarchy generation

Major Tasks in Data Preprocessing

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Quality
- Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Cleaning

- Data in the Real World Is Dirty (instrument faulty, human or computer error, transmission error ...)
- incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
" e.g., Occupation=" " (missing data)
- noisy: containing noise, errors, or outliers
" e.g., Salary="-10" (an error)
- inconsistent: containing discrepancies in codes or names, e.g.,
" Age="42", Birthday="03/07/2010"
- Was rating " $1,2,3$ ", now rating "A, B, C"
- discrepancy between duplicate records
- Intentional (e.g., disguised missing data)
- Jan. 1 as everyone’s birthday?

Incomplete (Missing) Data

- Data is not always available
- E.g., no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
- equipment malfunction
- inconsistent with other recorded data and thus deleted
- data not entered due to misunderstanding
- certain data may not be considered important at the time of entry
- not register history or changes of the data

How to Handle Missing Data?

- Ignore the tuple (e.g. when class label is missing and doing classification) \rightarrow simple, but loss of data
- Fill in the missing value manually \rightarrow tedious + infeasible?
- Fill in it automatically with
" global const (e.g., "unknown") \rightarrow a new class?!
- the attribute mean or median
- the attribute mean for all samples belonging to the same class: smarter
- the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
- faulty data collection instruments
- data entry problems
- data transmission problems
- technology limitation
- inconsistency in naming convention
- Other data problems which require data cleaning
- duplicate records
- incomplete data
- inconsistent data

How to Handle Noisy Data?

- Binning
- first sort data and partition into (equalfrequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
- smooth by fitting the data into regression functions
- Clustering
- detect and remove outliers
- Combined computer and human inspection
- detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

- Data discrepancy detection
- Use knowledge about data \rightarrow use metadata (e.g., domain, range, dependency, distribution) i.e. know your data!
- Check field overloading
- Check uniqueness rule, consecutive rule and null rule
- Use commercial tools
- Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
- Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers) \rightarrow already "data mining"
- Data migration and integration
- Data migration tools: allow transformations to be specified
- ETL (Extraction/Transformation/Loading) tools (GUI)
- Integration of the two processes
- Iterative and interactive (e.g., Potter's Wheels)

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Quality
- Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Integration

- Data integration:
- Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id \equiv B.cust-\#
- Integrate metadata from different sources
- Entity identification problem:
- Identify real world entities from multiple data sources, e.g., Bill Clinton $=$ William Clinton
- Detecting and resolving data value conflicts
- For the same real world entity, attribute values from different sources are different
- Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
- Object identification: The same attribute or object may have different names in different databases
- Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis

Correlation Analysis (Nominal Data)

- X ${ }^{2}$ (chi-square) test
- Attribute A has c values $\left(a_{1} \ldots a_{c}\right)$
- Attribute B has r values $\left(b_{1} \ldots b_{r}\right)$
- Build a contingency table [o $o_{i j}$], having 1 row for each a_{i}, one col for each b_{j}
- $o_{i j}$ is the observed frequency (number of tuples having value ai for A and bj for B)

$$
\begin{gathered}
e_{i j}=\frac{\operatorname{count}\left(A=a_{i}\right) \times \operatorname{count}\left(B=b_{j}\right)}{\text { num. datatuples }} \\
\chi^{2}=\frac{\sum_{i} \sum_{j}\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
\end{gathered}
$$

Correlation Analysis (Nominal Data)

- The larger the X^{2} value, the more likely the variables are related
- The cells that contribute the most to the X^{2} value are those whose actual count is very different from the expected count
- Correlation does not imply causality
- \# of hospitals and \# of car-theft in a city are correlated
- Both are causally linked to the third variable: population

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	$250(90)$	$200(360)$	450
Not like science fiction	$50(210)$	$1000(840)$	1050
Sum(col.)	300	1200	1500

- X^{2} (chi-square) calculation (numbers in parenthesis are $e_{i j}$)

$$
\chi^{2}=\frac{(250-90)^{2}}{90}+\frac{(50-210)^{2}}{210}+\frac{(200-360)^{2}}{360}+\frac{(1000-840)^{2}}{840}=507.93
$$

- 2×2 table $=1$ degree of freedom
- From chi-square distribution, the value for rejecting hypotesis of independency at 0.001 significance level is $10.828 \rightarrow$ strong correlation

Covariance (Numeric Data)

- Covariance:
- Attributes A and B
- $\mathrm{n} \rightarrow$ number of tuples
- \bar{A} and $\bar{B} \rightarrow$ respective means of A and B
- σ_{A} and $\sigma_{B} \rightarrow$ the respective standard deviation of A and B
$\operatorname{Cov}(A, B)=E((A-\bar{A})(B-\bar{B}))=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{A}\right)\left(b_{i}-\bar{B}\right)}{n}$

$$
\operatorname{Cov}(A, B)=\frac{\sum_{i=1}^{n}\left(a_{i} b_{i}\right)}{n}-\bar{A} \cdot \bar{B}
$$

Covariance (Numeric Data)

- Covariance:

$$
\operatorname{Cov}(A, B)=E((A-\bar{A})(B-\bar{B}))=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{A}\right)\left(b_{i}-\bar{B}\right)}{n}
$$

- Positive covariance: If $\operatorname{Cov}_{A B}>0$, then A and B both tend to be larger than their expected values.
- Negative covariance: If $\operatorname{Cov}_{A B}<0$ then if A is larger than its expected value, B is likely to be smaller than its expected value.
- Independence: $\operatorname{Cov}_{A B}=0$ but the converse is not true:
- Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Co-Variance: An Example

$$
\operatorname{Cov}(A, B)=E((A-\bar{A})(B-\bar{B}))=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{A}\right)\left(b_{i}-\bar{B}\right)}{n}
$$

- It can be simplified in computation as

$$
\operatorname{Cov}(A, B)=\sum_{i=1}^{n}\left(a_{i} b_{i}\right) / n-\bar{A} \cdot \bar{B}
$$

- Suppose two stocks A and B have the following values in one week: $(2,5),(3,8),(5,10),(4,11),(6,14)$.
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
- $\mathrm{E}(\mathrm{A})=(2+3+5+4+6) / 5=20 / 5=4$
- $E(B)=(5+8+10+11+14) / 5=48 / 5=9.6$
- $\operatorname{Cov}(A, B)=(2 \times 5+3 \times 8+5 \times 10+4 \times 11+6 \times 14) / 5-4 \times 9.6=4$
- Thus, A and B rise together since $\operatorname{Cov}(A, B)>0$.

Correlation Analysis (Numeric Data)

- Correlation coefficient (also called Pearson's product moment coefficient)
- Attributes A and B
- $\mathrm{n} \rightarrow$ number of tuples
- \bar{A} and $\bar{B} \rightarrow$ respective means of A and B
- σ_{A} and $\sigma_{B} \rightarrow$ the respective standard deviation of A and B

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

$$
r_{A, B}=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{A}\right)\left(b_{i}-\bar{B}\right)}{n \sigma_{A} \sigma_{B}}
$$

Correlation Analysis (Numeric Data)

- Correlation coefficient (also called Pearson's product moment coefficient)

$$
r_{A, B}=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{A}\right)\left(b_{i}-\bar{B}\right)}{n \sigma_{A} \sigma_{B}}
$$

- If $r_{A B}>0, A$ and B are positively correlated (A's values increase as B 's). The higher, the stronger correlation.
- $r_{A B}=0$: independent; $r_{A B}<0$: negatively correlated

Correlation Analysis (Numeric Data)

- Geometrically: the cosine of the angle between the two vectors, after centering (or possible regression lines)

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1 .

Correlation (viewed as linear relationship)

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, A and B, and then take their dot product

$$
\begin{aligned}
& a_{k}^{\prime}=\left(a_{k}-\operatorname{mean}(A)\right) / \operatorname{std}(A) \\
& b_{k}^{\prime}=\left(b_{k}-\operatorname{mean}(B)\right) / \operatorname{std}(B) \\
& \text { correlation }(A, B)=A^{\prime} \bullet B^{\prime}
\end{aligned}
$$

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Quality
- Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? Computational issues in big data!.
- Data reduction strategies
- Dimensionality reduction, e.g., remove unimportant attributes
- Wavelet transforms
- Principal Components Analysis (PCA)
- Feature subset selection, feature creation
- Numerosity reduction (some simply call it: Data Reduction)
- Regression and Log-Linear Models
- Histograms, clustering, sampling
- Data cube aggregation
- Data compression

Data Reduction 1: Dimensionality Reduction

- Curse of dimensionality
- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially
- Dimensionality reduction
- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization
- Dimensionality reduction techniques
- Wavelet transforms
- Principal Component Analysis
- Supervised and nonlinear techniques (e.g., feature selection)

Mapping Data to a New Space

- Fourier transform
- Wavelet transform

Two Sine Waves

Two Sine Waves + Noise

Frequency

What Is Wavelet Transform?

- Decomposes a signal into different frequency subbands
- Applicable to ndimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to
 become more distinguishable

Wavelet Transformation

- Discrete wavelet transform (DWT) for linear signal processing, multi-resolution analysis
- Compressed approximation: store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space

Wavelet Transformation

- DWT Algorithm:
- Length, L , must be an integer power of 2 (padding with 0's, when necessary)
- Each transform needs to apply 2 functions: smoothing ($s()$), difference ($d()$)
- Applies $s()$ and $d()$ to pairs of data $\left(x_{2 i}, x_{2 i+1}\right) \rightarrow$ two sets A and B of length L/2
- Applies both $s()$ and $d()$ recursively
- Until reaching the desired length (e.g. 2), obtaining L values
- Select a few values to represent the wavelet coefficients

Wavelet Decomposition

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- $S=[2,2,0,2,3,5,4,4]$ can be transformed to $S_{\wedge}=$ $\left[2{ }_{4}^{3},-11_{4}, 1 / 2,0,0,-1,-1,0\right]$
- $\mathrm{s}(\mathrm{)}=\mathrm{avg}() ; \mathrm{d}()=\operatorname{diff} / 2$
- Compression: many small detail coefficients can be replaced by 0 's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	$[2,2,0,2,3,5,4,4]$	
4	$[2,1,4]$	$[0,-1,-1,0]$
2	$\left[1 \frac{1}{2}, 4\right]$	$\left[\frac{1}{2}, 0\right]$
1	$\left[2 \frac{3}{4}\right]$	$\left[-1 \frac{1}{4}\right]$

Why Wavelet Transform?

- Use hat-shape filters
- Emphasize region where points cluster
- Suppress weaker information in their boundaries
- Effective removal of outliers
- Insensitive to noise, insensitive to input order
- Multi-resolution
- Detect arbitrary shaped clusters at different scales
- Efficient
- Complexity O(N)
- Only applicable to low dimensional data

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- How?
- find k (<n) orthogonal vectors that "best" represent data
- project data into the space defined by these vectors
- Popular choice: eigenvectors

PCA Algorithm (Steps)

- Given N data vectors from n-dimensions, find $k \leq n$ orthogonal vectors (principal components) that can be best used to represent data
- Normalize input data: Each attribute falls within the same range
- Compute k orthonormal (unit) vectors, i.e., principal components
- Each input data (vector) is a linear combination of the k principal component vectors
- The principal components are sorted in order of decreasing "significance" or strength
- Since the components are sorted, the size of the data can be reduced by eliminating the weak components, i.e., those with low variance

PCA Algorithm (remarks)

- Using the strongest principal components, it should be possible to rebuild a good approximation of original data
- Works for numeric data only
- unlike attribute subset selection, new attributes are found

