Università degli Studi di Milano Master Degree in Computer Science

Information Management course

Teacher: Alberto Ceselli

Lecture 02 : 03/10/2012

Data Mining:

Concepts and Techniques

- Chapter 2 -

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University
©2012 Han, Kamber, and Pei. All rights reserved.

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets

- Record
- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: term-frequency vector
- Transaction data
- Graph and network
- World Wide Web
- Social or information networks
- Molecular Structures
- Ordered
- Video data: sequence of images
- Temporal data: time-series
- Sequential Data: transaction sequences
- Genetic sequence data
- Spatial, image and multimedia:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

- Spatial data: maps
- Image data: .bmp
- Video data: .avi

Important Characteristics of Structured Data

- Dimensionality
- Curse of dimensionality
(the volume of the space grows fast with the number of dimensions, and the available data becomes sparse)
- Sparsity
- Only presence counts
- Resolution
- Patterns depend on the scale
- Distribution
- Centrality and dispersion

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
- sales database: customers, store items, sales
- medical database: patients, treatments
- university database: students, professors, courses
- Also called samples , examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
- E.g., customer _ID, name, address
- Types:
- Nominal
- Binary
- Ordinal
- Numeric: quantitative
- Interval-scaled
- Ratio-scaled

Attribute Types

- Nominal: categories, states, or "names of things"
- Hair_color = \{auburn, black, blond, brown, grey, red, white $\}$
- marital status, occupation, ID numbers, zip codes
- Binary
- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important - e.g., gender
- Asymmetric binary: outcomes not equally important.
- e.g., medical test (positive vs. negative)
- Convention: assign 1 to most important outcome (e.g., HIV positive)
- Ordinal
- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = \{small, medium, large\}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
- Measured on a scale of equal-sized units
- Values have order
- E.g., temperature in C° or F°, calendar dates
- No true zero-point
- Ratio
- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement ($10 \mathrm{~K}^{\circ}$ is twice as high as $5 \mathrm{~K}^{\circ}$).
- e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes (ML view)

- Discrete Attribute
- Has only a finite or countably infinite set of values
- E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes
- Continuous Attribute
- Has real numbers as attribute values
- E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of

Data

- Motivation
- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
- median, max, min, quantiles, outliers, variance...
- Numerical dimensions correspond to sorted intervals
- Data dispersion: analyzed with multiple granularities of precision
- Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
- Folding measures into numerical dimensions
- Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population):

Note: n is sample size and N is population size.

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Weighted arithmetic mean
- Sensitive to outliers: trimmed mean (chopping extreme values)
- Median:
- Middle value if odd number of values, or average of the middle two values otherwise

age	frequency
$1-5$	200

- Estimated by interpolation (for grouped data):

6-15
16-20
21-50

$$
\begin{equation*}
\text { median }=L_{1}+\left(\frac{\frac{n}{2}-\left(\sum \text { freq }\right)_{l}}{\text { freq }_{\text {median }}}\right) \text { width } \tag{300}
\end{equation*}
$$

Measuring the Central Tendency

- Mode
- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula for moderately skewed:
mean - mode $\simeq 3 \times($ mean - median $)$

Mean: 58
Median: $(52+56) / 2=54$
Mode: 52 and 70 (bimodal)
Midrange: $(30+110) / 2=70$

Employed	Salary
1	30
2	36
3	47
4	50
5	52
6	52
7	56
8	60
9	63
10	70
11	70
12	110

Symmetric vs. Skewed Data

- Median, mean and mode of symmetric, positively and negatively skewed data

Mean Mode
negatively
skewed

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
- Quartiles: $\mathrm{Q}_{1}\left(2^{\text {th }}\right.$ percentile), Q_{3} ($75^{\text {th }}$ percentile)
- Inter-quartile range: $I Q R=Q_{3}-Q_{1}$
- Five number summary: min, Q_{1}, median, Q_{3}, max (nice for skewed distributions)
- Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
- Outlier: usually, a value higher/lower than $1.5 \times \mathrm{IQR}$
- Variance and standard deviation (sample: s, population: σ)
- Variance: (algebraic, scalable computation)

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n}\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \quad \sigma^{2}=\frac{1}{N} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\frac{1}{N} \sum_{i=1}^{n} x_{i}^{2}-\mu^{2}
$$

- Standard deviation $s(o r \sigma)$ is the square root of variance

Boxplot Analysis

- Five-number summary of a distribution
- Minimum, Q1, Median, Q3, Maximumextreme
- Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Visualization of Data Dispersion: 3-D Boxplots

Properties of Normal Distribution Curve

- The normal (distribution) curve
- From $\mu-\sigma$ to $\mu+\sigma$: contains about 68% of the measurements (μ : mean, σ : standard deviation)
- From $\mu-2 \sigma$ to $\mu+2 \sigma$: contains about 95% of it
- From $\mu-3 \sigma$ to $\mu+3 \sigma$: contains about 99.7\% of it

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_{i} is paired with f_{i} indicating that approximately $100 f_{i} \%$ of data are $\leq x_{i}$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
- The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
- For a data x_{i} data sorted in increasing order, f_{i} indicates that approximately $100 f_{i} \%$ of the data are below or equal to the value x_{i}

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Similarity and Dissimilarity

- Similarity
- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
- n data points (objects) with p dimensions (features)
- Two modes

$$
\left|\begin{array}{lllll}
x_{11} & \ldots & x_{l f} & \ldots & x_{l p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{i 1} & \ldots & x_{i f} & \ldots & x_{i p} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{n 1} & \ldots & x_{n f} & \ldots & x_{n p}
\end{array}\right|
$$

- Dissimilarity matrix
- n data points, but registers only the distance
- A triangular matrix
$\left|\begin{array}{ccccc}0 & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n, 1) & d(n, 2) & \ldots & \ldots & 0\end{array}\right|$
- Single mode

Proximity Measures for Binary Attributes

- A contingency table for binary data

		1	0	sum
\cup	1	q	r	$q+r$
$\stackrel{0}{0}$	0	s	t	$s+t$
\mathbf{O}	sum	$q+s$	$r+t$	p

- Distance measure for symmetric bin. vars (0 and 1 equally important):

$$
d(i, j)=\frac{r+s}{q+r+s+t}
$$

- Distance measure for asymm. bin. vars (1 more important - e.g. diseases):

$$
d(i, j)=\frac{r+s}{q+r+s}
$$

- Jaccard coefficient (similarity measure for asymmetric binary variables): $\operatorname{sim}_{J a c c a r d}(i, j)=\frac{q}{q+r+s}$
- Note: Jaccard coefficient is the same as "coherence":

$$
\operatorname{coherence}(i, j)=\frac{\sup (i, j)}{\sup (i)+\sup (j)-\sup (i, j)}=\frac{q}{(q+r)+(q+s)-q}
$$

Dissimilarity between Binary Variables

- Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute (let's discard it!)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1 , and the value N 0

$$
\begin{aligned}
& d(j a c k, m a r y)=\frac{0+1}{2+0+1}=0.33 \\
& d(j a c k, j i m)=\frac{1+1}{1+1+1}=0.67 \\
& d(j i m, m a r y)=\frac{1+2}{1+1+2}=0.75
\end{aligned}
$$

Proximity Measures for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
- m: \# of matches, p : total \# of variables

$$
d(i, j)=\frac{p-m}{p}
$$

- Method 2: Use a large number of binary attributes
- creating a new binary attribute for each of the M nominal states

Proximity on Numeric Data: Minkowski Distance

- Minkowski distance: A popular distance measure

$$
d(i, j)=\sqrt[h]{\left|x_{i 1}-x_{j 1}\right|^{h}+\left|x_{i 2}-x_{j 2}\right|^{h}+\cdots+\left|x_{i p}-x_{j p}\right|^{h}}
$$

where $i=\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)$ and $j=\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)$ are two p dimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
- $\mathrm{d}(\mathrm{i}, \mathrm{j})>0$ if $\mathrm{i} \neq \mathrm{j}$, and $\mathrm{d}(\mathrm{i}, \mathrm{i})=0$ (Positive definiteness)
- $\mathrm{d}(\mathrm{i}, \mathrm{j})=\mathrm{d}(\mathrm{j}, \mathrm{i})$ (Symmetry)
- $\mathrm{d}(\mathrm{i}, \mathrm{j}) \leq \mathrm{d}(\mathrm{i}, \mathrm{k})+\mathrm{d}(\mathrm{k}, \mathrm{j}) \quad$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- $\quad h=1$: Manhattan (city block, L_{1} norm) distance
- E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$
d(i, j)=\left|x_{i 1}-x_{j 1}\right|+\left|x_{i 2}-x_{j 2}\right|+\ldots+\left|x_{i p}-x_{j p}\right|
$$

- $\quad h=2:\left(\mathrm{L}_{2}\right.$ norm $)$ Euclidean distance

$$
d(i, j)=\sqrt{\left(\left|x_{i 1}-x_{j 1}\right|^{2}+\left|x_{i 2}-x_{j 2}\right|^{2}+\ldots+\left|x_{i p}-x_{j p}\right|^{2}\right)}
$$

- $h \rightarrow \infty$. "supremum" ($\mathrm{L}_{\text {max }}$ norm, L_{∞} norm) distance.
- This is the maximum difference between any component (attribute) of the vectors

$$
d(i, j)=\lim _{h \rightarrow \infty}\left(\sum_{f=1}^{p}\left|x_{i f}-x_{j f}\right|^{h}\right)^{\frac{1}{h}}=\max _{f}^{p}\left|x_{i f}-x_{j f}\right|
$$

S remum-' inf)

Standardizing Numeric Data

- Z-score: $z=\frac{x-\mu}{\sigma}$
- X: raw data, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- <0 when the raw score is below the mean, >0 when above
- An alternative way: Calculate the mean absolute deviation

$$
\begin{gathered}
s_{f}=\frac{1}{n}\left(\left|x_{1 \mathrm{f}}-m_{f}\right|+\left|x_{2 f}-m_{f}\right|+\ldots+\left|x_{n f}-m_{f}\right|\right) \\
\text { where } \\
m_{f}=\frac{1}{n}\left(x_{1 f}+x_{2 f}+\ldots+x_{n f}\right) .
\end{gathered}
$$

- standardized measure (z-score):

$$
z_{i f}=\frac{x_{i f}-m_{f}}{s_{f}}
$$

- mean absolute deviation is more robust than std dev

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
- replace $x_{i f}$ by their rank $r_{i f} \in\left\{1, \ldots, M_{f}\right\}$
- map (normalize) the range of each variable onto $[0,1]$ by replacing $x_{i f}$ by

$$
z_{i f}=\frac{r_{i f}-1}{M_{f}-1}
$$

- compute the dissimilarity using distance measures for numeric attributes

Attributes of Mixed Type

- A database may contain all attribute types
- Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$
d(i, j)=\frac{\sum_{f=1}^{p} \delta_{i j}^{(f)} d_{i j}^{(f)}}{\sum_{f=1}^{p} \delta_{i j}^{(f)}}
$$

- Choice of $\delta_{i j}^{(f)}$
- Set $\delta_{i j}^{(f)}=0$ if
- x_{if} or x_{ff} is missing
- $\mathrm{x}_{\mathrm{ff}}=\mathrm{x}_{\mathrm{ff}}=0$ and f is asymmetric binary
- Set $\delta_{i j}^{(f)}=1$ otherwise

Attributes of Mixed Type

- Choice of $d_{i j}^{(f)}$

$$
d(i, j)=\frac{\sum_{f=1}^{p} \boldsymbol{\delta}_{i j}^{(f)} d_{i j}^{(f)}}{\sum_{f=1}^{p} \boldsymbol{\delta}_{i j}^{(f)}}
$$

- when f is binary or nominal:

$$
d_{i j}=0 \text { if } x_{i f}=x_{f f}, d_{i j}^{(f)}=1 \text { otherwise }
$$

- when f is numeric: use the normalized distance
- when f is ordinal
- Compute ranks r_{if} and $z_{i f}=\frac{r_{t i}-1}{M_{f}-1}$
- Treat z_{if} as interval-scaled

Cosine Similarity

- A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	team coach	hockey	baseball	soccer	penalty	score	win	loss	season	
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Issue: very long and sparse
- Treat documents as vectors, and compute a cosine similarity

Cosine Similarity

- Cosine measure: If x and y are two vectors (e.g., term-frequency vectors), then

$$
\cos (x, y)=(x \cdot y) /\|x\|\|y\|
$$

where

- • indicates vector dot product,
- $\|x\|$: the $L 2$ norm (length) of vector $\mathrm{x} \quad\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{p}^{2}}$
- Remark: when attributes are binary valued:
- • indicates the number of shared features
- $\|x\|\|y\|$ is the geometric mean between the number of features of x and the number of features of y :

$$
\operatorname{sqrt}(a) * \operatorname{sqrt}(b)=\operatorname{sqrt}(a * b)
$$

- $\cos (x, y)$ measures relative possession of common features

Example: Cosine Similarity

- $\cos (x, y)=(x \cdot y) /\|x\|\|y\|$
- Ex: Find the similarity between documents x and y.

$$
\begin{aligned}
& x=(5,0,3,0,2,0,0,2,0,0) \\
& y=(3,0,2,0,1,1,0,1,0,1) \\
& x \quad y=5 * 3+0 * 0+3 * 2+0 * 0+2 * 1+0 * 1+0 * 1+2 * 1+0 * 0+0 * 1= \\
& =25 \\
& \|x\|=(5 * 5+0 * 0+3 * 3+0 * 0+2 * 2+0 * 0+0 * 0+2 * 2+0 * 0+0 * 0)^{0.5}= \\
& =6.481 \\
& \|y\|=(3 * 3+0 * 0+2 * 2+0 * 0+1 * 1+1 * 1+0 * 0+1 * 1+0 * 0+1 * 1)^{0.5}= \\
& =4.12 \\
& \cos (x, y)=25 /(6.481 * 4.12)=0.94
\end{aligned}
$$

References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley \& Sons, 1990.
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, $2^{\text {nd }}$ ed., Graphics Press, 2001
- C. Yu et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009

