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Abstract. Reinforcement learning policies face the exploration versus exploitation dilemma, i.e. the search for
a balance between exploring the environment to find profitable actions while taking the empirically best action as
often as possible. A popular measure of a policy’s success in addressing this dilemma is the regret, that is the loss
due to the fact that the globally optimal policy is not followed all the times. One of the simplest examples of the
exploration/exploitation dilemma is the multi-armed bandit problem. Lai and Robbins were the first ones to show
that the regret for this problem has to grow at least logarithmically in the number of plays. Since then, policies
which asymptotically achieve this regret have been devised by Lai and Robbins and many others. In this work we
show that the optimal logarithmic regret is also achievable uniformly over time, with simple and efficient policies,
and for all reward distributions with bounded support.
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1. Introduction

The exploration versus exploitation dilemma can be described as the search for a balance
between exploring the environment to find profitable actions while taking the empirically
best action as often as possible. The simplest instance of this dilemma is perhaps the
multi-armed bandit, a problem extensively studied in statistics (Berry & Fristedt, 1985) that
has also turned out to be fundamental in different areas of artificial intelligence, such as
reinforcement learning (Sutton & Barto, 1998) and evolutionary programming (Holland,
1992).

In its most basic formulation, a K -armed bandit problem is defined by random variables
Xi,n for 1 ≤ i ≤ K and n ≥ 1, where each i is the index of a gambling machine (i.e., the
“arm” of a bandit). Successive plays of machine i yield rewards Xi,1, Xi,2, . . . which are

∗A preliminary version appeared in Proc. of 15th International Conference on Machine Learning, pages 100–108.
Morgan Kaufmann, 1998
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independent and identically distributed according to an unknown law with unknown ex-
pectation µi . Independence also holds for rewards across machines; i.e., Xi,s and X j,t are
independent (and usually not identically distributed) for each 1 ≤ i < j ≤ K and each
s, t ≥ 1.

A policy, or allocation strategy, A is an algorithm that chooses the next machine to play
based on the sequence of past plays and obtained rewards. Let Ti (n) be the number of times
machine i has been played by A during the first n plays. Then the regret of A after n plays
is defined by

µ∗n − µ j

K∑
j=1

IE[Tj (n)] where µ∗ def= max
1≤i≤K

µi

and IE[·] denotes expectation. Thus the regret is the expected loss due to the fact that the
policy does not always play the best machine.

In their classical paper, Lai and Robbins (1985) found, for specific families of reward
distributions (indexed by a single real parameter), policies satisfying

IE[Tj (n)] ≤
(

1

D(p j‖p∗)
+ o(1)

)
ln n (1)

where o(1) → 0 as n → ∞ and

D(p j‖p∗) def=
∫

p j ln
p j

p∗

is the Kullback-Leibler divergence between the reward density p j of any suboptimal ma-
chine j and the reward density p∗ of the machine with highest reward expectation µ∗.
Hence, under these policies the optimal machine is played exponentially more often than
any other machine, at least asymptotically. Lai and Robbins also proved that this regret is
the best possible. Namely, for any allocation strategy and for any suboptimal machine j ,
IE[Tj (n)] ≥ (ln n)/D(p j‖p∗) asymptotically, provided that the reward distributions satisfy
some mild assumptions.

These policies work by associating a quantity called upper confidence index to each ma-
chine. The computation of this index is generally hard. In fact, it relies on the entire sequence
of rewards obtained so far from a given machine. Once the index for each machine is com-
puted, the policy uses it as an estimate for the corresponding reward expectation, picking
for the next play the machine with the current highest index. More recently, Agrawal (1995)
introduced a family of policies where the index can be expressed as simple function of
the total reward obtained so far from the machine. These policies are thus much easier to
compute than Lai and Robbins’, yet their regret retains the optimal logarithmic behavior
(though with a larger leading constant in some cases).1

In this paper we strengthen previous results by showing policies that achieve logarithmic
regret uniformly over time, rather than only asymptotically. Our policies are also simple to
implement and computationally efficient. In Theorem 1 we show that a simple variant of
Agrawal’s index-based policy has finite-time regret logarithmically bounded for arbitrary
sets of reward distributions with bounded support (a regret with better constants is proven
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in Theorem 2 for a more complicated version of this policy). A similar result is shown
in Theorem 3 for a variant of the well-known randomized ε-greedy heuristic. Finally, in
Theorem 4 we show another index-based policy with logarithmically bounded finite-time
regret for the natural case when the reward distributions are normally distributed with
unknown means and variances.

Throughout the paper, and whenever the distributions of rewards for each machine are
understood from the context, we define


i
def= µ∗ − µi

where, we recall, µi is the reward expectation for machine i and µ∗ is any maximal element
in the set {µ1, . . . , µK }.

2. Main results

Our first result shows that there exists an allocation strategy, UCB1, achieving logarithmic
regret uniformly over n and without any preliminary knowledge about the reward distri-
butions (apart from the fact that their support is in [0, 1]). The policy UCB1 (sketched in
figure 1) is derived from the index-based policy of Agrawal (1995). The index of this policy
is the sum of two terms. The first term is simply the current average reward. The second term
is related to the size (according to Chernoff-Hoeffding bounds, see Fact 1) of the one-sided
confidence interval for the average reward within which the true expected reward falls with
overwhelming probability.

Theorem 1. For all K > 1, if policy UCB1 is run on K machines having arbitrary reward
distributions P1, . . . , PK with support in [0, 1], then its expected regret after any number
n of plays is at most

[
8

∑
i :µi <µ∗

(
ln n


i

)]
+

(
1 + π2

3

)(
K∑

j=1


 j

)

where µ1, . . . , µK are the expected values of P1, . . . , PK .

Figure 1. Sketch of the deterministic policy UCB1 (see Theorem 1).
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Figure 2. Sketch of the deterministic policy UCB2 (see Theorem 2).

To prove Theorem 1 we show that, for any suboptimal machine j ,

IE[Tj (n)] ≤ 8


2
j

ln n (2)

plus a small constant. The leading constant 8/
2
i is worse than the corresponding constant

1/D(p j ‖ p∗) in Lai and Robbins’ result (1). In fact, one can show that D(p j ‖ p∗) ≥ 2
2
j

where the constant 2 is the best possible.
Using a slightly more complicated policy, which we call UCB2 (see figure 2), we can bring

the main constant of (2) arbitrarily close to 1/(2
2
j ). The policy UCB2 works as follows.

The plays are divided in epochs. In each new epoch a machine i is picked and then
played τ(ri + 1) − τ(ri ) times, where τ is an exponential function and ri is the number of
epochs played by that machine so far. The machine picked in each new epoch is the one
maximizing x̄i + an,ri , where n is the current number of plays, x̄i is the current average
reward for machine i , and

an,r =
√

(1 + α) ln(en/τ(r))

2τ(r)
(3)

where

τ(r) = �(1 + α)r�.

In the next result we state a bound on the regret of UCB2. The constant cα , here left unspec-
ified, is defined in (18) in the appendix, where the theorem is also proven.

Theorem 2. For all K > 1, if policy UCB2 is run with input 0 < α < 1 on K machines
having arbitrary reward distributions P1, . . . , PK with support in [0, 1], then its expected
regret after any number

n ≥ max
i :µi <µ∗

1

2
2
i
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of plays is at most

∑
i : µi <µ∗

(
(1 + α)(1 + 4α) ln

(
2e
2

i n
)

2
i
+ cα


i

)
(4)

where µ1, . . . , µK are the expected values of P1, . . . , PK .

Remark. By choosing α small, the constant of the leading term in the sum (4) gets arbi-
trarily close to 1/(2
2

i ); however, cα → ∞ as α → 0. The two terms in the sum can be
traded-off by letting α = αn be slowly decreasing with the number n of plays.

A simple and well-known policy for the bandit problem is the so-called ε-greedy rule
(see Sutton, & Barto, 1998). This policy prescribes to play with probability 1−ε the machine
with the highest average reward, and with probability ε a randomly chosen machine. Clearly,
the constant exploration probability ε causes a linear (rather than logarithmic) growth in
the regret. The obvious fix is to let ε go to zero with a certain rate, so that the exploration
probability decreases as our estimates for the reward expectations become more accurate.
It turns out that a rate of 1/n, where n is, as usual, the index of the current play, allows
to prove a logarithmic bound on the regret. The resulting policy, εn-GREEDY, is shown in
figure 3.

Theorem 3. For all K > 1 and for all reward distributions P1, . . . , PK with support in
[0, 1], if policy εn-GREEDY is run with input parameter

0 < d ≤ min
i :µi <µ∗


i ,

Figure 3. Sketch of the randomized policy εn-GREEDY (see Theorem 3).
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then the probability that after any number n ≥ cK/d of plays εn-GREEDY chooses a subop-
timal machine j is at most

c

d2n
+ 2

(
c

d2
ln

(n − 1)d2e1/2

cK

)(
cK

(n − 1)d2e1/2

)c/(5d2)

+ 4e

d2

(
cK

(n − 1)d2e1/2

)c/2

.

Remark. For c large enough (e.g. c > 5) the above bound is of order c/(d2n) + o(1/n) for
n → ∞, as the second and third terms in the bound are O(1/n1+ε) for some ε > 0 (recall
that 0 < d < 1). Note also that this is a result stronger than those of Theorems 1 and 2, as
it establishes a bound on the instantaneous regret. However, unlike Theorems 1 and 2, here
we need to know a lower bound d on the difference between the reward expectations of the
best and the second best machine.

Our last result concerns a special case, i.e. the bandit problem with normally distributed
rewards. Surprisingly, we could not find in the literature regret bounds (not even asymp-
totical) for the case when both the mean and the variance of the reward distributions are
unknown. Here, we show that an index-based policy called UCB1-NORMAL, see figure 4,
achieves logarithmic regret uniformly over n without knowing means and variances of the
reward distributions. However, our proof is based on certain bounds on the tails of the χ2

and the Student distribution that we could only verify numerically. These bounds are stated
as Conjecture 1 and Conjecture 2 in the Appendix.

The choice of the index in UCB1-NORMAL is based, as for UCB1, on the size of the one-
sided confidence interval for the average reward within which the true expected reward falls
with overwhelming probability. In the case of UCB1, the reward distribution was unknown,
and we used Chernoff-Hoeffding bounds to compute the index. In this case we know that

Figure 4. Sketch of the deterministic policy UCB1-NORMAL (see Theorem 4).
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the distribution is normal, and for computing the index we use the sample variance as an
estimate of the unknown variance.

Theorem 4. For all K > 1, if policy UCB1-NORMAL is run on K machines having normal
reward distributions P1, . . . , PK , then its expected regret after any number n of plays is at
most

256(log n)

( ∑
i :µi <µ∗

σ 2
i


i

)
+

(
1 + π2

2
+ 8 log n

)(
K∑

j=1


 j

)

where µ1, . . . , µK and σ 2
1 , . . . , σ 2

K are the means and variances of the distributions
P1, . . . , PK .

As a final remark for this section, note that Theorems 1–3 also hold for rewards that are not
independent across machines, i.e. Xi,s and X j,t might be dependent for any s, t , and i �= j .
Furthermore, we also do not need that the rewards of a single arm are i.i.d., but only the
weaker assumption that IE [Xi,t | Xi,1, . . . , Xi,t−1] = µi for all 1 ≤ t ≤ n.

3. Proofs

Recall that, for each 1 ≤ i ≤ K , IE[Xi,n] = µi for all n ≥ 1 and µ∗ = max1≤i≤K µi . Also,
for any fixed policy A, Ti (n) is the number of times machine i has been played by A in the
first n plays. Of course, we always have

∑K
i=1 Ti (n) = n. We also define the r.v.’s I1, I2, . . .,

where It denotes the machine played at time t .
For each 1 ≤ i ≤ K and n ≥ 1 define

X̄i,n = 1

n

n∑
t=1

Xi,t .

Given µ1, . . . , µK , we call optimal the machine with the least index i such that µi = µ∗.
In what follows, we will always put a superscript “ ∗ ” to any quantity which refers to the
optimal machine. For example we write T ∗(n) and X̄∗

n instead of Ti (n) and X̄i,n , where i is
the index of the optimal machine.

Some further notation: For any predicate � we define {�(x)} to be the indicator fuction
of the event �(x); i.e., {�(x)} = 1 if �(x) is true and {�(x)} = 0 otherwise. Finally,
Var[X ] denotes the variance of the random variable X .

Note that the regret after n plays can be written as∑
j :µ j <µ∗


 j IE[Tj (n)] (5)

So we can bound the regret by simply bounding each IE[Tj (n)].
We will make use of the following standard exponential inequalities for bounded random

variables (see, e.g., the appendix of Pollard, 1984).
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Fact 1 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be random variables with common
range [0, 1] and such that IE[Xt |X1, . . . , Xt−1] = µ. Let Sn = X1 + · · · + Xn. Then for
all a ≥ 0

IP{Sn ≥ nµ + a} ≤ e−2a2/n and IP{Sn ≤ nµ − a} ≤ e−2a2/n

Fact 2 (Bernstein inequality). Let X1, . . . , Xn be random variables with range [0, 1] and

n∑
t=1

Var[Xt | Xt−1, . . . , X1] = σ 2.

Let Sn = X1 + · · · + Xn. Then for all a ≥ 0

IP{Sn ≥ IE[Sn] + a} ≤ exp

{
− a2/2

σ 2 + a/2

}
.

Proof of Theorem 1: Let ct,s = √
(2 ln t)/s. For any machine i , we upper bound Ti (n)

on any sequence of plays. More precisely, for each t ≥ 1 we bound the indicator function
of It = i as follows. Let � be an arbitrary positive integer.

Ti (n) = 1 +
n∑

t=K+1

{It = i}

≤ � +
n∑

t=K+1

{It = i, Ti (t − 1) ≥ �}

≤ � +
n∑

t=K+1

{
X̄∗

T ∗(t−1) + ct−1,T ∗(t−1) ≤ X̄i,Ti (t−1)

+ ct−1,Ti (t−1), Ti (t − 1) ≥ �
}

≤ � +
n∑

t=K+1

{
min

0<s<t
X̄∗

s + ct−1,s ≤ max
�≤si <t

X̄ i,si + ct−1,si

}

≤ � +
∞∑

t=1

t−1∑
s=1

t−1∑
si =�

{
X̄∗

s + ct,s ≤ X̄i,si + ct,si

}
. (6)

Now observe that X̄∗
s + ct,s ≤ X̄i,si + ct,si implies that at least one of the following must

hold

X̄∗
s ≤ µ∗ − ct,s (7)

X̄i,si ≥ µi + ct,si (8)

µ∗ < µi + 2ct,si . (9)

We bound the probability of events (7) and (8) using Fact 1 (Chernoff-Hoeffding bound)

IP{X̄∗
s ≤ µ∗ − ct,s} ≤ e−4 ln t = t−4
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IP
{

X̄i,si ≥ µi + ct,si

} ≤ e−4 ln t = t−4.

For � = �(8 ln n)/
2
i �, (9) is false. In fact

µ∗ − µi − 2ct,si = µ∗ − µi − 2
√

2(ln t)/si ≥ µ∗ − µi − 
i = 0

for si ≥ (8 ln n)/
2
i . So we get

IE[Ti (n)] ≤
⌈

8 ln n


2
i

⌉
+

∞∑
t=1

t−1∑
s=1

t−1∑
si =�(8 ln n)/
2

i �
× (

IP{X̄∗
s ≤ µ∗ − ct,s} + IP

{
X̄i,si ≥ µi + ct,si

})
≤

⌈
8 ln n


2
i

⌉
+

∞∑
t=1

t∑
s=1

t∑
si =1

2t−4

≤ 8 ln n


2
i

+ 1 + π2

3

which concludes the proof. ✷

Proof of Theorem 3: Recall that, for n ≥ cK/d2, εn = cK/(d2n). Let

x0 = 1

2K

n∑
t=1

εt .

The probability that machine j is chosen at time n is

IP{In = j} ≤ εn

K
+

(
1 − εn

K

)
IP

{
X̄ j,Tj (n−1) ≥ X̄∗

T ∗(n−1)

}

and

IP
{

X̄ j,Tj (n) ≥ X̄∗
T ∗(n)

}
≤ IP

{
X̄ j,Tj (n) ≥ µ j + 
 j

2

}
+ IP

{
X̄∗

T ∗(n) ≤ µ∗ − 
 j

2

}
. (10)

Now the analysis for both terms on the right-hand side is the same. Let T R
j (n) be the number

of plays in which machine j was chosen at random in the first n plays. Then we have

IP

{
X̄ j,Tj (n) ≥ µ j + 
 j

2

}

=
n∑

t=1

IP

{
Tj (n) = t ∧ X̄ j,t ≥ µ j + 
 j

2

}
(11)
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=
n∑

t=1

IP

{
Tj (n) = t | X̄ j,t ≥ µ j + 
 j

2

}
· IP

{
X̄ j,t ≥ µ j + 
 j

2

}

≤
n∑

t=1

IP

{
Tj (n) = t | X̄ j,t ≥ µ j + 
 j

2

}
· e−
2

j t/2

by Fact 1 (Chernoff-Hoeffding bound)

≤
�x0�∑
t=1

IP

{
Tj (n) = t | X̄ j,t ≥ µ j + 
 j

2

}
+ 2


2
j

e−
2
j �x0�/2

since
∑∞

t=x+1 e−κt ≤ 1
κ

e−κx

≤
�x0�∑
t=1

IP

{
T R

j (n) ≤ t | X̄ j,t ≥ µ j + 
 j

2

}
+ 2


2
j

e−
2
j �x0�/2

≤ x0 · IP
{
T R

j (n) ≤ x0
} + 2


2
j

e−
2
j �x0�/2 (12)

where in the last line we dropped the conditioning because each machine is played at random
independently of the previous choices of the policy. Since

IE
[
T R

j (n)
] = 1

K

n∑
t=1

εt

and

Var
[
T R

j (n)
] =

n∑
t=1

εt

K

(
1 − εt

K

)
≤ 1

K

n∑
t=1

εt ,

by Bernstein’s inequality (2) we get

IP
{
T R

j (n) ≤ x0
} ≤ e−x0/5. (13)

Finally it remains to lower bound x0. For n ≥ n′ = cK/d2, εn = cK/(d2n) and we have

x0 = 1

2K

n∑
t=1

εt

= 1

2K

n′∑
t=1

εt + 1

2K

n∑
t=n′+1

εt

≥ n′

2K
+ c

d2
ln

n

n′

≥ c

d2
ln

nd2e1/2

cK
.
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Thus, using (10)–(13) and the above lower bound on x0 we obtain

IP{In = j} ≤ εn

K
+ 2x0e−x0/5 + 4


2
j

e−
2
j �x0�/2

≤ c

d2n
+ 2

(
c

d2
ln

(n − 1)d2e1/2

cK

)(
cK

(n − 1)d2e1/2

)c/(5d2)

+ 4e

d2

(
cK

(n − 1)d2e1/2

)c/2

.

This concludes the proof. ✷

4. Experiments

For practical purposes, the bound of Theorem 1 can be tuned more finely. We use

Vj (s)
def=

(
1

s

s∑
τ=1

X2
j,τ

)
− X̄2

j,s +
√

2 ln t

s

as un upper confidence bound for the variance of machine j . As before, this means that
machine j , which has been played s times during the first t plays, has a variance that is
at most the sample variance plus

√
(2 ln t)/s. We then replace the upper confidence bound√

2 ln(n)/n j of policy UCB1 with

√
ln n

n j
min{1/4, Vj (n j )}

(the factor 1/4 is an upper bound on the variance of a Bernoulli random variable). This
variant, which we call UCB1-TUNED, performs substantially better than UCB1 in essentially
all of our experiments. However, we are not able to prove a regret bound.

We compared the empirical behaviour policies UCB1-TUNED, UCB2, and εn-GREEDY on
Bernoulli reward distributions with different parameters shown in the table below.

1 2 3 4 5 6 7 8 9 10

1 0.9 0.6

2 0.9 0.8

3 0.55 0.45

11 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

12 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6

13 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

14 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
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Rows 1–3 define reward distributions for a 2-armed bandit problem, whereas rows 11–
14 define reward distributions for a 10-armed bandit problem. The entries in each row
denote the reward expectations (i.e. the probabilities of getting a reward 1, as we work with
Bernoulli distributions) for the machines indexed by the columns. Note that distributions 1
and 11 are “easy” (the reward of the optimal machine has low variance and the differences
µ∗ − µi are all large), whereas distributions 3 and 14 are “hard” (the reward of the optimal
machine has high variance and some of the differences µ∗ − µi are small).

We made experiments to test the different policies (or the same policy with different
input parameters) on the seven distributions listed above. In each experiment we tracked
two performance measures: (1) the percentage of plays of the optimal machine; (2) the
actual regret, that is the difference between the reward of the optimal machine and the
reward of the machine played. The plot for each experiment shows, on a semi-logarithmic
scale, the behaviour of these quantities during 100,000 plays averaged over 100 different
runs. We ran a first round of experiments on distribution 2 to find out good values for the
parameters of the policies. If a parameter is chosen too small, then the regret grows linearly
(exponentially in the semi-logarithmic plot); if a parameter is chosen too large then the
regret grows logarithmically, but with a large leading constant (corresponding to a steep
line in the semi-logarithmic plot).

Policy UCB2 is relatively insensitive to the choice of its parameter α, as long as it is
kept relatively small (see figure 5). A fixed value 0.001 has been used for all the remaining
experiments. On other hand, the choice of c in policy εn-GREEDY is difficult as there is no
value that works reasonably well for all the distributions that we considered. Therefore, we
have roughly searched for the best value for each distribution. In the plots, we will also
show the performance of εn-GREEDY for values of c around this empirically best value. This
shows that the performance degrades rapidly if this parameter is not appropriately tuned.
Finally, in each experiment the parameter d of εn-GREEDY was set to


 = µ∗ − max
i :µi <µ∗

µi .

Figure 5. Search for the best value of parameter α of policy UCB2.
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4.1. Comparison between policies

We can summarize the comparison of all the policies on the seven distributions as follows
(see Figs. 6–12).

– An optimally tuned εn-GREEDY performs almost always best. Significant exceptions are
distributions 12 and 14: this is because εn-GREEDY explores uniformly over all machines,
thus the policy is hurt if there are several nonoptimal machines, especially when their
reward expectations differ a lot. Furthermore, if εn-GREEDY is not well tuned its perfor-
mance degrades rapidly (except for distribution 13, on which εn-GREEDY performs well
a wide range of values of its parameter).

– In most cases, UCB1-TUNED performs comparably to a well-tuned εn-GREEDY. Further-
more, UCB1-TUNED is not very sensitive to the variance of the machines, that is why it
performs similarly on distributions 2 and 3, and on distributions 13 and 14.

– Policy UCB2 performs similarly to UCB1-TUNED, but always slightly worse.

Figure 6. Comparison on distribution 1 (2 machines with parameters 0.9, 0.6).

Figure 7. Comparison on distribution 2 (2 machines with parameters 0.9, 0.8).
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Figure 8. Comparison on distribution 3 (2 machines with parameters 0.55, 0.45).

Figure 9. Comparison on distribution 11 (10 machines with parameters 0.9, 0.6, . . . , 0.6).

Figure 10. Comparison on distribution 12 (10 machines with parameters 0.9, 0.8, 0.8, 0.8, 0.7, 0.7, 0.7, 0.6,

0.6, 0.6).
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Figure 11. Comparison on distribution 13 (10 machines with parameters 0.9, 0.8, . . . , 0.8).

Figure 12. Comparison on distribution 14 (10 machines with parameters 0.55, 0.45, . . . , 0.45).

5. Conclusions

We have shown simple and efficient policies for the bandit problem that, on any set of reward
distributions with known bounded support, exhibit uniform logarithmic regret. Our policies
are deterministic and based on upper confidence bounds, with the exception of εn-GREEDY,
a randomized allocation rule that is a dynamic variant of the ε-greedy heuristic. Moreover,
our policies are robust with respect to the introduction of moderate dependencies in the
reward processes.

This work can be extended in many ways. A more general version of the bandit problem
is obtained by removing the stationarity assumption on reward expectations (see Berry &
Fristedt, 1985; Gittins, 1989 for extensions of the basic bandit problem). For example,
suppose that a stochastic reward process {Xi,s : s = 1, 2, . . .} is associated to each machine
i = 1, . . . , K . Here, playing machine i at time t yields a reward Xi,s and causes the current
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state s of i to change to s + 1, whereas the states of other machines remain frozen. A well-
studied problem in this setup is the maximization of the total expected reward in a sequence
of n plays. There are methods, like the Gittins allocation indices, that allow to find the
optimal machine to play at each time n by considering each reward process independently
from the others (even though the globally optimal solution depends on all the processes).
However, computation of the Gittins indices for the average (undiscounted) reward criterion
used here requires preliminary knowledge about the reward processes (see, e.g., Ishikida &
Varaiya, 1994). To overcome this requirement, one can learn the Gittins indices, as proposed
in Duff (1995) for the case of finite-state Markovian reward processes. However, there are no
finite-time regret bounds shown for this solution. At the moment, we do not know whether
our techniques could be extended to these more general bandit problems.

Appendix A: Proof of Theorem 2

Note that

τ(r) ≤ (1 + α)r + 1 ≤ τ(r − 1)(1 + α) + 1 (14)

for r ≥ 1. Assume that n ≥ 1/(2
2
j ) for all j and let r̃ j be the largest integer such that

τ(r̃ j − 1) ≤ (1 + 4α) ln
(
2en
2

j

)
2
2

j

.

Note that r̃ j ≥ 1. We have

Tj (n) ≤ 1 +
∑
r≥1

(τ (r) − τ(r − 1)) {machine j finishes its r -th epoch}

≤ τ(r̃ j ) +
∑
r>r̃ j

(τ (r) − τ(r − 1)) {machine j finishes its r -th epoch}

Now consider the following chain of implications

machine j finishes its r -th epoch

⇒ ∃i ≥ 0, ∃t ≥ τ(r − 1) + τ(i) such that(
X̄ j,τ (r−1) + at,r−1

) ≥ (
X̄∗

τ(i) + at,i
)

⇒ ∃t ≥ τ(r − 1) such that
(
X̄ j,τ (r−1) + at,r−1

) ≥ µ∗ − α
 j/2

or ∃i ≥ 0, ∃t ′ ≥ τ(r − 1) + τ(i) such that(
X̄∗

τ(i) + at ′,i
) ≤ µ∗ − α
 j/2

⇒ X̄ j,τ (r−1) + an,r−1 ≥ µ∗ − α
 j/2

or ∃i ≥ 0 such that X̄∗
τ(i) + aτ(r−1)+τ(i),i ≤ µ∗ − α
 j/2

where the last implication hold because at,r is increasing in t . Hence

IE[Tj (n)] ≤ τ( r̃ j ) +
∑
r>r̃ j

(τ (r) − τ(r − 1))IP
{

X̄ j,τ (r−1) + an,r−1 ≥ µ∗ − α
 j/2
}
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+
∑
r>r̃ j

∑
i≥0

(τ (r) − τ(r − 1))

· IP
{

X̄∗
τ(i) + aτ(r−1)+τ(i),i ≤ µ∗ − α
 j/2

}
. (15)

The assumption n ≥ 1/(2
2
j ) implies ln(2en
2

j ) ≥ 1. Therefore, for r > r̃ j , we have

τ(r − 1) >
(1 + 4α) ln

(
2en
2

j

)
2
2

j

(16)

and

an,r−1 =
√

(1 + α) ln(en/τ(r − 1))

2τ(r − 1)

≤ 
 j

√
(1 + α) ln(en/τ(r − 1))(

1 + 4α) ln(2en
2
j

) using (16) above

≤ 
 j

√√√√ (
1 + α) ln(2en
2

j

)
(
1 + 4α) ln(2en
2

j

)
using τ(r − 1) > 1/2
2

j derived from (16)

≤ 
 j

√
1 + α

1 + 4α
. (17)

We start by bounding the first sum in (15). Using (17) and Fact 1 (Chernoff-Hoeffding
bound) we get

IP
{

X̄ j,τ (r−1) + an,r−1 ≥ µ∗ − α
 j/2
}

= IP{X̄ j,τ (r−1) + an,r−1 ≥ µ j + 
 j − α
 j/2}
≤ exp

{ − 2τ(r − 1)
2
j

(
1 − α/2 −

√
(1 + α)/(1 + 4α)

)2}
≤ exp

{−2τ(r − 1)
2
j (1 − α/2 − (1 − α))2}

= exp
{−τ(r − 1)
2

jα
2
/

2
}

for α < 1/10. Now let g(x) = (x − 1)/(1 + α). By (14) we get g(x) ≤ τ(r − 1) for
τ(r − 1) ≤ x ≤ τ(r) and r ≥ 1. Hence∑

r>r̃ j

(τ (r) − τ(r − 1))IP
{

X̄ j,τ (r−1) + an,r−1 ≥ µ∗ − α
 j/2
}

≤
∑
r>r̃ j

(τ (r) − τ(r − 1)) exp
{ − τ(r − 1)
2

jα
2
}

≤
∫ ∞

0
e−cg(x)dx
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where c = (
 jα)2 < 1. Further manipulation yields

∫ ∞

0
exp

{
− c

1 + α
(x − 1)

}
dx = ec/(1+α) 1 + α

c
≤ (1 + α)e

(
 jα)2
.

We continue by bounding the second sum in (15). Using once more Fact 1, we get

∑
r>r̃ j

∑
i≥0

(τ (r) − τ(r − 1))IP
{

X̄∗
τ(i) + aτ(r−1)+τ(i),i ≤ µ∗ − α
 j/2

}
≤

∑
i≥0

∑
r>r̃ j

(τ (r) − τ(r − 1))

· exp

{
− τ(i)

(α
 j )
2

2
− (1 + α) ln

(
e
τ(r − 1) + τ(i)

τ (i)

)}
≤

∑
i≥0

exp{−τ(i)(α
 j )
2/2}

·
[ ∑

r>r̃ j

(τ (r) − τ(r − 1)) exp

{
− (1 + α) ln

(
1 + τ(r − 1)

τ (i)

)}]

=
∑
i≥0

exp{−τ(i)(α
 j )
2/2}

·
[ ∑

r>r̃ j

(τ (r) − τ(r − 1))

(
1 + τ(r − 1)

τ (i)

)−(1+α)
]

≤
∑
i≥0

exp{−τ(i)(α
 j )
2/2}

[ ∫ ∞

0

(
1 + x − 1

(1 + α)τ(i)

)−(1+α)

dx

]

=
∑
i≥0

τ(i) exp{−τ(i)(α
 j )
2/2}

[
1 + α

α

(
1 − 1

(1 + α)τ(i)

)−α
]

≤
∑
i≥0

τ(i) exp{−τ(i)(α
 j )
2/2}

[
1 + α

α

(
α

1 + α

)−α
]

as τ(i) ≥ 1

=
(

1 + α

α

)1+α ∑
i≥0

τ(i) exp{−τ(i)(α
 j )
2/2}.

Now, as (1 + α)x−1 ≤ τ(i) ≤ (1 + α)x + 1 for i ≤ x ≤ i + 1, we can bound the series in
the last formula above with an integral

∑
i≥0

τ(i) exp{−τ(i)(α
 j )
2/2}

≤ 1 +
∫ ∞

1
((1 + α)x + 1) exp{−(1 + α)x−1(α
 j )

2/2} dx
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≤ 1 +
∫ ∞

1

z + 1

z ln(1 + α)
exp

{
− z(α
 j )

2

2(1 + α)

}
dz

by change of variable z = (1 + α)x

= 1 + 1

ln(1 + α)

[
e−λ

λ
+

∫ ∞

λ

e−x

x
dx

]

where we set

λ = (α
 j )
2

2(1 + α)
.

As 0 < α, 
 j < 1, we have 0 < λ < 1/4. To upper bound the bracketed formula above,
consider the function

F(λ) = e−λ + λ

∫ ∞

λ

e−x

x
dx

with derivatives

F ′(λ) =
∫ ∞

λ

e−x

x
dx − 2e−λ F ′′(λ) = 2λe−λ −

∫ ∞

λ

e−x

x
dx .

In the interval (0, 1/4), F ′ is seen to have a zero at λ = 0.0108 . . .. As F ′′(λ) < 0 in the
same interval, this is the unique maximum of F , and we find F(0.0108 . . .) < 11/10. So
we have

e−λ

λ
+

∫ ∞

λ

e−x

x
dx <

11

10λ
= 11(1 + α)

5(α
 j )2

Piecing everything together, and using (14) to upper bound τ( r̃ j ), we find that

IE[Tj (n)] ≤ τ( r̃ j ) + (1 + α)e

(
 jα)2
+

(
1 + α

α

)1+α[
1 + 11(1 + α)

5(α
 j )2 ln(1 + α)

]

≤ (1 + α)(1 + 4α) ln
(
2en
2

j

)
2
2

j

+ cα


2
j

where

cα = 1 + (1 + α)e

α2
+

(
1 + α

α

)1+α[
1 + 11(1 + α)

5α2 ln(1 + α)

]
. (18)

This concludes the proof. ✷
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Appendix B: Proof of Theorem 4

The proof goes very much along the same lines as the proof of Theorem 1. It is based on
the two following conjectures which we only verified numerically.

Conjecture 1. Let X be a Student random variable with s degrees of freedom. Then, for
all 0 ≤ a ≤ √

2(s + 1),

IP{X ≥ a} ≤ e−a2/4.

Conjecture 2. Let X be a χ2 random variable with s degrees of freedom. Then

IP{X ≥ 4s} ≤ e−(s+1)/2.

We now proceed with the proof of Theorem 4. Let

Qi,n =
n∑

t=1

X2
i,t .

Fix a machine i and, for any s and t , set

ct,s =
√

16 · Qi,s − s X̄2
i,s

s − 1
· ln t

s

Let c∗
t,s be the corresponding quantity for the optimal machine. To upper bound Ti (n), we

proceed exactly as in the first part of the proof of Theorem 1 obtaining, for any positive
integer �,

Ti (n) ≤ � +
∞∑

t=1

t−1∑
s=1

t−1∑
si =�

[{X̄∗
s ≤ µ∗ − c∗

t,s} + {
X̄i,si ≥ µi + ct,si

}
+ {

µ∗ < µi + 2ct,si

}]
.

The random variable (X̄i,si −µi )/

√
(Qi,si − si X̄2

i,si
)/(si (si − 1)) has a Student distribution

with si − 1 degrees of freedom (see, e.g., Wilks, 1962, 8.4.3 page 211). Therefore, using
Conjecture 1 with s = si − 1 and a = 4

√
ln t , we get

IP
{

X̄i,si ≥ µi + ct,si

} = IP


 X̄i,si − µi√(

Qi,si − si X̄2
i,si

)
/(si (si − 1))

≥ 4
√

ln t


 ≤ t−4

for all si ≥ 8 ln t . The probability of X̄∗
s ≤ µ∗ − c∗

t,s is bounded analogously. Finally, since
(Qi,si − si X̄2

i,si
)/σ 2

i is χ2-distributed with si − 1 degrees of freedom (see, e.g., Wilks, 1962,
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8.4.1 page 208). Therefore, using Conjecture 2 with s = si − 1 and a = 4s, we get

IP
{
µ∗ < µi + 2ct,si

} = IP

{(
Qi,si − si X̄2

i,si

)/
σ 2

i > (si − 1)

2

i

σ 2
i

si

64 ln t

}
≤ IP

{(
Qi,si − si X̄2

i,si

)/
σ 2

i > 4(si − 1)
}

≤ e−si /2 ≤ t−4

for

si ≥ max

{
256

σ 2
i


2
i

, 8

}
ln t.

Setting

� =
⌈

max

{
256

σ 2
i


2
i

, 8

}
ln t

⌉

completes the proof of the theorem. ✷
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Note

1. Similar extensions of Lai and Robbins’ results were also obtained by Yakowitz and Lowe (1991), and by
Burnetas and Katehakis (1996).
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