

La seconda forma canonica Circuiti notevoli

Prof. Alberto Borghese Dipartimento di Scienze dell'Informazione

borghese@dsi.unimi.it

Università degli Studi di Milano

Riferimenti: Sezione C3.

A.A. 2009-2010

1/41

http:\\homes.dsi.unimi.it\~borghese

Sommario

Implementazione circuitale mediante PLA o ROM.

La seconda forma canonica.

Circuiti combinatori notevoli

A.A. 2009-2010

2/41

Circuiti combinatori

- Circuiti logici digitali in cui le operazioni (logiche) dipendono solo da una combinazione degli input.
- Circuiti senza memoria. Ogni volta che si inseriscono in ingresso gli stessi valuri, si ottengono le stesse uscite. Il risultato non dipende dallo stato del circuito.
- I circuiti combinatori descrivono delle funzioni Booleane. Queste funzioni si ottengono combinando tra loro (in parallelo o in cascata) gli operatori logici: NOT, AND, OR.
- Il loro funzionamento può essere descritto come tabella della verità.
- Come nelle funzioni algebriche, il risultato è aggiornato immediatamente dopo il
 cambiamento dell'input (si suppone il tempo di commutazione trascurabile, tempo di attesa
 prima di guardare l'output sufficientemente ampio per permettere a tutti i circuiti la
 commutazione).

A.A. 2009-2010 3/41 http://homes.dsi.unimi.it/~borghese

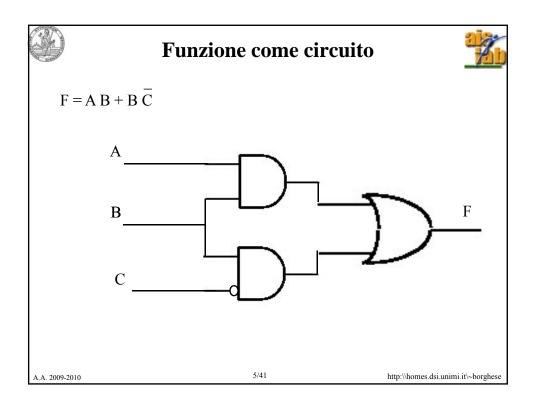
Funzione come espressione logica

$$F = AB + B\bar{C}$$

		_	
ABC	A and B	B and C	F
0 0 0	0	0	0
0 0 1	0	0	0
0 1 0	0	1	1
0 1 1	0	0	0
1 0 0	0	0	0
1 0 1	0	0	0
1 1 0	1	1	1
1 1 1	1	0	1

A.A. 2009-2010 4/41

 $http: \\ \ homes.dsi.unimi.it \\ \ \ \ borghese$



Razionale della prima forma canonica

$$F = AB + B\overline{C} = \overline{A}B\overline{C} + AB\overline{C} + ABC$$

ABC	F	F = 1
0 0 0	0	
0 0 1	0	iif
0 1 0	1	•••
0 1 1	0	A = 0 B = 1 C = 0
1 0 0	0	OR
1 0 1	0	A = 1 B = 1 C = 0
1 1 0	1	OR
1 1 1	1	A = 1 B = 1 C = 1
		A-1B-1C-1

A.A. 2009-2010

Manipolazione algebrica della prima forma canonica

$$F = \overline{ABC} + AB\overline{C} + ABC =$$

La prima forma canonica non è la rappresentazione più compatta della funzione, ma è facilmente ottenibile. Per ottenere una forma più compatta occorre semplificare.

$$F = AB(C + \overline{C}) + \overline{ABC} = AB + \overline{ABC} = B(A + \overline{AC}) = B(A + \overline{C}) =$$

$$AB + B\overline{C}$$

Verifichiamo attraverso la proprietà distributiva dell'OR rispetto all'AND che:

A A 2009 2010

$$A + \overline{AC} = (A + \overline{A})(A + \overline{C}) = A + \overline{C}$$

http:\\homes.dsi.unimi.it\~borghese

Forme canoniche

- Esiste un metodo per ricavare automaticamente un circuito che implementi una tabella di verità?
- Esistono 2 forme canoniche (equivalenti) che garantiscono di poter realizzare una qualunque tabella di verità con solo due livelli di porte OR, AND e NOT:
 - 1) Somme di Prodotti (SOP)

$$F = \sum_{i=1}^{Q} m_i$$

$$F = \overline{A} B \overline{C} + A B \overline{C} + A B C$$

2) Prodotti di Somme (POS)

Tipi di circuiti che implementano le SOP

In generale abbiamo funzioni logiche booleane multi-input / multi-output.

- Logica distrubuita.
- PLA: Programmable Logic Array: matrici regolari AND e OR in successione, personalizzabili dall'utente.
- ROM: Read Only Memory circuiti ad hoc che implementano una particolare funzione in modo irreversibile.

A.A. 2009-2010

9/41

http:\\homes.dsi.unimi.it\~borghese

PLA (Programmable Logica Array)

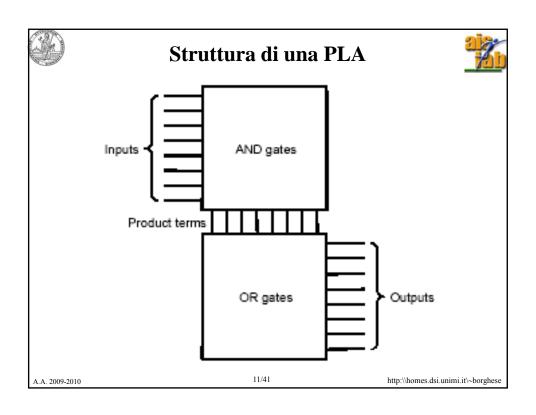
- La matrice degli AND ha n linee di ingresso: ciascuna porta ha in ingresso le n linee e il loro complemento.
- L'utente fornisce la matrice che dice quale linea entra (e come) in quale porta AND:
 Crea la matrice dei mintermini, bruciando in ingresso alle porte AND le linee che non servono.
- Le uscite della matrice AND entrano nella matrice OR programmata come la precedente in base ad un'altra matrice fornita dall'utente

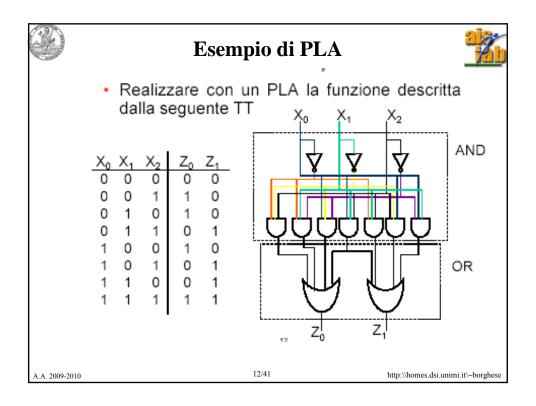
Si utilizza una porta OR per ogni funzione calcolata.

A.A. 2009-2010

10/41

 $http: \\ \ homes. dsi. unimi. it \\ \ \ \ borghese$



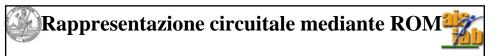


Esercizi sulla PLA

Realizzare mediante PLA con 3 ingressi con il numero adeguato di linee interne:

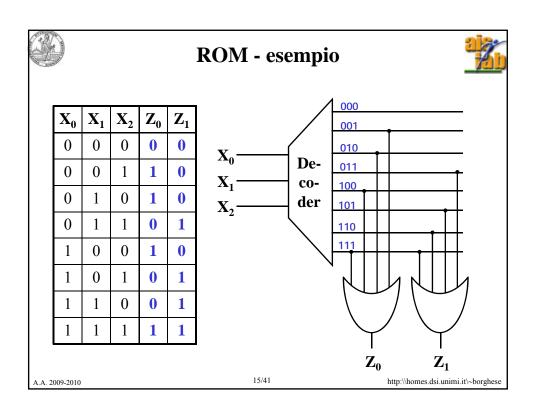
- •la funzione maggioranza.
- •la funzione che vale 1 se e solo se 1 solo bit di ingresso vale 1
- •un decoder
- •la funzione che vale 0 se l'input è pari, 1 se dispari
- •la funzione che calcola i multipli di 3 (con 4
- •ingressi)

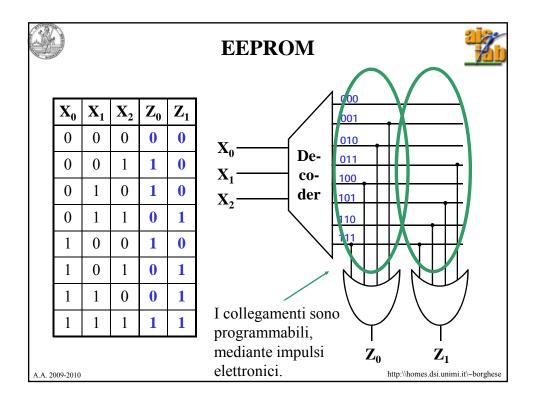
A.A. 2009-2010



- Read Only Memory, memoria di sola lettura.
 Funge anche da modulo combinatorio a uscita multipla.
- n linee di ingresso, m linee di uscita (ampiezza) a ciascuna delle 2ⁿ (altezza) configurazioni di ingresso (parole di memoria) è associata permanentemente una combinazione delle m linee di uscita.
- l'input seleziona la parola da leggere di m bit, che appare in uscita
- realizzato con un decoder n-a-2ⁿ seguito da una matrice di m porte OR.

A.A. 2009-2010 14/-





Confronto PLA - ROM

ROM – fornisce un'uscita per ognuna delle combinazioni degli ingressi. Decoder con 2ⁿ uscite, dove n è il numero di variabili in ingresso alla ROM. Crescita esponenziale delle uscite.

- approccio più generale. Può implementare una qualsiasi funzione, dato un certo numero di input e output.

PLA – contiene solamente i mintermini in uscita al primo stadio. Il loro numero cresce meno che esponenzialmente.

FPGA – connettività libera. Non è una struttura a 2 livelli.

A.A. 2009-2010

17/41

http:\\homes.dsi.unimi.it\~borghese

Sommario

Implementazione circuitale mediante PLA o ROM.

La seconda forma canonica.

Circuiti combinatori notevoli.

Prima forma canonica

$$F = AB + B\overline{C} = \overline{A}B\overline{C} + AB\overline{C} + ABC$$

ABC	F	F = 1
0 0 0	0	$\mathbf{r} - \mathbf{r}$
0 0 1	0	iif
0 1 0	1	III
0 1 1	0	A = 0 B = 1 C = 0
1 0 0	0	R = 0 B $= 1$ C $= 0$ OR
1 0 1	0	A = 1 B = 1 C = 0
1 1 0	1	OR
1 1 1	1	A = 1 B = 1 C = 1
		A - 1 D - 1 C - 1

A.A. 2009-2010 19/41 http:\\homes.dsi.unimi.it\~borghese

Razionale della seconda forma canonica

$$F = \overline{A} B \overline{C} + A B \overline{C} + A B C$$

F = 1

ABC	F	iif
0 0 0	0	
0 0 1	0	NOT $(A = 0 B = 0 C = 0)$
0 1 0	1	AND
0 1 1	0	NOT $(A = 0 B = 0 C = 1)$
1 0 0	0	AND
1 0 1	0	NOT $(A = 0 B = 1 C = 1)$
1 1 0	1	AND
1 1 1	1	NOT $(A = 1 B = 0 C = 0)$
		AND
		NOT $(A = 1 B = 0 C = 1)$

A.A. 2009-2010 20/41 http://homes.dsi.unimi.it/~borghese

Verso la seconda forma canonica

		Maxtermine, M _j ,: e' un prodotto di <u>tutte</u> le variabili di ingresso al quale corr <u>isponde</u>
ABC	F	un valore 0 per la funzione. (e.g. A B C).
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	0 0 1 0 0	j indica il numero progressivo in base 10. Possibile espressione della seconda forma canonica:
1 1 0 1 1 1 1	1 1	$W \le 2^{N}$ $Q + W = 2^{N}$ $F = \prod_{i} \overline{M}_{i}$

Solo AND?

$$F = (\overline{A} \overline{B} \overline{C}) (\overline{A} \overline{B} C) (\overline{A} B C) (\overline{A} \overline{B} \overline{C}) (\overline{A} \overline{B} C)$$

A.A. 2009-2010

21/41

http:\\homes.dsi.unimi.it\~borghese

La seconda forma canonica: prodotto di somme

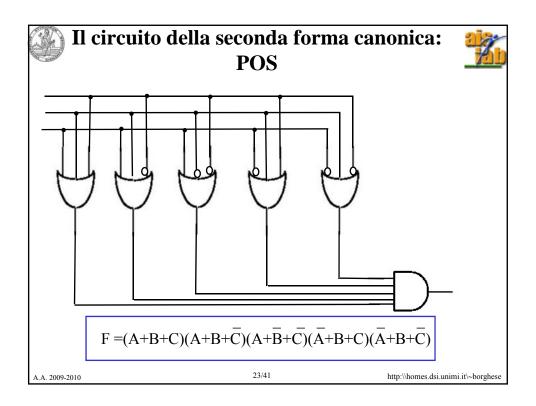
F = (A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)

F = 1 quando nessun fattore si annulla

A.A. 2009-2010

22/41

 $http: \hspace{-0.05cm} \verb|\| homes.dsi.unimi.it| \hspace{-0.05cm} \sim borghese$



Regole manipolazione algebrica

Doppia Inversione	= x = x			
11	AND	OR		
Identità	1 x = x	0 + x = x		
Elemento nullo	0 x = 0	1 + x = 1		
Idempotenza	x x = x	x + x = x		
Inverso	$x \overline{x} = 0$	$x + \overline{x} = 1$		
Commutativa	x y = y x	x + y = y + x		
Associativa	(x y) z = x (y z)	(x+y)+z=x+(y+z)		
AND rispetto ad OR OR rispetto ad AND				
Distributiva	x(y+z) = xy + xz	x + y z = (x + y) (x + z)		
Assorbimento	$x\left(x+y\right) =x$	x + x y = x		
Do Morgan				
De Morgan	xy = x + y	x + y = x y		

Si possono dimostrare sostituendo 0/1 alle variabili.

A.A. 2009-2010 24/41 http:\\homes.dsi.unimi.it\~borghese

Dalla seconda alla prima forma canonica

$$F = \prod_{i=1}^{W} \overline{M_i} = \overline{\sum_{i=1}^{W} M_i} \qquad F = AB + B\overline{C}$$

AB(C + !C) + (!A)B(!C) = ABC + AB(!C) + (!A)B(!C)

Esempio 2

$$F = \overline{ABC} + \overline{ABC} = \overline{AC}$$

$F = \overline{M}_1 \overline{M}_3 \overline{M}_4 \overline{M}_5 \overline{M}_6 \overline{M}_7$
1 141 1413 1414 1415 1416 1417
F=(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)

26/41

A.A. 2009-2010

Sommario

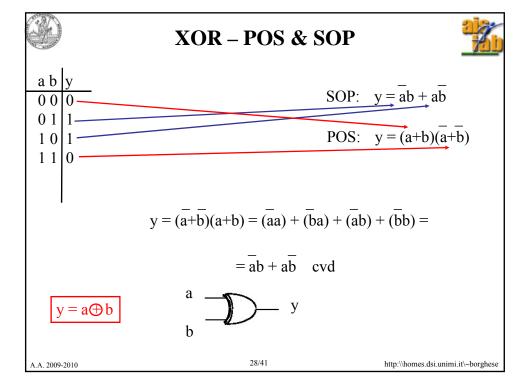
Implementazione circuitale mediante PLA o ROM.

La seconda forma canonica.

Circuiti combinatori notevoli.

A.A. 2009-2010

27/4



Uscite indifferenti di un tabella delle verità

Diminuisce il numero di porte e si accorcia il cammino critico.

A.A. 2009-2010

29/4

http:\\homes.dsi.unimi.it\~borghese

Decodificatore (decoder)

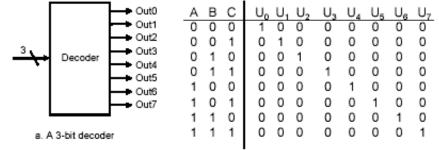
- E' caratterizzato da n linee di input e 2ⁿ linee di output
- il numero binario espresso dalla configurazione delle linee di input è usato per asserire la sola linea di output di ugual indice.
- es.: con 4 linee di input e 16 di output (da 0 a 15), se in ingresso arriva il valore 0110, in uscita si alza la linea di indice 5 (la sesta!).
- utilizzato per indirizzare la memoria (cf. ROM).

A.A. 2009-2010

30/41

La funzione decoder

Decoder



Le funzioni di uscita sono 2ⁿ per n input:

$$U_0 = \sim A \sim B \sim C$$

...
$$U_j = m_j$$

$$U_7 = A BC$$

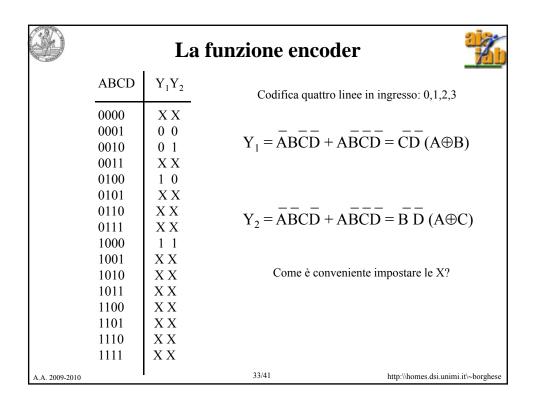
A.A. 2009-2010 31/41 http://homes.dsi.unimi.it/~borghese

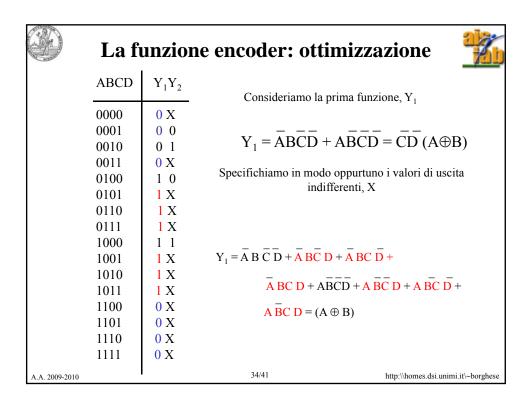
Codificatore (encoder)

- \bullet E' caratterizzato da n linee di input e ceil($\log_2 n$) linee di output
- Una sola linea di ingresso può essere attiva.
- il numero binario espresso dalla configurazione delle linee di output rappresenta la linea di ingresso attiva.
- es.: con 16 linee di input e 4 di output, se in ingresso arriva il valore 0000 0100 0000 0000, in uscita leggiamo il numero 10.

A.A. 2009-2010

32/41





Multiplexer

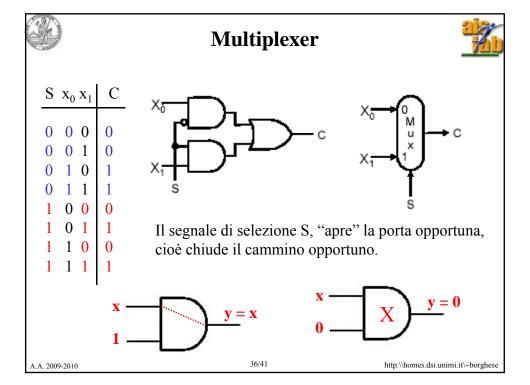
- E' caratterizzato da n linee di input (data),
- k linee di controllo (selezione).
- In base alla linea di controllo viene connessa all'uscita la linea di ingresso selezionata (cf. ROM).
- Quante linee di controllo, k, servono?

$$k = ceil (log_2 n)$$

Esempio: con 4 linee di input (da 0 a 3), se sulle linee di controllo c'è 11, in uscita si avrà il valore presente sulla linea 3

A.A. 2009-2010

35/41



Sintesi della funzione Mux

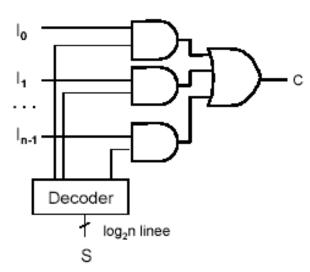
$$C=x_1 \left\{ \begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array} \right.$$

A.A. 2009-2010

🕽 Sintesi della funzione Mux nella forma POS

A.A. 2009-2010

Mux a più vie.



Una sola porta alla volta viene aperta dal segnale S. Le porte sono mutuamente esclusive.

A.A. 2009-2010

39/41

http:\\homes.dsi.unimi.it\~borghese

Comparatore

- E' caratterizzato da 2 insiemi di n linee di ingresso ciascuna e un output.
- L'output vale 1 se i due insiemi di bit hanno uguale valore, 0 se sono diversi.

A ₀ B ₀	Co	A ₁ B ₁	C ₁	
0 0	1	0 0	1	$C = C_0 C_1 \dots C_{n-1}$
0 0	0	0 1	0	
1 0	0	1 0	0	C Ol-
1 0 1 1	1	0 1 1 0 1 1	1	$C_k = a_k \oplus b_k$
		l		

A.A. 2009-2010

40/41

Sommario

Implementazione circuitale mediante PLA o ROM.

La seconda forma canonica.

Circuiti combinatori notevoli.

A.A. 2009-2010

41/4

 $http: \\ \ homes. dsi. unimi. it \\ \ \ \ borghese$