
Introduction Optimization strategies Parallel operations References

Practical programming in CUDA

Massimiliano Piscozzi

Università degli Studi di Milano

June 2008

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Outline

Introduction

Optimization strategies

Parallel operations

References

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Outline

Introduction

Optimization strategies

Parallel operations

References

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Parallelism?

1. Functional parallelism
“Different part of data are processed concurrently by separate functional
sections on different computational units”

I No explicit association between kernels and multiprocessors
I No simulataneous execution of kernels
I Big-kernel approach = waste of shared resources & need of blocks

synchronization mechanism

2. Data parallelism
“Data are processed in parallel by distributing elements across different
processing units, all of which perform more or less the same algorithmic
function”

I Streams and kernels approach
I Stream = (large) set of homogeneous data
I Kernel = function transforming one or more input streams into one or more

output streams
I Kernels launch as synchronization point
I More is better than less . . .

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Parallelism?

1. Functional parallelism
“Different part of data are processed concurrently by separate functional
sections on different computational units”

I No explicit association between kernels and multiprocessors
I No simulataneous execution of kernels
I Big-kernel approach = waste of shared resources & need of blocks

synchronization mechanism

2. Data parallelism
“Data are processed in parallel by distributing elements across different
processing units, all of which perform more or less the same algorithmic
function”

I Streams and kernels approach
I Stream = (large) set of homogeneous data
I Kernel = function transforming one or more input streams into one or more

output streams
I Kernels launch as synchronization point
I More is better than less . . .

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Parallelism? (cont’d)

I The importance of optimization

1. High-level programming language

2. Low-level access to hardware

I Parallelism in CUDA

1. Blocks scheduling mechanism (implicit)

2. Thread warps, SIMD groups (explicit)

3. Shared memory access (explicit)

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Parallelism? (cont’d)

I The importance of optimization

1. High-level programming language

2. Low-level access to hardware

I Parallelism in CUDA

1. Blocks scheduling mechanism (implicit)

2. Thread warps, SIMD groups (explicit)

3. Shared memory access (explicit)

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Parallelism? (cont’d)

I The importance of optimization

1. High-level programming language

2. Low-level access to hardware

I Parallelism in CUDA

1. Blocks scheduling mechanism (implicit)

2. Thread warps, SIMD groups (explicit)

3. Shared memory access (explicit)

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Parallelism? (cont’d)

I The importance of optimization

1. High-level programming language

2. Low-level access to hardware

I Parallelism in CUDA

1. Blocks scheduling mechanism (implicit)

2. Thread warps, SIMD groups (explicit)

3. Shared memory access (explicit)

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Parallelism? (cont’d)

I The importance of optimization

1. High-level programming language

2. Low-level access to hardware

I Parallelism in CUDA

1. Blocks scheduling mechanism (implicit)

2. Thread warps, SIMD groups (explicit)

3. Shared memory access (explicit)

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Outline

Introduction

Optimization strategies

Parallel operations

References

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Optimization strategies

I Essential ingredients to write efficient CUDA kernel. . .

1. No-branching code

2. Data Read/Write optimization
I Prefetching memory
I Memory coalescing

3. Bank conflicts resolution

I . . . and a good parallel algorithm!!
I PRAM CRCW (Parallel Random Access Machine - Concurrent Read

Concurrent Write) model
I No message passing model

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Optimization strategies

I Essential ingredients to write efficient CUDA kernel. . .

1. No-branching code

2. Data Read/Write optimization
I Prefetching memory
I Memory coalescing

3. Bank conflicts resolution

I . . . and a good parallel algorithm!!
I PRAM CRCW (Parallel Random Access Machine - Concurrent Read

Concurrent Write) model
I No message passing model

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Optimization strategies

I Essential ingredients to write efficient CUDA kernel. . .

1. No-branching code

2. Data Read/Write optimization
I Prefetching memory
I Memory coalescing

3. Bank conflicts resolution

I . . . and a good parallel algorithm!!
I PRAM CRCW (Parallel Random Access Machine - Concurrent Read

Concurrent Write) model
I No message passing model

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Optimization strategies

I Essential ingredients to write efficient CUDA kernel. . .

1. No-branching code

2. Data Read/Write optimization
I Prefetching memory
I Memory coalescing

3. Bank conflicts resolution

I . . . and a good parallel algorithm!!
I PRAM CRCW (Parallel Random Access Machine - Concurrent Read

Concurrent Write) model
I No message passing model

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Optimization strategies

I Essential ingredients to write efficient CUDA kernel. . .

1. No-branching code

2. Data Read/Write optimization
I Prefetching memory
I Memory coalescing

3. Bank conflicts resolution

I . . . and a good parallel algorithm!!
I PRAM CRCW (Parallel Random Access Machine - Concurrent Read

Concurrent Write) model
I No message passing model

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

No-branching code

No-branching code = from SPMD to SIMD

I Branching inside a warp = serialization
I No divergence if branch granularity is a whole multiple of warp size

I Use a multiple of 32 threads per block
I Prefer data padding than special cases

I Low-control flow overhead
I Small loops unrolled

I Think in parallel!
I Do not rely on any ordering between warps (use __syncthreads())
I __syncthreads() in a branch = deadlock

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

No-branching code

No-branching code = from SPMD to SIMD

I Branching inside a warp = serialization
I No divergence if branch granularity is a whole multiple of warp size

I Use a multiple of 32 threads per block
I Prefer data padding than special cases

I Low-control flow overhead
I Small loops unrolled

I Think in parallel!
I Do not rely on any ordering between warps (use __syncthreads())
I __syncthreads() in a branch = deadlock

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

No-branching code

No-branching code = from SPMD to SIMD

I Branching inside a warp = serialization
I No divergence if branch granularity is a whole multiple of warp size

I Use a multiple of 32 threads per block
I Prefer data padding than special cases

I Low-control flow overhead
I Small loops unrolled

I Think in parallel!
I Do not rely on any ordering between warps (use __syncthreads())
I __syncthreads() in a branch = deadlock

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

No-branching code

No-branching code = from SPMD to SIMD

I Branching inside a warp = serialization
I No divergence if branch granularity is a whole multiple of warp size

I Use a multiple of 32 threads per block
I Prefer data padding than special cases

I Low-control flow overhead
I Small loops unrolled

I Think in parallel!
I Do not rely on any ordering between warps (use __syncthreads())
I __syncthreads() in a branch = deadlock

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Prefetching memory

I Maximize arithmetic intensity (many calculations per memory access)

I Latency hiding
I Help the (young) compiler do a better job

I Memory instruction followed by independent ALU instructions (if possible)
I Sometimes it’s better to recompute than to cache
I Exploit block scheduling mechanism = use more than 16 blocks
I Use prefetching strategy (manual caching)

CPU GPU

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Prefetching strategy

I Prefetching strategy
1. Use threads to cooperatively move data from device memory to shared

memory
2. Barrier synchronization
3. Use threads to process data
4. . . .
5. Barrier synchronization
6. Use threads to cooperatively write results to device memory

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Memory coalescing

I If per-thread memory accesses form a contiguous range of adresses,
accesses will be coalesced into a single access

I Coalesced
I fewer memory accesses
I bigger data transfers (32-bit, 64-bit, 128-bit instructions)

I Non coalesced
I serialization of memory operations

I Memory alignment
I Explicit alignment of custom types (__align keyword)
I Prefer Structure of Arrays (SoA) than Array of Structures (AoS)

I Use prefetching strategy to do coalesced read/write . . .
I . . . use threads cooperation to permute data in shared memory

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Memory coalescing

I If per-thread memory accesses form a contiguous range of adresses,
accesses will be coalesced into a single access

I Coalesced
I fewer memory accesses
I bigger data transfers (32-bit, 64-bit, 128-bit instructions)

I Non coalesced
I serialization of memory operations

I Memory alignment
I Explicit alignment of custom types (__align keyword)
I Prefer Structure of Arrays (SoA) than Array of Structures (AoS)

I Use prefetching strategy to do coalesced read/write . . .
I . . . use threads cooperation to permute data in shared memory

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Memory coalescing

I If per-thread memory accesses form a contiguous range of adresses,
accesses will be coalesced into a single access

I Coalesced
I fewer memory accesses
I bigger data transfers (32-bit, 64-bit, 128-bit instructions)

I Non coalesced
I serialization of memory operations

I Memory alignment
I Explicit alignment of custom types (__align keyword)
I Prefer Structure of Arrays (SoA) than Array of Structures (AoS)

I Use prefetching strategy to do coalesced read/write . . .
I . . . use threads cooperation to permute data in shared memory

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Shared memory & Bank conflicts

I Parallel shared memory access
I Many threads access memory, memory is divides into banks
I At every cycle: each bank can service one address
I Successive 32-bit words = successive banks (16 banks)

I Bank conflicts
I Conflicting accesses are serialized
I Conflict = same bank! (not same address)
I Conflicts can occur only inside a SIMD group
I No conflict if . . .

I . . . all threads access different banks
I . . . all threads access the identical address (broadcast, global data)

I Bank conflict resolution
I Explicit stride based on tid
I Use more shared memory

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Shared memory & Bank conflicts

I Parallel shared memory access
I Many threads access memory, memory is divides into banks
I At every cycle: each bank can service one address
I Successive 32-bit words = successive banks (16 banks)

I Bank conflicts
I Conflicting accesses are serialized
I Conflict = same bank! (not same address)
I Conflicts can occur only inside a SIMD group
I No conflict if . . .

I . . . all threads access different banks
I . . . all threads access the identical address (broadcast, global data)

I Bank conflict resolution
I Explicit stride based on tid
I Use more shared memory

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Shared memory & Bank conflicts

I Parallel shared memory access
I Many threads access memory, memory is divides into banks
I At every cycle: each bank can service one address
I Successive 32-bit words = successive banks (16 banks)

I Bank conflicts
I Conflicting accesses are serialized
I Conflict = same bank! (not same address)
I Conflicts can occur only inside a SIMD group
I No conflict if . . .

I . . . all threads access different banks
I . . . all threads access the identical address (broadcast, global data)

I Bank conflict resolution
I Explicit stride based on tid
I Use more shared memory

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Bank conflicts

No conflicts No conflicts

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Bank conflicts (cont’d)

2-way conflicts 8-way conflicts

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Outline

Introduction

Optimization strategies

Parallel operations

References

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Data-Parallel building blocks

I Data-parallel operations
I Stream: S = [a0, a1, . . . , an−1]

1. Map
I Local function, f
I map(S) = [f (a0), f (a1), . . . , f (an−1)]

I Excellent data-parallelism, no threads communication

2. Reduce
I Binary associative operator, ⊗
I reduce(S,⊗) = a0 ⊗ a1 ⊗ . . .⊗ an−1
I Pyramidal construction
I O(log2N) steps, O(N) work

3. Scan
I Binary associative operator, ⊗
I Inclusive scan(S,⊗) = [a0, (a0 ⊗ a1), . . . , (a0 ⊗ a1 ⊗ . . .⊗ an−1)]
I Exclusive scan(S,⊗) = [I , a0, . . . , (a0 ⊗ a1 ⊗ . . .⊗ an−2)]

I Common algorithmic pattern: the computation seems inherently sequential,
but can be efficiently implemented in parallel

I O(log2N) steps, O(N) work

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

The importance of scan

I M. Harris, S. Sengupta, J. Owens:
Parallel Prefix Sum (Scan) in CUDA.
GPU Gems 3, Hubert Nguyen, ed. Addison Wesley, August 2007

I Applications:
I Sorting,
I Stream compaction,
I Building data structures (trees and summed-area tables)

I CUDPP: Cuda Data Parallel Primitives Library
I http://www.gpgpu.org/developer/cudpp/

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Example: radix-sort

10, 0 00, 1 10, 2 00, 3 –, 4 11, 5 10, 6

0 1 2 3 4 5 6

0,0,1,0 1,0,0,0 0,0,1,0 1,0,0,0 0,0,0,0 0,0,0,1 0,0,1,0

10, 0 00, 1 10, 2 00, 3 –, 4 11, 5 10, 6

0 1 2 3 4 5 6

0,0,0,0 0,0,1,0 1,0,1,0 1,0,2,0 2,0,2,0 2,0,2,0 2,0,2,1

elements count, C = (2, 0, 3, 1)
elements position, P = (0, 2, 2, 5)

00, 1 00, 3 10, 0 10, 2 10, 6 11, 5

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Example: pointers

BucketSplats

Indices

0 1 2 3 4 5 6 7

0 1 2 3 4

0 0 3 3 3 3 4 4

0 2 6- -

BucketSplats

Indices

0 1 2 3 4 5 6 7

0 1 2 3 4

0 0 3 3 3 3 4 4

0 2 62 2

BucketSplats

Indices

0 1 2 3 4 5 6 7

0 1 2 3 4

0 0 3 3 3 3 4 4

0 2 62 2

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Outline

Introduction

Optimization strategies

Parallel operations

References

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Some references

I Pre-CUDA, but useful
I A. Lefohn: Glift: Generic Data Structures for Graphics Hardware, PhD

thesis, Computer Science, University of California, Davis, September 2006.
I M. Kaas, A. Lefohn, J. D. Owens: Interactive Depth of Field Using

Simulated Diffusion, Pixar Animation Studios, January 2006.

I CUDA references
I NVIDIA website & CUDA forum
I Google: CUDA, G80 keywords

Practical programming in CUDA Massimiliano Piscozzi

Introduction Optimization strategies Parallel operations References

Not only CUDA

I CELL parallel architecture
I IBM website

I http://www.research.ibm.com/cell/
I Cell Broadband Engine

I http://cell.scei.co.jp/e_download.html
I Multicore Programming Primer (MIT & Playstation3)

I http://cag.csail.mit.edu/ps3/

Practical programming in CUDA Massimiliano Piscozzi

	Introduction
	

	Optimization strategies
	

	Parallel operations
	

	References
	

