CUDA architecture

Massimiliano Piscozzi

Universita degli Studi di Milano

June 2008

CUDA architecture imiliano Piscozzi

Outline

Introduction
GPGPU
GPU Architecture

Programming model

CUDA architecture Massimiliano Piscozzi

Introduction

Outline

Introduction

CUDA architecture

Introduction
@00

What's CUDA?

CUDA = Compute Unified Device Architecture

» GPGPU technology

1. Hardware technology
2. Software technology

CUDA architecture Massimiliano Piscozzi

Introduction
oeo

CUDA: the hardware side

» GeForce / Quadro (8-series) graphics card

> Desktops, notebooks

> Tesla (C/D/S-870) high performance computing (HPC) solution
» Workstations, servers, clusters

CUDA architecture Massimiliano Piscozzi

Introduction hitecture

ooe

CUDA: the software side

Application

¥

CUDA Libraries

¥ ¥

CUDA Runtime

¥ ¥

CUDA Driver

1

» CUDA software stack
1. Hardware layer
2. Application Programming Interface (API)
» C language extension
3. Higher level mathematical/programming libraries
» CUBLAS, CUFTT, CUDPRP, ...

ming model

CUDA architecture

liano Piscozzi

Outline

GPGPU

CUDA architecture imiliano Piscozzi

GPGPU
[Je]ele]e}

CPU vs GPU Performance

200

100

GFLOPS

(G80
G71
G70-512
NV40 3.0 GHz
NV33 - Intel Core2 Duo
NV
1 T T 1
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006

1. Why GPUs are so fast?
2. Why can't we replace CPUs with GPUs?
> When can we use the GPU instead of the CPU?

GBO = GeForce 8800 GTX

G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ultra
NW35 = GeForce FX 5950 Ultra
NWV30 = GeForce FX 5800

CUDA architecture

liano Piscozzi

GPGPU
0O@000

Real-time rendering

» Graphics hardware enables real-time rendering

> Main goal
> Transform a collection of 3D primitives (triangles, lines, points) ...
> ...into an array of pixels

CUDA architecture

GPGPU
[e]e] le]e}

Logical graphics pipeline

Vertices

Colored Fragments

e

Geom. Ops.

Interpolation

Transi Vertices

LINE{@ ©); TRIANGLE(@ @ ©)‘

[e)
(o]

=] o

Fragments

T

e ™

ki

Raster :/D
e

Connectivity
nformation

Assembly

0___,_-—0

> Very close to the graphics libraries (OpenGL, DirectX) pipeline

> Vertex transformation & perspective projection
> Fragment operations =~ shaders evaluation

CUDA architecture

GPGPU
[e]e]e] e}

Semi-fixed graphics pipeline

Vertex Connectivity

Transformed _
Vertices Primitive

f=———=" Assembly and
Rasterization

Vertices

Veriex
Transformation

Fragments

Pixel
Paositions

Fragment

Raster ¢
% i S S Texturing and
Pixel Updates peralions Colored Coloring
Fragments

» Two programmable units

1. Vertex processor
2. Fragment processor

> The raster unit is fixed

CUDA architecture

GPGPU
[e]e]ele] }

CPU vs GPU architecture

» GPUs are specialized for highly parallel, compute-intensive computation

1. Same computation = lower requirement for flow control
2. Arithmetic intensity (memory access latency hiding) vs big data caches

m [TTTTT{TTTTTITIT]
[TTTTTITTTTITTITIT]

L

SIMD (Single Instruction Multiple Data) architecture

CUDA architecture Massimiliano Piscozzi

GPU Architecture

Outline

GPU Architecture

CUDA architecture

GPU Architecture
00000000

Computer organization

Intel' Pentium® 4
Processor
Extreme Edition
64085
&
PCI Express® [82925
x16 Graphics = MCH 39084
268/ | DMl
Intel” High Serial
Definition Audio n::?l a’l Ports.
4Pl - 4
Express® x1 mes PCI
Intel’ Matrix
8 Hi-Speed Storage Technology
USB 2.0 Ports
Connect Technology

» The graphics card can be used as a coprocessor

CUDA architecture

GPU Architecture
[o] lelelele]ele)

CPU-GPU cooperation

» CPU-GPU communication via PCI Express bus

» CPU and GPU each have their own memory spaces

CPU System memory

PCI Express bus

GPU | GPU memory

» CPU is the host, GPU is the device

1. CPU sends data to the GPU
2. GPU processes data
3. CPU copies data back from the GPU

CUDA architecture Massimiliano Piscozzi

GPU Architecture
[e]e] lelele]ele)

GeForce 6-series architecture

Host

Cull / Clip / Setup
= 2-ult || Rasterization

gl

Vertex Processing

Texture and
Fragment Processing

2-Compare
and Blend

» Specialized units (SIMD architecture)

1. Vertex processors
2. Fragment processors

» GPU memory interface up to 35 GB/s

UDA architecture

Vertes Connectwy

Transbmed
Vertes Brmive
Assembly and
Rasterization

Fragnents

GPU Architecture
[e]e]e] lelelele)

Legacy GPGPU approach

Programmable Vertex Programmable MIMD
ﬂl Processing (fp32) | LI Processing (fp32)

p—
Memo: I Programmable SIMD Herae:
& Datd Pracessing (fp32) o

Data I Data Fetch, fp16 Blending

Programmable Per-Pixel
ament |)

Data Fetch, fp16
| Tesure | Blending

» General purpose applications must be mapped on the graphical pipeline

1. GPGPU algorithms = multi-pass rendering
2. Algorithms written using shading languages (GLSL, CG, ...)

CUDA architecture ano Piscozzi

GPU Architecture
[e]e]e]e] lelele)

The unified architecture
> Specialized units vs general purpose processors

Discrete design Unified design

Buffer

Shader B thader Core

Buffer Buffer Buffer

Buffer

Shader C

» Unified design
> Better workload balancing
> (More) independent of the logical pipeline

CUDA architecture Massimiliano Piscozzi

Introduction GPU Architecture mming model

00000e00

GeForce 8-series architecture

Host
Input Assembler

Thread Execution Manager

Thread Processors Thread Processors Thread Processors Thread Processors Thread Procesions Thread Processors Thread Processors Thread Processors

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

» General purpose multiprocessors (SIMD architecture)
> No Vertex / Fragment specialization

» GPU memory interface up to 90 GB/s

CUDA architecture

Introduction GPU Architecture amming model
00000080

Multiprocessors

Multiprocessor N

» Up to 16 multiprocessors per card Multiprocessor 2
Multiprocessor 1

» Each multiprocessor can execute a
warp of threads
> Lightweight threads
> Warp = 32 threads P . —

» SIMD thread execution

Instruction

CUDA architecture

GPU Architecture
0000000e

Memory architecture

Device

Multiprocessor N

» One set of local 32-bit registers
per-processor | Multiprocessor 2

Multiprocessor 1

» A shared memory, shared by all the

processors ?
» A read-only constant cache, to . . -I st

Processor 1| | Processor2 Processor M

speeds-up reads from the constant
memory space

» A read-only texture cache,to
speeds-up reads from the constant
memory space

CUDA architecture imiliano Piscozzi

Programming model

Outline

Programming model

CUDA architecture

Programming model
[leJele]ele)

Blocks and grids

Device

Grid 1

Block Block Block
(0, 0) 1,0 2,0

Blosk | Block | Block
» Block = one-, two- or three- {0, 1) ,1) @1

dimensional array of threads

» Grid = one-, two- or three- Block (1, 1)
dimensional array of blocks

CUDA architecture

Programming model
(o] lelelele)

Threads batching

» A block is processed by only one
multiprocessor

> Each block is split into warps
(consecutive IDs)

> Several blocks can be processed by
the same multiprocessor
concurrently

> Registers and shared memory

» No-synchronization mechanism
between blocks

CUDA architecture

Host

Device

Grid 1
Kernel ——) | Block | Block = Block
i ©,0 | (1,0 (2,0

Kernel —<
2 o

Block (1, 1)

Programming model
[e]e] lelele)

Programming model

CUDA architecture

Grid

Block (0, 0)

I!I

Block (1, 0)

Thread (0, 0) | Thread (1, 0)

Thread (0, 0

Thread (1, 0)

Programming model
[e]e]e] lele)

Gather and scatter

Gather
= e |
Scatter

CUDA architecture Massimiliano Piscozzi

Programming model
[e]e]e]e] o)

PTX Code

C/C++
CUDA Application

eoe 1. CUDA Applications written in
l (extended) C language
| PTX code | | PTX code | 2. NVCC: NVIDIA CUDA compiler

based on Open64

FTX 10 Targer 3. PTX = Parallel Thread eXecution
Compiler

G80 cee GPU

CUDA architecture

Massimiliano Piscozzi

Programming model
00000e

Extended C language

v

Explicit GPU memory allocation (only from CPU!)
> cudaMalloc(. . .)
> cudaFree()

Memory copy between host and device

> cudaMemcpy(...)
> cudaMemcpy2D(...)

\4

v

Function execution on GPU
> global _ void myKernelFunction(...);

v

Explicit shared memory allocation
> shared int mySharedVariable;
Kernel launch (CPU — GPU)
> myKernelFunc < < < gridSize, blockSize, sharedMem > > >

v

CUDA architecture Massimiliano Piscozzi

	Introduction
	

	GPGPU
	

	GPU Architecture
	

	Programming model
	

