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What's CUDA?

CUDA = Compute Unified Device Architecture

» GPGPU technology

1. Hardware technology
2. Software technology
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CUDA: the hardware side

» GeForce / Quadro (8-series) graphics card

> Desktops, notebooks

> Tesla (C/D/S-870) high performance computing (HPC) solution
» Workstations, servers, clusters

CUDA architecture Massimiliano Piscozzi



Introduction hitecture

ooe

CUDA: the software side

Application
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CUDA Libraries

¥ ¥

CUDA Runtime
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CUDA Driver
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» CUDA software stack
1. Hardware layer
2. Application Programming Interface (API)
» C language extension
3. Higher level mathematical/programming libraries
» CUBLAS, CUFTT, CUDPRP, ...
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CPU vs GPU Performance
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1. Why GPUs are so fast?
2. Why can't we replace CPUs with GPUs?
> When can we use the GPU instead of the CPU?

GBO = GeForce 8800 GTX

G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ultra
NW35 = GeForce FX 5950 Ultra
NWV30 = GeForce FX 5800

CUDA architecture

liano Piscozzi



GPGPU
0O@000

Real-time rendering

» Graphics hardware enables real-time rendering

> Main goal
> Transform a collection of 3D primitives (triangles, lines, points) ...
> ...into an array of pixels
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Logical graphics pipeline
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> Very close to the graphics libraries (OpenGL, DirectX) pipeline

> Vertex transformation & perspective projection
> Fragment operations =~ shaders evaluation
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Semi-fixed graphics pipeline
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» Two programmable units

1. Vertex processor
2. Fragment processor

> The raster unit is fixed
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CPU vs GPU architecture

» GPUs are specialized for highly parallel, compute-intensive computation

1. Same computation = lower requirement for flow control
2. Arithmetic intensity (memory access latency hiding) vs big data caches
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SIMD (Single Instruction Multiple Data) architecture
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Computer organization
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» The graphics card can be used as a coprocessor
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CPU-GPU cooperation

» CPU-GPU communication via PCI Express bus

» CPU and GPU each have their own memory spaces

CPU System memory

PCI Express bus

GPU | GPU memory

» CPU is the host, GPU is the device

1. CPU sends data to the GPU
2. GPU processes data
3. CPU copies data back from the GPU
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GeForce 6-series architecture

Host

Cull / Clip / Setup
= 2-ult || Rasterization

gl

Vertex Processing

Texture and
Fragment Processing

2-Compare
and Blend

» Specialized units (SIMD architecture)

1. Vertex processors
2. Fragment processors

» GPU memory interface up to 35 GB/s
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Legacy GPGPU approach
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» General purpose applications must be mapped on the graphical pipeline

1. GPGPU algorithms = multi-pass rendering
2. Algorithms written using shading languages (GLSL, CG, ...)
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The unified architecture
> Specialized units vs general purpose processors

Discrete design Unified design

Buffer

Shader B thader Core

Buffer Buffer Buffer

Buffer

Shader C

» Unified design
> Better workload balancing
> (More) independent of the logical pipeline
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GeForce 8-series architecture

Host
Input Assembler

Thread Execution Manager

Thread Processors  Thread Processors  Thread Processors  Thread Processors  Thread Procesions  Thread Processors  Thread Processors  Thread Processors

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

» General purpose multiprocessors (SIMD architecture)
> No Vertex / Fragment specialization

» GPU memory interface up to 90 GB/s
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Multiprocessors

Multiprocessor N

» Up to 16 multiprocessors per card Multiprocessor 2
Multiprocessor 1

» Each multiprocessor can execute a
warp of threads
> Lightweight threads
> Warp = 32 threads P . —

» SIMD thread execution

Instruction
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Memory architecture

Device

Multiprocessor N

» One set of local 32-bit registers
per-processor | Multiprocessor 2

Multiprocessor 1

» A shared memory, shared by all the

processors ?
» A read-only constant cache, to . . -I st

Processor 1| | Processor2 Processor M

speeds-up reads from the constant
memory space

» A read-only texture cache,to
speeds-up reads from the constant
memory space
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Blocks and grids

Device

Grid 1

Block Block Block
(0, 0) 1,0 2,0

Blosk | Block | Block
» Block = one-, two- or three- {0, 1) ,1) @1

dimensional array of threads

» Grid = one-, two- or three- Block (1, 1)
dimensional array of blocks
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Threads batching

» A block is processed by only one
multiprocessor

> Each block is split into warps
(consecutive IDs)

> Several blocks can be processed by
the same multiprocessor
concurrently

> Registers and shared memory

» No-synchronization mechanism
between blocks
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Programming model
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Gather and scatter
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PTX Code

C/C++
CUDA Application

eoe 1. CUDA Applications written in
l (extended) C language
| PTX code | | PTX code | 2. NVCC: NVIDIA CUDA compiler

based on Open64

FTX 10 Targer 3. PTX = Parallel Thread eXecution
Compiler

G80 cee GPU
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Extended C language

v

Explicit GPU memory allocation (only from CPU!)
> cudaMalloc(. . .)
> cudaFree()

Memory copy between host and device

> cudaMemcpy(...)
> cudaMemcpy2D(...)

\4

v

Function execution on GPU
>  global _ void myKernelFunction(...);

v

Explicit shared memory allocation
>  shared  int mySharedVariable;
Kernel launch (CPU — GPU)
> myKernelFunc < < < gridSize, blockSize, sharedMem > > >

v
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