

Macchine a Stati finiti

Prof. Alberto Borghese Dipartimento di Scienze dell'Informazione

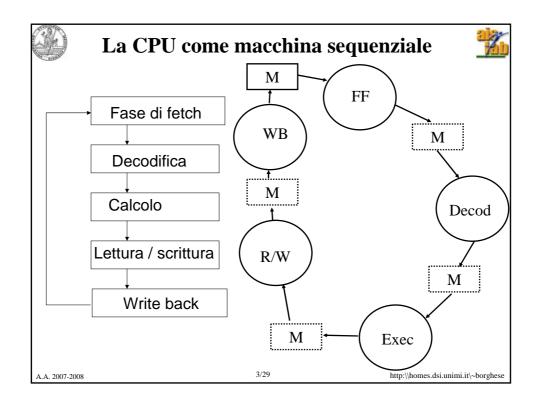
borghese@dsi.unimi.it

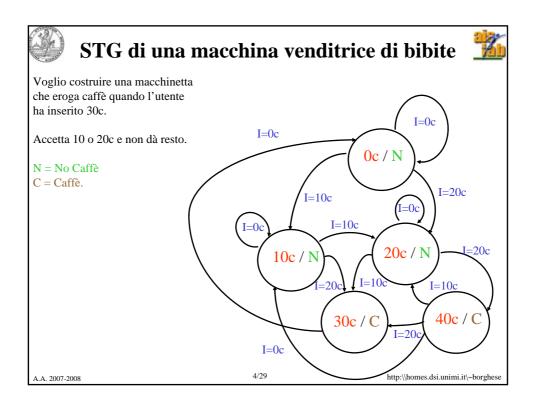
Università degli Studi di Milano

Riferimento al Patterson: Sezione B.10

A.A. 2007-2008 1/29 http:\\homes.dsi.unimi.it\~borghese

Sommario


Macchine a stati finiti


Esempio: sintesi di un controllore per venditore di bibite.

Esempio: sintesi di un controllore di un semaforo.

A.A. 2007-2008 2/29

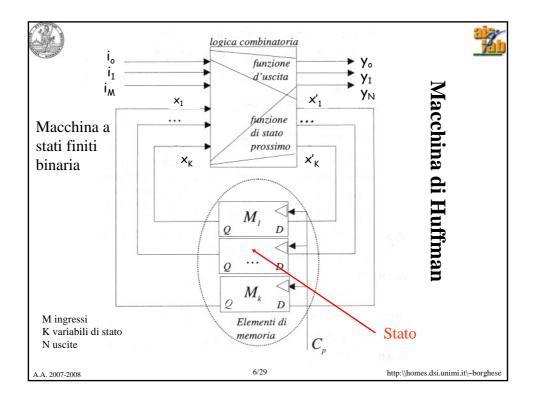
 $http: \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} http: \hspace{-0.05cm} \hspace{-0.05c$

Macchina a Stati Finiti (di Moore)

La Macchina di Moore è definita, in teoria degli automi, dalla sestupla: < X, I, Y, f(.), g(.), Xo >

X: insieme degli stati (in numero finito).

I: insieme di ingresso: tutti i simboli che si possono presentare in ingresso.


Y: insieme di uscita: tutti i simboli che si possono generare in uscita.

 $\mathbf{f}(.)$: funzione stato prossimo: $\mathbf{X}' = \mathbf{f}(\mathbf{X},\mathbf{I})$. Definisce l'evoluzione della macchina nel tempo. L'evoluzione è deterministica.

g(.): funzione di uscita: Y = g(X) nelle macchine di Moore.

Stato iniziale: \mathbf{X}_0 . Per il buon funzionamento della macchina è previsto uno stato iniziale, al quale la macchina può essere portata mediante un comando di reset.

A.A. 2007-2008 5/29 http:\\homes.dsi.unimi.it\~borghese

Descrizione di una macchina di Moore

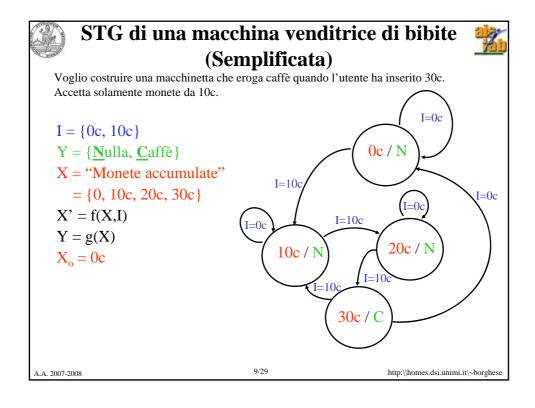
STG: State Transition Graph (Diagramma degli stati o Grafo delle transizioni). Ad ogni nodo è associato uno stato. Un arco orientato da uno stato x_i ad uno stato x_j , contrassegnato da un simbolo (di ingresso) α , rappresenta una transizione (passaggio di stato) che si verifica quando la macchina, essendo nello stato x_i , riceve come ingresso il simbolo α .

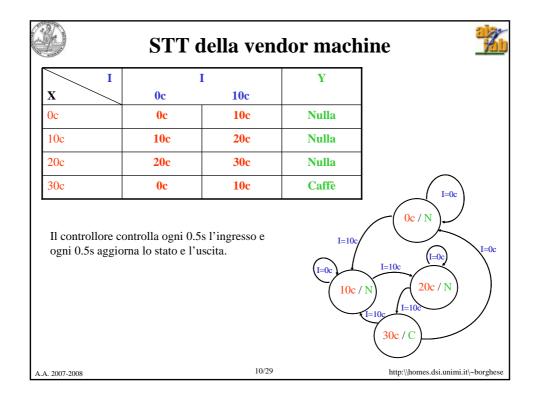
STT: State Transition Table (Tabella degli Stati). Per ogni coppia, (Stato presente – Ingresso), si definisce l'Uscita e lo Stato Prossimo. La forma è tabellare e ricorda le tabelle della verità da cui è derivata.

A.A. 2007-2008 7/29

Sommario

http:\\homes.dsi.unimi.it\~borghese


Macchine a stati finiti


Esempio: sintesi di un controllore per venditore di bibite.

Esempio: sintesi di un controllore di un semaforo.

A.A. 2007-2008 8/29

http:\\homes.dsi.unimi.it\~borghese

Codifica della STT della vendor machine

I	I		Y
X	0c (0)	10c (1)	
0c (00)	0c (00)	10c (01)	Nulla (0)
10c (01)	10c (01)	20c (10)	Nulla (0)
20c (10)	20c (10)	30c (11)	Nulla (0)
30c (11)	0c (00)	10c (01)	Caffè (1)

$$\begin{split} &I = [0c, 10c] = & \{0, 1\} \\ &Y = [\underline{N}ulla, \underline{C}aff\grave{e}] = & \{0, 1\} \\ &X = [0, 10c, 20c, 30c] = & \{00, 01, 10, 11\} \\ &X' = f(X,I) & da \ sintetizzare \\ &Y = g(X) & da \ sintetizzare \end{split}$$

1=10c / C 30c / C

I=100

A.A. 2007-2008

11/29

http:\\homes.dsi.unimi.it\~borghese

Macchina a Stati Finiti (di Moore)

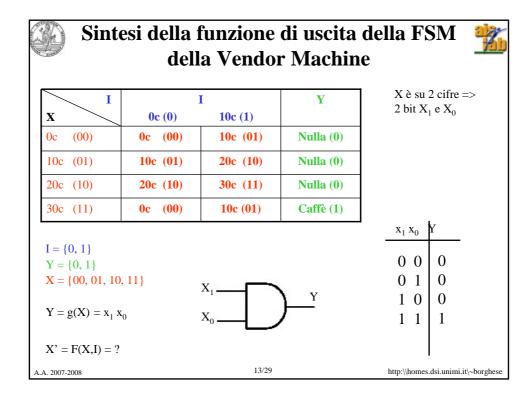
La Macchina di Moore è definita, in teoria degli automi, dalla sestupla: < X, I, Y, f(.), g(.), X_{o} >

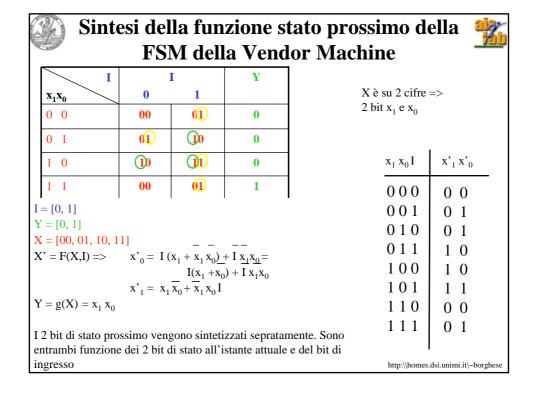
X: insieme degli stati (in numero finito).

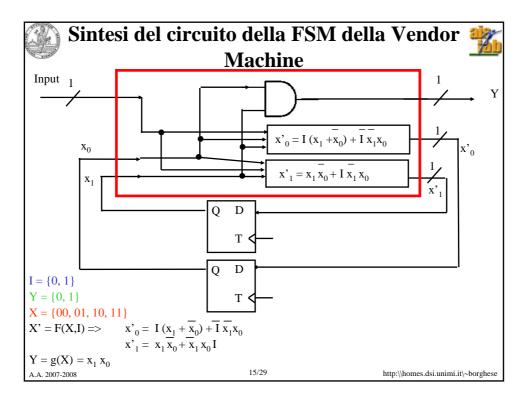
I: insieme di ingresso: tutti i simboli che si possono presentare in ingresso. In caso di codifica binaria, se abbiamo n linee in ingresso (variabili binarie), avremo 2ⁿ possibili simboli da leggere in ingresso (configurazioni).

Y: insieme di uscita: tutti i simboli che si possono generare in uscita. In caso di codifica binaria, se abbiamo m linee in uscita (variabili binarie), avremo 2^m possibili simboli in uscita (configurazioni).

f(.): funzione stato prossimo: X' = f(X,I). Definisce l'evoluzione della macchina nel tempo. L'evoluzione è deterministica. La funzione è una funzione logica.


g(.): funzione di uscita: Y=g(X) nelle macchine di Moore. E' una funzione logica.


Stato iniziale: \mathbf{X}_0 . Per il buon funzionamento della macchina è previsto uno stato iniziale, al quale la macchina può essere portata mediante un comando di reset.


.A. 2007-2008

12/29

http:\\homes.dsi.unimi.it\~borghese

Una vendor machine più completa.

Monete diverse dai 10c.

Scelta di bevande diverse.

Bevande diversi con costi diversi.

Periodo di refrattarietà nella quale non si possono inserire monete (periodo di preparazione del caffè).

....

A.A. 2007-2008

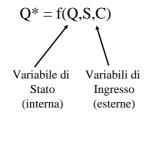
16/29

 $http: \hspace{-0.05cm} \hspace{-$

Sommario

Macchine a stati finiti.

Esempio: sintesi di un controllore per venditore di bibite.


Esempio: sintesi di un controllore di un semaforo.

A.A. 2007-2008 17/29 http:\\homes.dsi.unimi.it\~borghese

Latch di tipo SC come macchina a stati finiti

Q	SC = 00	SC = 01	SC = 10	SC =
0	0	0	1	X
1	1	0	1	X
	No change	Clear Reset	Set	!

Q è l'uscita del latch: stato presente.

Q* è il valore dell'uscita al tempo successivo: <u>stato prossimo</u>.

L'uscita del latch coincide con il suo stato (interno).

NB non ha senso implementare il latch come macchina di Huffman.

A.A. 2007-2008

 $http: \hspace{-0.05cm} \hspace{-$

Controllore di un semaforo

2 strade: nord-sud, NS, ed est-ovest, EO, che devono essere controllate da un semaforo. Il sistema di controllo dà via libera alternativamente alla direttrice NS o EO.

Il sistema di controllo pilota un semaforo il quale accenderà alternativamente il verde solla direttrice NS o sulla direttrice EO (quando il semaforo non è verde, per semplicità supponiamo che sia rosso).

Il semaforo può commutare ogni 30 secondi (clock con frequenza = ?).

Supponiamo che esista una video-camera in grado di "leggere", per ogni direttrice, se esiste almeno un'auto in attesa, oppure un'auto che si accinga ad attraversare (le due condizioni sono trattate allo stesso modo).

Il semaforo deve cambiare colore (da rosso a verde quando esiste un'auto in attesa sulla sua direttrice.

Se ci sono due auto in attesa sulle due direttrici, viene posto a verde il semaforo rosso e a rosso il semaforo verde (viene dato via libera all'altra direttrice).

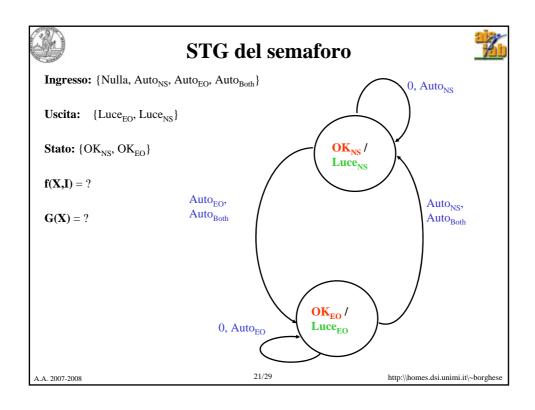
Supponiamo che all'accensione venga dato via libera alla direttrice NS.

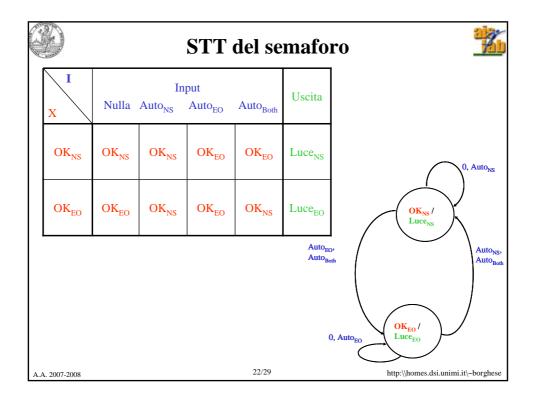
A A 2007-2008 19/29 http://homes.dsi.unimi.it/~borghess

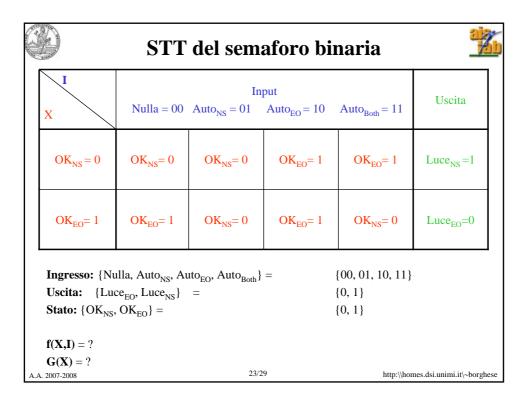
Stato, Input, Output del semaforo

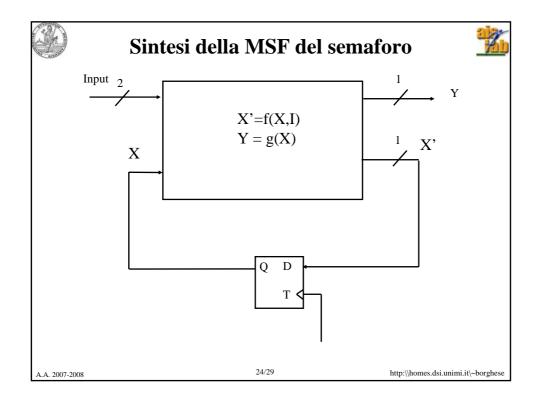
 $\textbf{Ingresso:} \; \{\text{Nulla, Auto}_{\text{NS}}, \text{Auto}_{\text{EO}}, \text{Auto}_{\text{Both}}\}$

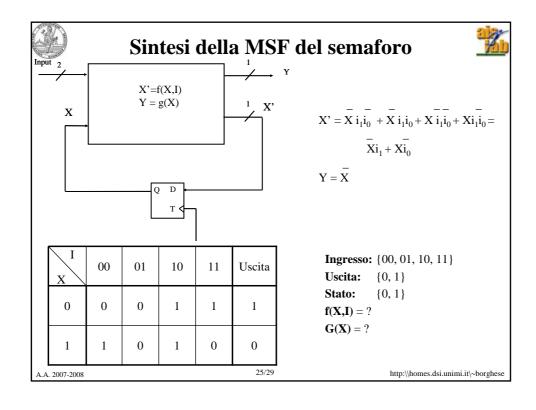
Uscita: {Luce_{NS}, Luce_{EO}}

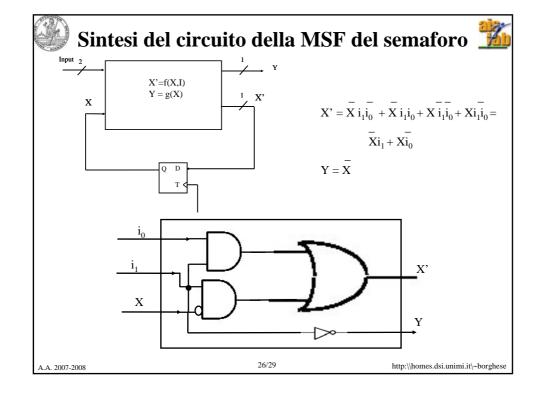

Stato: ?


f(X,I) = ?


G(X) = ?


A.A. 2007-2008 20/2


http:\\homes.dsi.unimi.it\~borghese



I passi della progettazione di una MSF

Il committente fornisce le specifiche di funzionamento.

Definizione delle variabili di Input, Stato e Output. Definizione degli insiemi di simboli che possono essere assunti dalle variabili di Input e di Output.

Costruzione dello STG => Definizione dell'insieme di simboli che possono essere assunti dallo stato.

Costruzione della STT => Definizione implicita delle funzioni stato prossimo ed uscita.

Codifica della STT => Definizione del numero di bit per Input, Stato e Output.

STT Codificata \Rightarrow Circuiti combinatori che sintetizzano le funzioni f(X,I) e g(X).

A.A. 2007-2008

Esercizi

http://homes.dsi.unimi.it/~borghese

•Costruire una macchina a stati finiti (di Moore), in grado di individuare all'interno di una parola di 0 e 1 le seguenti configurazioni: 1010 e 1110. Le configurazioni si possono concatenare (e.g. 101010 da' uscita vera, al secondo e terzo 0). Stato iniziale 00.

 \blacksquare Costruire una macchina a stati finiti (di Moore), con due ingressi, x_1 e x_2 , che fornisce 1 quando negli ultimi 3 istanti si è verificata la seguente configurazione:

Stato iniziale $x_1 = 0$ $x_2 = 0$.

•Costruire un venditore di bibite che distribuisce una bibita quando si raggiungono i 35 cents inseriti. Non dà resto.

A.A. 2007-2008

Sommario

 $http: \\ \ \ homes.dsi.unimi.it \\ \ \ \sim borghese$

Macchine a stati finiti.

Esempio: sintesi di un controllore per venditore di bibite.

Esempio: sintesi di un controllore di un semaforo.

A. 2007-2008 29