
Abstract – A procedure for  real-time 3D meshing 
reconstruction from sparse data is presented. The approach is 
based on Hierarchical Radial Basis Functions Networks, which 
allow for  an effective reconstruction of multi-scale sur faces. 
This model is extended to provide not only the continuous 
sur face descr iption, but also real-time operation. To this 
purpose the HRBF network differential proper ties have been 
exploited to produce a denser  mesh in regions where geometry 
is more detailed. 
  

Index terms – HRBF Neural Networks, Mesh, 3D scanners, 
Real-time approximation. 

I. INTRODUCTION 

Digitization of 3D shapes of real objects is rapidly 
expanding to different fields, ranging from entertainment to 
medicine, from design to archeology and robotics. 
Digitization is performed by using 3D scanners, which 
execute the following basic steps: acquisition of range data 
(Fig. 1a), post-processing through filtering, surface 
reconstruction, and 3D mesh creation. Post-processing can 
be combined in different ways [1-2].  

However, there no tool is yet available to provide the 
operator with a real-time good-quality feedback on how the 
acquired surface will appear. This is essential to plan a new 
acquisition session or particular acquisition sessions targeted 
to fill the incomplete parts in the 3D model. An approach in 
this direction is [3], which, however, does not produce the 
mesh in real-time, but only a set of data points on the 
surface.  

The aim of this paper is to propose a real-time procedure, 
which allows for producing the 3D mesh in real-time from 
sparse noisy data, by using Hierarchical Radial Basis 
Function networks [4]. The obtained mesh is automatically 
adapted to the geometric differential properties of the 
surface, being denser in those regions where most the details 
are concentrated, by taking advantage of the analytical shape 
of the HRBF surface. This approach can be coupled with a 
variety of techniques described in the literature to sample 
range data, e.g., defocusing [6], stereo matching [7], 
silhouettes [8], structured light [3], and time of flight 
(commercial systems by 3DV and Perception). Range data 
consist of a cloud of 3D points that may be not equally 
spaced and whose position is affected by measurement noise.  

Available meshing methods are post-processing tools –
operating off-line and not in real time – in which the cloud  
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Fig. 1. 3D reconstruction: (a) range data sampled on the (b) 
“Ciccio”  surface, (c) the reconstruction through HRBF. In 
(d) the HRBF are sampled with step equal to 0.682 mm to 
obtain a dense mesh of 30638 vertices and 61161 triangles. 

 

of points is converted into a mesh; the mesh may be 
optimized according to geometry, color or other field 
attributes, by means of one of the techniques for mesh 
simplification [9] (some high-end software packages, like 
Softimage or Maya, even incorporate polygon decimation 
routines). 

In the approach presented here, mesh creation is obtained 
through an intermediate stage of continuous surface obtained 
by using HRBF networks, which allows for deriving a good 
quality estimate of the linear approximation offered by 
polygonal meshes. Thanks to the local properties of the 
computation, the method can work in real-time and can be 
implemented in strict real-time on parallel architectures. 

In Section II, the HRBF configuration procedure is 
described. In Section III, the meshing algorithm and its 
assumption are reported. Section IV presents some results, 
which are discussed in Section V. 
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Fig. 2. The grids of the four layers of the HRBF networks 
that were used to reconstruct “Ciccio” . The grid crossings in 

which Gaussians are inserted are indicated with a circle. 

 

 

 

Fig. 3. The surfaces of “Ciccio”  obtained by multi-layer 
HRBF reconstruction with one, two, three and four layers 

from left to right from top do bottom, respectively. 
 

II. CONFIGURATION OF THE HRBF NETWORKS 

Reconstruction of a 3D surface from range data can be 
viewed as an instance of the problem of multi-variate 
approximation [5-10]. HRBF networks are one of the 
powerful tools made available by the connectionist 
community to solve this problem. They are particularly 
suitable in our case because they can be made operating in 
real-time [11]. The HRBF network is a self-organizing 
model, composed by a set of hierarchical RBF networks 
(layers). The HRBF networks produce a multi-scale 
reconstruction, where the first layer, a1(p), produces a rough 
approximation of the surface (high scale value), while the 
higher layers, a2(p), a3(p), …, aM(p), provide details at 
decreasing scales. The surface down to the l-th scale is given 
by �
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where the larger is l, the more detailed is the reconstruction. 
The neurons of each layer are distributed on a regular 

grid, with side ∆xl, and share the same scale parameter, σl, 
which determines the scale of the layer. In the case of 
Gaussian units, σl regulates their width and the output of 
each layer is a linear combination of Gaussian units of the 
same width: 
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where { wi,l}  are the weights associated to the Gaussian 
positioned in the { ci,l}  node of the grid. Ml is the number of 
Gaussians in the l-th layer. It has been shown that the value 
of the weights is equivalent to that of the surface sampled in 
the grid crossings. Since this value is not available in many 
applications, it is estimated as a weighted mean of the 
points, which belong to an appropriate neighborhood of ci,l, 
called receptive field, Si,l [5] (cf. Eq. (5)). 

The configuration algorithm proceeds as follows. Let us 
organize the range data into a data set P = { (pi ∈ R2; zi ∈ 

R)}. For each layer, l, and for each neuron, i, the data points 
which belong to the receptive field of the neuron, Si,l are 
retrieved and form the subset Qi,l. The difference between 
the data points in Qi,l and the surface height produced by the 
HRBF in the same points is computed as: 
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For each grid crossing, ci,l, the quality of the surface 
approximation in its neighborhood is evaluated through an 
integral metric to limit the impact of the outliers: 
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and constitutes the local residual error. If the residual is 
larger than the measurement error, the neuron is inserted in 
the grid crossing; otherwise no unit will be present there 
(Fig. 2). 
The weight, wi,l, associated to ri,l is computed by taking into 
account all the points inside the receptive field, Si,l, with the 
rationale that the closer is a point, pi,l, the larger is its 
weight: 
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Therefore, at each layer more details are added to the 
surface in those regions where the residual is large. The 
configuration procedure is stopped when the residual goes 
below a threshold over the entire input domain. In Fig. 3 we 
present the multi-scale reconstruction obtained from the 
range data in Fig. 1a, by a four-layers HRBF featuring σ = 
[16, 8, 4, 2] mm.  

All the configuration operations are made on the points 
inside the receptive field. This locality property has been 
exploited to produce a real-time version of the configuration 
algorithm [9].  
 

Fig. 4. Data sets. Base sampling set, B ⊂ R2, (black circles). 
Testing set, T ⊂ R2: testing points are located horizontally 
(points filled with horizontal lines), vertically (points filled 
with vertical lines), and diagonally (white circles). Arrows 
identify the base sampling points used to predict the surface 

height in the testing point. 
 

III. FROM HRBF SURFACES TO HRBF MESHES 

A. Overview 

A 3D mesh is a polygon approximation of a surface, 
usually constituted of triangles. To describe a mesh, the 
position of the polygon vertices and their connectivity is 
therefore required.  

To get a 3D mesh from the surface in Fig. 1c (Eq. 1), one 
possibility is to densely sample it. As a result we obtain a 
very dense 3D mesh of the kind reported in Fig. 1d. This 
mesh has been obtained by sampling the surface by half the 
side of the last grid: ∆xs = 1/2 ∆xM = 0.682 mm, and it is 
constituted of 30638 vertices and 61161 polygons. This is 
actually much more than required to represent the object, 
and a more parsimonious representation like the one in Fig. 
6 would be desirable to manage the model in real-time.  

The rationale of the method presented here is to start with 
a low-density mesh and to make it denser where the 
deviation from the linearity has significant magnitude by 
inserting a new vertex in these positions.  

In more mathematical terms a polygonal approximation of 
a continuous surfaces is equivalent to a piece-wise linear 
approximation. This approximation would produce an error 
outside the vertexes given by: 
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where f(·) is an error evaluation function, for instance, L∞ 
(max metric). The error is evaluated in few strategic points: 
a new vertex is created in those points where the error is 
above the threshold. 

B. Meshing scheme 

The meshing scheme operates as follows. First, a base 
sampling set, B1⊂R2, is identified (Fig. 5a). This is 
composed by all the grid centers of the first layer. A mesh at 
the lowest resolution, K1, is obtained by connecting the 
HRBF surface points evaluated in B1 (Fig. 6a). From B1 a 
test set, T1⊂R, is identified. This is constituted of the points 
in between adjacent points in B1 (Fig. 4). Hence, they can be 
identified as the subset of the grid centers of the second 
layer, which do not belong to the grid centers of the first 
layer. Each point in T1, t, can be related to the set of points 
in B1, neigh(t), which surround it. This relation is shown in 
Fig. 4 as arrows that connect the elements of neigh(t) with t. 

To evaluate the adequacy of K1 in approximating the 
surface, we first estimate the surface height in T1 by using a 
second order approximation of the HRBF surface (cf. 
Appendix): q1(t), t ∈ T1. When the difference between q1(t) 
and the polygon approximation, K1(t), is above a given 
threshold, � , a new vertex is generated in that position, t.  

In more mathematical terms, let us define 1
~
T , the set of 

test points where the error is above the threshold: 
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Since t is a midpoint of neigh(t), the height of the mesh in 
t, K1(t), can be computed as the mean value of the surface 
height in its neighbors, neigh(t). The surface height 
estimation, q1(t), is computed as the mean of the second 
order Taylor expansion centered in the element of neigh(t). 

 

 



The updated base sampling set, 1
~
B , is defined as the 

union of 1
~
T and B1: 111

~~
TBB ∪= . The new mesh, 1

~
K , is 

obtained by connecting the HRBF surface points evaluated in 

1
~
B . 

This schema is iterated in the higher layers by assuming 

1
~

−= ll BB  and 1
~

−= ll KK , until the approximation error goes 

below the threshold over the entire input domain. The test 
set for layer l, Tl, is composed by the grid centers of the 
(l+1)-th layer whose neighbors belong to Bl+1. 

For a test point, t, such that t ∈ Tl, but t ∉ lT
~

 (i.e., the 

mesh in t is sufficiently accurate) no more points will be 
added in between neigh(t) in the subsequent iterations. 

The procedure can be repeated as long as none of the 
errors is below threshold for each test point, or a given 
resolution is achieved. For instance, the mesh in Fig. 6, has 
been obtained by considering a test set with points spaced by 
half the side of the grid of the last layer. 

 

 

 
 

Fig. 5. The mesh is plotted for each of the four layers. In the 
higher layers the mesh is made denser in the most complex 

regions of the face. 
 

IV. EXPERIMENTAL RESULTS 

The method has been extensively applied to generate 
various surfaces from range data. Results are reported here 
only for the “Ciccio”  model (Fig. 1), whose surface was 
sampled in 16851 points.  

The surface was reconstructed by using a four-layer HRBF 
network with the parameters reported in Table I and a final 

residual error of 0.779 mm (very close to the nominal 
measurement error equal to 0.5 mm). 

For the four-layer HRBF mesh, a polygonal mesh was 
directly derived according to the method presented in 
Section III, by using �  = 1 mm (Eq. 7). The resulting meshes 
are shown in Fig. 5 and Fig. 6. This result should be 
compared with that reported in Fig. 3. As it can be seen, 
there is no appreciable difference. This has been also 
confirmed by a quantitative analysis of the approximation 
error. The polygonal approximation error was obtained by 
computing the difference in height between the HRBF 
surface and the polygonal approximation in 30,000 points 
uniformly distributed all over the domain. The resulting mse 
is 0.0802 mm, with an std of 0.119 mm. 
 

TABLE I 
HRBF Surface Reconstruction Figures 

layer grid size used 
neurons 

reconstruction  
error std [mm] 

computing 
time [ms]  

1 14×15 177 5.19 551 
2 27×29 635 2.53 482 
3 53×57 2171 1.25 454 
4 105×113 5104 0.779 297 

 
 

 

 
 

Fig. 6. The meshes obtained directly by the four layers of the 
HRBF network is plotted in the Gouraud shading. 

  

V. DISCUSSION AND CONCLUSIONS 

The computation of the polygonal mesh does not introduce 
any significant increase in the computational time. The 



prediction of the surface height based on the second order 
approximation of the HRBF surface is in fact composed by 
two terms: the surface itself and a linear or quadratic 
difference. 

As shown in Appendix, the terms that compose the 
derivatives of a HRBF surface are the same that have to be 
computed for the surface calculation. 

As a result, when the five derivatives are computed at the 
same time of the surface their computation is quite cheaper: 
only a 25% time increase is required. 

Moreover, since the value of the surface in neigh(t) will be 
in both q1(t) and K1(t), they will be simplified in the Err(t) 
evaluation (Eq. 7). 

The alternative approach would be to compute the 
effective height of the HRBF in the testing points; however, 
the computation of the HRBF function in those points would 
increase the computational cost. 

Where the HRBF approximation considers a smooth 
function, the error is experimentally verified to be negligible. 
Since the prediction of the function height in the probing 
points is much cheaper than its direct computation, the 
meshing technique is efficient. As a consequence, a fast 
multi-scale meshing is obtained. 

The polygonal error is computed in the middle point 
between two basic points, but it is not guaranteed that this is 
the maximum error available. Although other error schema 
can be adopted, for smooth function, the assumption to 
sample the error in the middle point is a reasonable 
assumption. On the other side, we do not claim to derive an 
optimal meshing (although it is indeed a good one), but the 
mesh derived is extremely powerful in deriving information 
about the quality of the scan in real-time. 

APPENDIX 

The second order Taylor’s expansion of a function RRf →2:  is: 
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From the analytical shape of HRBF network (Eq. 1), the first 
derivatives of s(p) are: 
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and the second order derivatives are: ���
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It should be noticed that the formulas (9)-(10)’s share some terms 
with Eqs. (1) and (2). When derivatives are computed at the same 
time with the surface, this fact can be exploited to save 
computation time. 
Reframing Eqs. (1) and (2) as: $%$$&$

= == =
=''(
)**+, −

=
L

l

M

i
li

L

l

M

i l

li

l

li
ll

G
cpw

ps
1 1

,
1 1

2

2
,

2
, ||||

exp)(
σπσ

 (11) 

The derivatives (9)’s and (10)’s can be computed as in (12)’s and 
(13)’s, respectively: 
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The computation of the derivatives requires only very simple 
computation since the more expensive terms previously computed 
for the surface calculation can be reused. 
Besides, as most of the Taylor expansions used in the surface 
height estimation (Eq. 7) are computed along the axis, they do not 
require all derivatives. This contributes to make the surface 
estimation more preferable than its direct computation. 
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