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Abstract

A procedure for3-D surface reconstruction from range
data in strict real-time is presented. The process is based on
a connectionist model, the Hierarchical Radial Basis Func-
tions (HRBF) network, which has been proved effective in
reconstruction of smooth, space varying surfaces. An ef-
ficient data structure and locality assumptions allowed to
derive a faster configuration algorithm, without degrading
the approximation capabilities. Results show that comput-
ing time scales linearly with the number of neurons, and it
is comparable with data acquisition time of most of com-
mercial scanners so that reconstruction can actuall be per-
formed in real time.

1. Introduction

3-D scanners are a powerful and common tool in the dig-
itization of real objects. They usually implement a two-
step process: geometry sampling of the surface and mesh-
ing. Although most of the systems require several minutes
or hours to get a3-D model, few attempts towards real-
time operation are under development [1, 2]. The proce-
dure presented in this paper is aimed in producing3-D sur-
faces in strict real-time. We consider only reconstruction of
R2 → R manifolds, also named2 1/2-D surfaces; however,
the process can be generalized to full3-D manifolds.

The problem can be formalized as follows. Given a data
setS = {(xi, yi, zi) | 1 ≤ i ≤ N}, find an approximation,
s̃(·), such that

||s̃(x, y)− z||(x,y,z)∈S ≤ εth, (1)

whereεth is related to noise, and a suitable measure of the
distance between sets is given.

To solve this kind of problems, neural networks, and Ra-
dial Basis Functions (RBF) networks [3] among these, have
shown to be a suitable tool. Thanks to the quasi-locality

(a) Real object (b) Geometry sampling (c) Surface reconstruction

Figure 1. 3-D acquisition and reconstruction
of a real object.

of RBF neurons (usually Gaussians) and their simple net-
work topology, efficient algorithms to configure the net-
work have been developed. Among the RBF models, Hi-
erarchical RBF networks (HRBF) have proven high effec-
tiveness [4, 5] in reconstructing smooth, space varying sur-
faces. HRBF networks are a self-organizing model com-
posed by a hierarhical set of RBF subnetworks, calledlay-
ers, which provides a multi-scale reconstruction. This is re-
alized by means of a rough approximationa1(·) and a pool
of hierarchical details at decreasing scale:a2(·), . . . , aM (·);
the surface approximation at thek-th scale,̃sk(·), is given
by a1(·) plus the sum of the firstk − 1 details: s̃k(·) =
a1(·)+

∑k
i=1 ai(·). The larger isk, the more detailed is the

reconstruction.
Configuration of HRBF networks is based on a construc-

tive approach: each layer is created after the other by incor-
porating details at smaller scales, until (1) is satified. The
quasi-locality property of the Gaussian neurons and their
regular distribution are exploited in this paper to make the
configuration procedure compatible with real-time, without
degrading approximation capabilities.

In section 2, the HRBF configuration algorithm is de-
scribed. Section 3 presents the assumptions, common to
pratical situations, which allow to derive a faster configura-
tion procedure. In section 4, a comparison between the orig-
inal and the fast configuration procedure is reported, while
in section 5 the results are discussed. Conclusions follow in



A. Initialization: {r0(pj) = zj} (residual = height of sam-
pled points)

For each layer,l

B. Configuration:

For each neuron,i, positioned inci, l

B.1. retrieval of the points which belong to the receptive
field of the neuron,Si, l

B.2. if the residual is larger than the measurement error,
insert the neuron inci,l

B.3. estimate of the surface height in the neuron center,
si,l and set to that value the weightwi,l

C. compute the output of the layer,{al(pj)}
D. compute the residual,{rl(pj) = rl−1(pj)− al(pj)}

Figure 2. HRBF configuration algorithm.

section 6.

2. The HRBF configuration algorithm

A HRBF network is composed by a hierarchical set of
Gaussian RBF networks,{al}, calledlayers, each of which
acts at a different level of detail. The neurons of each layer,
l, are distribuited on a regular grid, which has side∆xl,
and share the same scale parameter,σl, which determines
the level of detail of that layer. The collective behaviour of
a grid can be regarded as a low-pass filter [4] and can be
formalized as:

s(p) =
L∑

l=1

al(p) =
L∑

l=1

Ml∑

i=1

wi,l g(||p− ci,l||; σl), (2)

whereL is the number of layers, andMl is the number of
neurons of thel-th layer. The output of each layer,al(·),
which is constituted of a RBF network, is a linear combina-
tion of the output of the Gaussian neurons of that layer:

al(p) =
Ml∑

i=1

wi,l g(||p− ci,l||; σl), p ∈ R2 (3)

Each coefficientwi,l weights the contribution of thei-th
Gaussian belonging to the layerl. It can be shown [4] that
its value is equivalent to the surface height in the pointci,l.
Since such a value is usually not available, it is estimated,
si,l, in the configuration procedure as a weighted mean of
the points, which belong to an appropriate neighborhood of
ci,l, Si,l, called receptive field. The HRBF configuration
procedure is schematized in fig. 2.

Once all the weights of one layer have been computed,
the output,al(·), of that layer can be evaluated through (3).

The surface height,{zi}, is the input to the first layer. The
residualfor the layerl, rl, is defined on the sampled points,
{pi = (xi, yi)}, as the difference between the data to be
reconstructed and the output of the firstl − 1 layers:

rl(pi) = zi −
l−1∑
1

a(pi) (4)

and it . The residual is the input for the higher layers.
The residual is used also to decide if a neuron has to be

used: the neurongi,l is inserted only if the residualrl−1

in Si,l is larger than the measurement error,εth. The com-
putation of the outputal in the data points for the residual
requires to evaluate the distance||pj − ci,l|| between each
input data point{pj ∈ R2} and the position of each neuron,
{ci,l ∈ R2}, of the layer (eq. (2)). Similar considerations
apply also to the computation of the coefficients: determi-
nation of the points belonging to a receptive field,Si,l, re-
quires the evaluation of the distance of all points from the
neuron center.

The complexity of the configuration algorithm is there-
fore O(M N), whereM =

∑L
l=1 Ml is the number of the

neurons of the network, andN = |S| is the data set cardi-
nality.

In the following, the regular distribution of the neurons
of a HRBF network will be exploited to obtain a fast re-
trieval of the data points, and reduce the complexity.

3. Fast HRBF configuration algorithm

The need to compute the distance between all data points
and all Gaussian centers is required by:

• the non-zero response of the Gaussian in the whole do-
main,R2 (infinite support);

• the extraction of the points which lie inside the influ-
ence region and receptive field (steps B.1 and C in fig.
2).

For practical applications, the support can be made fi-
nite: the rapid decrease of the Gaussian towards zero makes
its response soon negligible. Hence, a suitable neighbor-
hood,Qi,l, of the neuron center can be defined. This neigh-
borhood is calledinfluence region. The computation of the
output of each neuron is confined in it. In the following,3σ
will be taken as radius ofQi,l, whereg(3σ) is 1.24 · 10−4

times the value of the value of the Gaussian in its center.
To avoid the need of computing, for each neuron, the

distance from all the data points, the key idea is to arrange
the data in a data structure that allows fast retrieval of those
points, which belong to the neighborhood of a neuron. This
is realized by partitioning the input domain such that the



points inside the receptive field of every neuron can be ex-
tracted without having to examine all data points.

Easy partitioning cannot be obtained with the circular
regions implicitly considered in the definition ofSi,l and
Qi,l; some approximations must therefore be introduced. In
particular:

1. The receptive field of the neurons, theoretically cir-
cular, will be approximated by the bounding square.
From now on, we therefore simply refer to this approx-
imation as the “receptive field”.

2. The length of the side of the receptive field is an even
multiple of ∆x, the grid spacing. More formally, the
receptive field side is equal to2ρ∆x, whereρ ∈ Z.

3. The Gaussian size (and, hence, the grid side,∆xl) is
halved at every layer:σl+1 = σl/2.

The effects of these approximations will be discussed in
section 5. In the following sections, the partitioning method
and its implementation will be described in detail.

3.1. Partitioning scheme

Let ci,j,l the center of the neuron in the(i, j)-th grid
crossing of thel-th layer. It is:

{
ci+1,j,l − ci,j,l = ∆xl

ci,j+1,l − ci,j,l = ∆xl

Without loosing generality, we assume thatc0,0,l ≡
(0, 0). For each layer,l, a partition of the input space in
regular regionsRi,j,l, calledcellscan be obtained as:

Ri,j,l = {(x, y) | i∆xl ≤ x ≤ (i + 1)∆xl,

j∆xl ≤ y ≤ (j + 1)∆xl}

This partition scheme enjoys two properties:

receptive field coverageThe receptive field of thei, j, l
neuron,Si,j,l is:

Si,j,l =
⋃

i−ρ≤h≤i+ρ−1
j−ρ≤k≤j+ρ−1

Rh,k,l (5)

whereρ is an appropriate integer value as stated in hy-
potesis 2 in section 3.

recursion The cells of a lower layer,{Ri,j,l}, are related
to those of the immediate higher layer as:

Ri,j,l =
⋃

2i≤h≤2i+1
2j≤k≤2j+1

Rh,k,l+1 (6)

The first property defines the receptive field with a single
union operation. This property is important for the weight
computation. The second property is particularly important
for the multi-scale computation. This allows to define the
cells of a higher layer efficiently partitioning the cells of the
lower layer: four cells of the higher layer constitute a single
cell of the immediate lower layer.

Similar considerations apply to the influence regions. In
the following only the receptive field will be dealt with,
since the operations for the influence region are similar.

3.2. Implementation

The fast HRBF configuration procedure differs from the
original one mainly in data pre-processing, which creates a
data structure able to represent the partitioning, and is per-
formed just after data collection has been completed before
network configuration.

We suppose that the points are stored in an array. Aim
of pre-processing is position points, which belong to the
same cell,Ri,j,l, adjacent in the array. This allows to repre-
sent each cell by a pointer,qi,j,l, and a counter,ni,j,l. The
pointer,qi,j,l, represents the first point in the array belong-
ing to the cellRi,j,l, while the counter,ni,j,l, counts the
number of points which belong to that cell. The partition is
represented as a2D static matrix structure,H, where each
cell corresponds to a matrix entry; thus, each matrix entry,
Hi,j,l = (qi,j,l, ni,j,l), stores the pointer and the counter for
the corresponding cell.

All the points belonging to a cell,Ri,j,l, can be easily
extracted fromHi,j,l: these are theni,j,l points inside the
data points array starting fromqi,j,l. Since the regionSi,j,l

is obtained as the union of cells (eq. (5)), the points belong-
ing to Si,j,l can be easily collected by means of successive
accesses to the cells constitutingSi,j,l. This can be accom-
plished without having to compute any distance measure.

The partition for the second layer and the successive ones
can be obtained by subdividing the partition of the previous
layer (eq. (6)), i.e., by halving each cell along each direc-
tion. This suggest to perform the reorganization of the data
points array in two steps. In the first step the subarray of the
cell points is rearranged such that the points which has the
x-coordinate belonging to the first half of the cell come be-
fore the other points. In this way, two rectangular subcells
are formed. In the second step, ay-coordinates wise rear-
rangement is applied to each subcells. The rearrangement
of the points inside each cell is performed as an in-place
partial sorting through a variant of the Quicksort algorithm
[6], in which the pivot value is the mean value of the vertices
of the cell.

The partitioning procedure is illustrated in fig. 3.
The input data set,S, is used to configure the first layer,

while the successive ones are configured through the resid-



layer l
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data structure

points array
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Figure 3. Partitioning schema implementa-
tion.

ual. However, the same array can be used to store the data
used to configure all the layers. This can be achieved by
storing the value of the residual, which is coincident to the
data points in the first layer, in the array. This allows to save
memory, and to preserve consistency of the partitioning data
structure.

4. Results

In order to evaluate the impact of the contraints provided
by the assumptions 1-3 in section 3 onto the HRBF configu-
ration task, we applied the procedure described above to the
surface reconstruction from noisy data and we compared the
results with original HRBF configuration algorithm.

The data set was composed by 16,851 points with an es-
timated measurement error of 0.5 mm. A four layers HRBF
network was used, with an initial value ofσ = 16 mm.
For the fast version, the receptive field side was set equal
to 4∆x (ρ = 2), while the influence region side was set to
8∆x long. For the original algorithm, the receptive field
radius was 2∆x.

The accuracy perfomance is evaluated through the stan-
dard deviation of the reconstruction error, computed as:
εstd = std({zj − al(pj)}); this reaches asymptotically the
measurement error.

The speed perfomance is measured by the time required
to compute the HRBF parameters. In the fast configuration
algorithm, this comprises the pre-processing and the com-
putation of the weight time.

Table 1. The configuration performace of the
original HRBF.

layer
Computing
time [s]

grid size
used
neurons

εstd

mean std
1 1.79 0.187 14×15 175 5.05
2 7.48 1.24 27×29 635 2.45
3 26.4 3.61 53×57 2133 1.23
4 56.0 10.9 105×113 4962 0.765

Table 2. The configuration performance of the
fast HRBF.

layer
Preproc.
time [ms]

Training
time [ms]

Computing
time [ms]

mean std mean std mean std
1 71.0 25.9 480 54.5 551 55.5
2 4.28 14.7 478 41.8 482 41.1
3 4.66 15.3 449 42.0 454 44.1
4 6.64 18.0 290 46.1 297 48.0

layer grid size used
neurons

εstd

1 14×15 177 5.19
2 27×29 635 2.53
3 53×57 2171 1.25
4 105×113 5104 0.779

Computing time of the original algorithm was measured
on a base of 20 trials, while 30,000 trials were run for the
fast HRBF algorithm. Mean and standard deviation values
of these measurements are reported in tabs. 1 and 2.

The experiments were run on a 1 GHz Pentium III PC
with a 256 MB memory. The total time spent in configura-
tion for original HRBF is of 91.7 s (with a standard devia-
tion of 15.5 s), while for the fast version is of 1.78 s (with a
standard deviation of 0.118 s).

In fig. 4 the absolute value of the difference between the
surfaces reconstructed with the original and the fast HRBF
configuration algorithm is reported. In regions covered by
data points, the difference is almost negligible. In fig. 1c the
reconstruction obtained through the fast configuration algo-
rithm is reported. It is qualitatively indistinguishable from
the reconstruction obtained through the original algorithm,
which is not reported.

Figure 4. Differences between the two recon-
structions.



Figure 5. Time spent vs. the data set size:
“©” pre-processing phase, “ ×” Coefficients
computation, “ 4” total computation time.

In order to evaluate the impact of the size of the data
set on the fast configuration algorithm performances, we
made several trials with nine data sets of different size,Nk,
k = 1, . . . , 9, whereN1 = 16, 851, andNk = 2k−1N1.
The number of neurons was the same in all experiments, as
those reported in tab. 1. The computing time with respect
to the data set size is reported in fig. 5 and the percentage
of computing time spent in each configuration procedure
phase is given in fig. 6 .

5. Discussion

The key element of the fast HRBF configuration algo-
rithm is data pre-processing. This allows to place the data
in the input array so that the points inside each cell can be
directly addressed without any sorting procedure. The com-
puting time spent by the fast configuration algorithm is only
2% of the original one, as shown in tab. 2. Moreover, the
time spent in surface reconstruction with respect to the num-
ber of points (fig. 5) compares well with the time necessary
by most of the commercial scanners (e.g., [2]) to collect a
data set of the same cardinality.

As shown in Fig. 6, the overhead introduced by the pre-
processing is negligible with respect to the total computa-
tional time (less than 10%), especially with very large data
sets.

Pre-processing for the first layer is the most demanding
since the partitions have to be created from scratch. Since
the sorting procedure swaps the data points in the array, this
phase costsO(K/2N), whereK is the number of cells of
the partition of the first layer. The construction of the par-
titions for the subsequent layers is based on a pre-existing
data structure of the partition: since each point is analyzed

(a) Preprocessing phase

(b) Coefficients computation

(c) Total time spent in configuration

Figure 6. Time percentage of the total compu-
tation time spent vs. the data set size.



only twice, the cost of this partial sorting isO(N).
The partitioning algorithm was implemented by using a

static matrix to represent the data of each cell. This implies
a memory overhead, which scales as the number of cells
and, thus, as the number of HRBF neurons: it is, hence,
O(M). No further memory space is required, thanks to
the in-place sorting strategy (Section 3.2). A reduction in
memory overhead can be achieved using a quad-tree data
structure [7]. Quad-tree uses a dynamic hierarchical sub-
division of space which allows to save memory as empty
cells does not give rise to further subdivision. However, the
navigation through the tree structure requires more than one
memory access to reach the cell. In practice, this may result
in an increase of cache-misses, because the nodes along the
path to reach a cell may not be present in the cache at the
same time. This slows down the whole procedure.

The time reduction due to fast HRBF algorithm does not
affect the accuracy. Errors that might be introduced by the
implementation choices (e.g., quantization error [8], the ap-
proximations introduced in section 3) do not decrese the re-
construction accuracy, due to the constructive nature of the
configuration algorithm. The standard deviation of the re-
construction error for the fast and traditional configuration
algorithms are in fact almost identical as shown in tabs. 1
and 2.

Computational complexity for evaluating the weight of a
neuron is proportional to the number of points in the neigh-
borhood of that neuron. While passing from one layer to
the next higher one, the number of neurons increases four
times, the number of points inside each cell decreases of the
same factor. Moreover, the number of unused neurons, in-
creases with the number of layers, since the residual tends
to be smaller than the measurement error. Thus, the time
for computing the weights of each layer decreases as the
reconstruction proceedes.

The results reported in this paper are valid in the 2D man-
ifold (D = 2). In fact, we approximated the 2-dimensional
sphere of the influence region, with a 2-dimensional cube.
This approximation becomes less acceptable with increas-
ing the dimensionality,D, since the volume of aD-
dimensional sphere becomes negligible with respect to the
volume of its boundingD-dimensional cube for increasing
values ofD. This configuration algorithm, therefore, cannot
be extended to manifolds of higher dimensionality without
decreasing the performance both in time and accuracy.

6. Conclusions

HRBF networks have been proved to be effective in re-
constructing surfaces from noisy data. However, the infinite
support of their neurons limits their use in practical cases. In
this paper, the HRBF configuration algorithm has been re-
vised: few assumptions allow to introduce an efficient data

structure and to decrease the computational time dramati-
cally. Moreover, since the configuration of each neuron is
highly independent from the configuration of the other neu-
rons, the algorithm is suitable for parallel real-time hard-
ware implementation (e.g., on FPGA-based boards).
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