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Abstract 
 
In this paper a new approach to the reconstruction of 3D 
trajectories of dense marker sets is proposed. Key element 
is the use of multiple passes to reconstruct the spatio-
temporal structure of the movement with high reliability. 
First the tracking procedure computes a coarse structure 
of the motion, which is then recursively refined 
disambiguating difficult classification of the markers. The 
tracking procedure is based on integrating the temporal 
dimension in the matching process, by analyzing strings 
instead of points to derive more robust matches. Strings 
are analyzed using smoothness, n-focal constraints, and 
fitting of a skeleton to derive a proper matching. An 
innovative augmented-reality like interface greatly 
simplifies the labeling task. Lastly, a proper value for the 
critical parameters is automatically derived. Results on 
real data show that the system is able to produce a robust 
and largely complete set of trajectories, which greatly 
minimize the time required by post-processing. 
 
 
1.  Introduction 
 

The acquisition and analysis of 3D human motion is 
expanding its influence from its native field, medicine 
(neurology, orthopaedics, neurosurgery and rehabilitation) 
to robotics, ergonomics, and computer animation. This 
prompts the continuous evolution of motion capture 
systems. When real-time is an issue, electro-magnetic 
technology competes with image processing; otherwise 
video camera based motion capture systems are preferred 
as they combine the least encumbrance to the subject with 
accuracy and reliability. 

The use of natural video sequences is not mature yet to 
get fast accurate and reliable measurement [1]. In the 
marketed systems motion capture is facilitated markering 
the anatomical joints of the subject in motion (Fig. 1). 
Markers are detected by a suitable hardware [2], which 
feeds in real-time a host computer with their coordinates. 
These multiple sets of 2D points (one set for each camera) 

are then converted into the 3D motion of the markers by a 
procedure called tracking (second level).  

A reliable tracking of natural body motion is still one 
of the most challenging tasks in computer vision [3-5]. As 
human skeleton is a highly articulated structure, twists and 
rotations make the movement fully three-dimensional. As 
a consequence, each body part continuously moves in and 
out occlusion from the view of the cameras, such that each 
of them can see only a chunk of the whole trajectory. 
Chunks from the different cameras have to be correctly 
matched and integrated to obtain a complete motion 
description. This difficulty is greatly enhanced when a 
dense set of markers is adopted. 

Different criteria have been used to solve tracking. 
Epipolar, trifocal and quadrifocal constraints have been 
largely used to match the data points [6]. However, 
because of intrinsic limited accuracy in calibration and 
data measurement, these constraints do produce false 
matches, which, in dense markers configuration with many 
cameras, do make tracking quite difficult and prone to 
errors. These have to be manually corrected in a painful 
post-processing stage. Additional constraints must 
therefore be added. Temporal constraints based on the 
assumption that human motion is smooth [3, 7] have been 
introduced; a more robust approach integrates the previous 
criteria with solutions in which the skeleton-like structure 
of the body is taken into account [1]. 

We propose here a robust integration of these criteria 
by a new procedure, which is based on two key ideas: 
processing strings instead of points and multiple passes at 
different resolution. The resulting algorithm is not meant 
to work in real-time, but it does produce a robust and 
largely complete set of trajectories which greatly minimize 
the time required by painful post-tracking editing sessions. 
Moreover, an innovative augmented-reality like interface 
greatly simplifies the labeling task.  
 
2.  The tracking structure 
 
 Tracking is constituted of three sequential stages: 
pivotal tracking, holes filling and labeling. Each of these 
stages uses the tracking engine described in Section 3. 



 

 

First, pivotal tracking uses the engine once to create 
reliable 3D strings. In this step only long 2D strings are 
used (coarse resolution). This allows obtaining a very 
robust 3D spatio-temporal structure of the motion. These 
3D strings are then back projected over the cameras image 
plane to derive a robust re-initialization of 2D strings. The 
hole filling and labeling stages eventually succeed to 
complete the trajectories in a more principled way.  

 
Fig. 1. (a,b) a typical marker disposition. A total of 40
markers are attached on the subject. Two markers are
attached to the elbow, wrist, knee and ankle. This
redundant set of markers prevents the loss of data
and allows a better identification of the joint center.
The joint centers can therefore be regarded as virtual
markers (light gray panels (b,c)). The line segments
identify the distances, which are almost constant
during motion. The skeleton produced by the tracking
procedure is obtained connecting measured and
virtual markers (c).

 
3.  The tracking engine 
 

First, a 2D tracker builds 2D strings (segments of 2D 
trajectories) on each camera; these 2D strings are matched 
over pairs of cameras through the epipolar constraint to 
obtain a set of candidate 3D strings The novel idea of 
matching strings instead of points adds more reliability to 
this process. The candidate strings are then condensed and 
false matches are eliminated in the registration phase. 
 
3.1  2D tracking 
 

The 2D string, defined as the temporal concatenation 
of the 2D markers position, is the key element. The data 
are analysed separately on each camera, frame by frame. 
For each string, its position is predicted from the position 
in the previous frames. When a marker is close to this 
prediction and it is not close to any other marker, it is 
concatenated to that string, and the string is grown one 
more frame. If more than one marker is close to the 
prediction, their classification is postponed to a later stage 

and the string is interrupted at the previous frame. This 
happens when two or more trajectories come close one to 
the other on the image plane of the camera. When there is 
no 2D point close to the prediction (the marker is hidden 
to the view of that camera), the string is terminated also in 
the previous frame. These situations are very common 
when dense sets of markers are adopted. When a marker is 
not close to any existing 2D string, it is assumed the 
beginning of a new string.  

At the end of this phase, the shortest strings are 
eliminated. In fact, the 2D tracker does generate spurious 
2D strings. As these are two or, exceptionally three-four 
frames long, they can be easily eliminated filtering out the 
shortest strings. The shortest strings will be reconsidered 
in the hole filling and labelling tracking phases, where a 
robust initialization of 2D strings is obtained from 3D 
information.  
 
3.2  Matching 2D strings 
 

Matching features over multiple images is a very active 
area in computer vision and different solutions have been 
proposed [6]. These are mainly based on the multi-
collinearity constraints applied on a frame by frame basis 
to obtain real-time performance. When dense marker sets 
are considered, these techniques do produce a lot of false 
matches which makes further processing hard. To avoid 
this, it is proposed here to integrate the temporal 
dimension into the matching process. This is obtained by 
matching pairs of strings instead of pairs of points: the 
epipolar condition: 

pil(ts)Eijpjk(ts) = de ≈ 0 (1) 

has to be satisfied for all the ts common to the two strings. 
pil(ts) and pjk(ts) are the points in the two strings, l and k, 
on camera i and j, measured at frame ts. Condition (1) is 
applied only to pairs of 2D strings which have a large 
enough common temporal interval. Notice that (1) has not 
to be computed for all the points of the 2D strings: time 
sub-sampling can reduce the computational time. 
Moreover, when (1) is not satisfied for one pair of points, 
it automatically follows that matching is excluded also for 
all the other points in the two 2D strings. This procedure 
avoids most of the false matches. Instead, when (1) is 
verified for all the points of a pair of strings, the match is 
indeed much more robust. 

 
4.3  Registration 

 
At the end of the matching process, each matched pair 

of 2D strings produces a 3D string. When a marker is seen 
by M cameras, a total of [M(M-1)]/2 strings is produced 
for the same markers. Grouping these 3D strings into a 
single 3D string is the task of this step. To achieve this 



 

 

scope, a 3D region with circular section is created around 
each 3D string. All the 3D strings contained inside this 
region are condensed into a single 3D string. The 3D 
string points are obtained as a weighted average of the 3D 
positions on the 3D strings involved, where the weight 
depends on the viewing angle of the cameras pair 
associated to a string, to achieve the best accuracy [8]. 
Notice that condensation of two strings can be safely 
carried out only when a reasonable number of frames is 
common to the two. Otherwise, if only a few frames are in 
common, condensation is postponed to a later tracking 
stage. This has two a-side advantages: the accuracy for 
that 3D string is increased and the string is  lengthened up 
to the smallest starting frame and largest ending frame of 
all the constituent 3D strings. 

At the end of this phase, possible residual false 
matches are eliminated as follows. First the 3D strings are 
sorted by multiplicity obtaining an ordered list. All the 2D 
strings associated with the first 3D string in the list are 
labeled as used. The other 3D strings are processed 
sequentially analyzing their constituting 2D strings. When 
a 2D string is already labeled as used (by a higher level 
3D string) is taken out from the pool and eventually the 
3D string is recomputed with the remaining 2D strings. If 
less than two 2D strings remain, the 3D string vanishes: it 
was in fact a ghost marker.  
 
5.  The tracking procedure 
 

Tracking starts with the creation of a robust spatio-
temporal structure of the motion, created in the pivotal 
phase. At the end of this phase, data are incomplete and 
3D strings are broken into chunks, with few or more 
frames in between. Holes have to be filled. To the scope, 
the 3D strings are back-projected onto the image plane of 
the cameras. The markers not labelled, which are almost 
coincident with a projection can be safely associated to the 
3D string. When a marker in two consecutive frames are 
classified to the same 3D string, a robust initialization of a 
new 2D string is obtained. The tracking engine is run 
again on these new 2D strings, and eventually it succeeds 
in extending the 3D string. At the end of this stage a much 
more complete set of 3D strings is obtained. 
 
5.1  The body skeleton  
 

At this stage the 3D trajectory has been reconstructed 
for the whole movement for most of the markers, but the 
concatenation of the multiple constituent 3D strings has 
not been carried out yet. Moreover, there are few blinking 
reflexes may exist, which have to be correctly identified 
and eliminated. To the scope, a 3D model of the skeleton 
is introduced (Figs. 1). This is constituted of a set of links 
connected by hinges, which represent respectively the 

bony segments and the body joints. Joints are 
hypothesized to produce a pure rotation and links to keep 
their length constant throughout the motion. The rotation 
center is approximately positioned in the center of the 
joint articulation and to get a better identification of it, 
multiple markers have been introduced in the 
biomechanics community [8]. Here pairs of markers are 
attached laterally on the elbow, wrist, knee and ankle 
joints (Figs. 1a-b). The mean position of the pair of 3D 
measured markers identifies the corresponding joint 
centers. These can be regarded as a virtual marker and are 
plotted in light gray in Figs. 1b-c. The skeleton output by 
the tracking procedure is obtained connecting virtual 
markers and real markers (Fig. 1c).  
 
5.2  The augmented reality like user interface 
 

 
Fig. 2. The markers of the 3D strings are back-
projected over the corresponding image of a video
obtained with standard video-cameras. The power of
this technique in helping the classification is evident.

 
The user has to initialize the model by associating once 

each body marker with a 3D string. A large help is given 
by an augmented reality like, display of the data as 
proposed here. One or more standard video cameras, 
temporally synchronized with the mocap cameras and 
spatially registered survey the scene. The 3D strings 
obtained by the tracking can therefore be back projected 
on the image plane of these cameras, and displayed 
superimposed to the video captured (Fig. 2). Classification 
becomes a trivial manual task also for dense markers sets. 
This is a very powerful tool to produce a reliable 
classification of dense markers ensemble in a very short 
time. 
 
5.3  Labeling and interpolation 
 

Once initial classification has been completed, tracking 
automatically extends the classification forwards and 
backwards to the unclassified strings. 



 

 

To the scope, the classified strings are sorted by 
number of connected markers. For instance, in fig. 1c, 
most of the virtual markers are connected to four markers, 
the markers on the head to two and the markers on the 
hand to only the virtual marker on the wrist joint. The 
statistics of the associated links is then computed for the 
time interval in which they are present, to define 
boundaries to the variation in length of each link. For each 
classified 3D string, extension strings are searched 
forward and backwards, checking for compatibility with 
the measured length. 
 
6.  Parameter setting 
 

Parameter setting is a crucial issue. A system, which 
requires to manually tune them, is of little help to real 
applications.  

The critical parameters here are the error in the 
epipolar condition, de, ((1) in Section 3.2) and the radius 
of the circular section of the condensation region, rc 
(Section 3.3). These are derived from the calibration data. 
Here the cameras are calibrated by using a rigid bar as 
described in [9]. This procedure allows collecting a large 
set of measurements, which can be used to derive a 
reliable experimental measure of the system accuracy. In 
particular, the computation of (1) for each pair of bar 
extremes matched over two cameras, allows determining a 
reliable statistics for the epipolar error and a proper value 
for de. rc is related to the registration error. This can be 
evaluated by computing the statistics of the difference in 
the 3D position of the bar extremes reconstructed with two 
different pairs of cameras. 
 
7. Results and Conclusion 
 

The reconstruction of a running_out_of_balance 
sequence is plotted in Fig. 3. The success in tracking the 
whole body and in particular the hands and the feet is 
evident. The tracking procedures has required no 
intervention by the operator in the post-processing phase 
to correct marker swaps or wrong labeling. This has made 
this system, although the software was not optimized, 
overall faster than commercial packages in the production 
of 3D trajectories. 

Although some techniques for automatic labeling are 
under study, based on a-priori model fitting a 3D skeleton 
[5] or statistical considerations [10], they may fail when 
complex gestures are recorded or dense markers sets are 
used. These considerations have prompted us to develop 
an efficient manual classification interface. The 
augmented-reality approach proposed here makes manual 
classification easy and fast for any operator. 
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Fig. 3. Six frames of the sequence
running_out_of_balance are plotted. Order: from left
to right, from top to bottom.
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