Fuzzy Connections in realistic real-time facial animation
N. Alberto Borghese \& Paolo Rigiroli Laboratory of Motion Analysis and Virtual Reality (MAVR)
Istituto Neuroscienze e Bioimmagini - CNR

Face Animation

- Anatomical synthesis: highly detailed biomechanics modeling of facial tissue (FEM, Multi-layer models... e.g. Koch et al., 1998; Badler, 2000).
- Exterior reproduction: highly detailed reproduction of the surface of the face, mainly in Computer Graphics (e.g. Lee et al., 1998; Guenter et al., 1998).

Our real-time approach

- Hybrid approach;
- Two-layers model.
- Upper topological mesh.
- Lower control mesh.

Two-layers animation

The deformation of the topological mesh is induced by a deformation of the control mesh.

Acquisition of topological mesh

Laboratory of Motion Analysis \& Virtual Reality, MAVR, INB - CNR

Construction of the control mesh

51 Markers are positioned on the subject (MPEG-4):

- Difficulty in applying them:

Around th eyes and inside the lips.
Base of the nose (visibility from the cameras).

- To identify a local reference system (optional):

Elastic band with four markers.

Acquired markers (51)

- Virtual markers anchored to the head (7)
- Virtual markers anchored to real ones (2) For a total of 60 markers

Where is the problem in the connection?

$\forall \mathrm{P}_{\mathrm{i}}$ of the topological mesh:

1) Determine the triangle onto which P_{i} is projected.
2) Compute the intrinsic coordinates of P_{i}.

Here is what happens close to the border of a control triangle:

$\mathrm{P} 1 \perp \mathrm{~T} 1 \in \mathrm{~T} 1 \quad \mathrm{P} 3 \perp \mathrm{~T} 1 \notin \mathrm{~T} 1$
$\mathrm{P} 2 \perp \mathrm{~T} 2 \in \mathrm{~T} 2 \quad \mathrm{P} 3 \perp \mathrm{~T} 2 \notin \mathrm{~T} 2$
No projection for P3.

$\mathrm{P} 1 \perp \mathrm{~T} 1 \in \mathrm{~T} 1 \quad \mathrm{P} 3 \perp \mathrm{~T} 1 \in \mathrm{~T} 1$
$\mathrm{P} 2 \perp \mathrm{~T} 2 \in \mathrm{~T} 2 \quad \mathrm{P} 3 \perp \mathrm{~T} 2 \in \mathrm{~T} 2$
Two projected points for P3.

Here is where fuzzy assignment comes into play.

Fuzzy association

Rigid association
Fuzzy association

General schema of the system

Results are available at MAVR's home page:

http://www.inb.mi.cnr.it/borghese.html

