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Abstract 

 

A portable and flexible system for 3D scanning is here presented. It is constituted of four main 

modules. The first module is devoted to the acquisition of a set of 3D points over the surface 

through laser scanning (digitization). The second module reconstructs a continuous 3D 

surface, filtering the measurement noise. Whenever required (e.g. in CAD applications), a 

third module converts the surface into a 3D mesh which can then be colored by projecting 

over it a bitmap of the surface, obtained from a snapshot to obtain a highly realistic textured 

3D model. This instrument improves upon the commercially available scanners in two main 

aspects. The digitizer proves to be highly flexible and accurate, and it can easily 

accommodate objects of different dimension. The construction of the surface and the filtering 

of the digitization noise are performed in a single step through a fully adaptive algorithm 

which produces a multi-scale surface and can be parallelized to work in real time. Results on 

the reproduction of human faces are reported and discussed. 

 

1. Introduction 

Virtual 3D models are required by an increasing number of applications ranging from basic image 

processing to video conferencing, constructive and plastic surgery, 3D fax, reversed engineering and 

3D CAD (virtual prototyping). A host of devices (3D scanners), have come to the market in the last 

few years to provide these models. Essentially a 3D scanner captures the 3D visible surface of an 

object as a mesh suitable to be processed by CAD and graphical systems [1]. Although ultrasound 

[2] or mechanical (e.g. MicroscribeTM) devices are available, optical technology is preferred because 

it allows a high resolution and it does not require any contact with the surface. The gold-standard is 

represented by the CyberwareTM scanners which are suitable to most applications. However, apart 
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from their very high cost, they have two drawbacks: a complex structure, inside which the object is 

placed, has to be set up, and only objects within limited size ranges can be digitized.  

In this paper, a modular 3D scanner, which is devoted to opposite criteria is described (Fig. 1). 

The first module is devoted to the acquisition of a set of 3D points over the surface through laser 

scanning (digitization). The second module reconstructs a 3D continuous surface which filters out the 

noise introduced by the digitization process. At this stage, a 3D model is already available. For some 

applications in CAD/CAM and computer graphics, the representation of the surface in the form of a 

mesh is more suitable; this is done in a third module, which converts the surface into a mesh. In a 

fourth module, a bitmap of the surface, obtained from a snapshot, is aligned and projected over the 

3D mesh to obtain a highly realistic textured 3D model. The aim of this paper is to present the overall 

structure, focusing on the accuracy of the digitization process and on the reconstruction of the 3D 

surface. The overall processing allows achieving a high accuracy and can be implemented onto PC 

boards to achieve real-time 3D modeling. The system has been widely tested in the reconstruction of 

3D objects and of human faces in particular.  

 

INSERT FIGURE 1 HERE 

 

2. Data acquisition 

The first step towards creating a 3D model is the digitization of a set of 3D points on the object’s 

surface, which is carried out here by the Autoscan system introduced in [3]. This is constituted of a 

commercial laser pointer of 5mW of power, a set of video cameras, which provide each an image of 

256 × 256 pixels with a frame rate of 100 frames/second, a real-time image processor and a host 

computer. The processor computes a cross-correlation between a 6 × 6 mask, template of the laser 

spot, and each image of the stream coming from the video cameras. This allows achieving a high 
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SNR (a laser spot can be detected also in outdoor conditions) and sub-pixel accuracy (by averaging 

the over-threshold pixels of the laser spot, weighted with their cross-correlation value), which has 

been experimentally determined in 0.1 pixel [4]. Digital cameras can therefore be used as a valid 

alternative to analog sensors for spot detection (cf. [5]). The pattern matching procedure allows also 

to automatically discard those spots which are poorly seen: in this case, cross-correlation is over-

threshold only for one row and/or column of the image, losing sub-pixel accuracy in the computation 

of the spot center. The cross-correlation is computed in real-time through a custom board which 

contains essentially delay lines, adders and multipliers [6]; it can be replaced by less expensive 

general-purpose hardware (e.g. on FPGA board), without degrading the performances. The 3D 

position of the laser spot is computed with standard photogrammetric procedures from the spot 

position on two cameras. For this purpose, the cameras are calibrated by surveying a rigid bar with 

two spherical markers on its extremities, the same size of the laser spot, inside the volume where the 

object is scanned [7]. This makes the system extremely simple to set-up. We explicitly remark that 

there are no constraints on the set-up and on the size of the object to be scanned: this depends only 

on the lens used and the relative position of the cameras. Flexibility, scalability and portability 

therefore characterize the acquisition module. 

Surface digitization is carried out by moving the laser pointer manually (Fig. 1a). To help in 

directing the laser beam, a real-time feedback is provided on the host PC monitor. This scanning 

procedure offers the great advantage to increase the number of measured points in those regions 

which are richer of spatial details (where the surface has the highest spatial frequency content), 

achieving a denser sampling there. The digitization accuracy has been experimentally assessed 

similarly to [5], and the results are reported here (Fig. 2). The position of 5,000 laser spots 

projected over a plane positioned in the center of the working volume is analyzed. For a medium-

size volume (0.8m × 0.6 m × 1m), the accuracy is of 0.27mm ± 0.0063mm (rms error), averaged 

over 100 different experiments, with the two cameras at an angle close to ninety degrees (86.9 
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degrees). This figure scales linearly with the dimension of the working volume, and it is consistent 

with the accuracy reported in the motion analysis field [7]. The distribution of the measurement error 

is zero-mean and normally distributed (cf. Fig. 2b) as it is the outcome of several error sources 

(quantization error in the video cameras, numerical approximation in the cross-correlators, non-

uniform spot appearance, etc.).  

At the end of the digitization process, a set of N 3D points is obtained {Pj = (x i, yj, zj)} (cf. Fig. 

3a). At the same time, through a standard CCD camera a color snapshot of the surface is acquired 

(cf. Fig. 3b), which is converted into a bitmap of 576 × 768 (PAL standard), with 24bits/pixel. The 

sustained peak acquisition rate is of 100 spots/second. This rate decreases when the spot is not 

visible to the cameras. In real acquisitions, an average rate of 90–95spots/second is obtained. By 

using arrays of laser pointers in place of a single pointer, this rate could be increased. 

 

INSERT FIGURE 2 HERE 

 

3. Surface reconstruction through the HRBF model 

The conversion of the cloud of 3D points into a 3D geometrical model is the critical operation of 

any 3D scanner. Due to measurement noise a direct tessellation of the data points obtained by simply 

connecting them, would produce an undesirable wobbling surface (Fig. 3c). Such a surface is useless 

to graphics, CAD or any other application, and the need of some sort of filtering is evident. 

When the shape of the object surface is known, model fitting can be a valuable solution. In this 

approach a parameterized surface model is progressively adapted to the range data by minimizing 

their distance from the surface (e.g. [8] for human faces). This approach is improved when features 

can be extracted from the range data [9] (cf. also [10, 11]). However these approaches are heavily 

based on predefined models and lack in generality. Generic parametric shapes (semi-parametric 

fitting), which are warped to fit the data topology, offer a more general solution [12]. The simplest of 
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these is the 2D lattice, proposed in the seventies in the connectionist domain, as a tool to represent 

multivariate data distributions. This model, called Self-Organizing Maps (SOM) [13], has been more 

recently applied to reconstruct 3D surfaces from range data [14]. Its limitation lies in the requirement 

that the surface topology is homomorphic to the lattice structure (usually a plane). When this is not 

the case, twisting of the plane and poor approximation arise. Superquadrics have been introduced as 

more powerful semi-parametric geometrical models [9]. Introducing a B-spline surface on the top of 

superquadric [9] or meshes [15] can further refine the obtained surface. This approach, termed 

“surface on surface”, gives rise to a weak hierarchical structure: the superquadric is adapted first to 

capture the overall shape of the data, and the spline patch is used to deform the superquadrics 

surface to better fit the data locally, by reproducing the surface details. To reconstruct complex 

surfaces, more than one superquadric can be employed [16]. 

All these approaches are iterative and cannot operate in real-time on the data points. A novel 

different approach is presented here aimed to produce 3D models in real-time. The reconstruction is 

achieved with a sparse approximation with adaptive variable resolution spatial filtering, where the 

correlation between neighbor data points is exploited to eliminate noise introduced by the sampling 

process. It is based on the Hierarchical Radial Basis Function Network (HRBF) model, proposed 

originally in the connectionist domain as a tool for multi-scale signal processing [17]; it is extended 

here to surface approximation from scattered data. In the following, the overview of the HRBF 

model is presented first along with the robust determination of its parameters. The hierarchical, multi-

scale, structure is then introduced to make the approach fully adaptive both in resolution and scale.  

 

INSERT FIGURE 3 HERE 

 

3.1 Construction of a 3D surface through approximation 
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We assume that the surface can be represented as a function S(P): R2→R. This assumption is 

motivated by the shape of the human face which can described as a height field (2½D). However this 

does not lack in generality as full 3D surfaces can be recovered by zippering multiple 2½D models 

[18]. Under this hypothesis, it is more convenient to reframe the data points collected with the 

scanning procedure as: {(x j, yj, zj) | j = 1, …, N} as the set {(Pj, S(Pj)) | Pj = (x j, yj) ∈ R2; S(Pj) = 

zj ∈ R; S: R2→R}. 

Our final goal is the reconstruction of the true surface up to the measurement error. That is, the 

distance between the points reconstructed by the HRBF model, and those sampled on the surface, 

should be distributed according to the measurement error. The reconstructed surface Sr(P) should 

satisfy the following conditions: 
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which can be evaluated, for a given set-up, through the experiment reported in Section 2. As the 

measurement error is uniform, (1) should be satisfied not only on the entire input domain, but also 

locally in sub-regions of it (cf. Section 3.4). 

 

3.2 The HRBF network 

The HRBF model combines the output of many simple units to achieve the reconstruction of a 

complex surface. In particular, the HRBF network is composed of radially symmetric Gaussian units: 
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where P, µ ∈ R2 and σ ∈ R. In the HRBF model, the units are organized in layers (subnetworks), 

where the k th layer is composed of equally spaced Gaussians, which have the same standard 

deviation, σk (cf. Figs. 4 and 6). Therefore the surface, Sr(P), is constructed by adding the 

contribution of a few grids of Gaussian functions, where, as shown in Fig. 5, each grid operates at a 

certain scale (or cut-off frequency).  

Given a set, α, of parameters which characterize the HRBF network, the actual shape of the 

reconstructed surface (i.e. the output of the net), S(P|α), is: 
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where L is the number of grids and Ml is the number of Gaussian units in the lth grid. wkl is the 

weight associated to the k th Gaussian in the lth grid, and Pkl is its position in the grid. σl is the 

standard deviation of all the Gaussians in the lth grid which determines the filtering scale of that grid. 

The parameters α = {L, M, {wkl}, {Pkl}, {σl}} determine the actual shape of S(P|α). Although 

these parameters could be determined by global optimization, e.g. [19], the time required to obtain a 

reasonable solution has suggested exploring alternative solution schemes. HRBF networks, in 

particular, offer a very fast solution as the determination of the parameters in (3) does not require any 

iteration, and it is performed with only local operations on the data points. This makes this approach 

particularly suitable to 3D scanning application. 

 

3.3 Determination of the parameters in each layer 

Each grid, l, of the HRBF model realizes a low-pass filter, which is able to reconstruct the surface 

up to a certain scale, determined by σl. It can be shown that σl and the spacing between two 

consecutive Gaussians on the same grid, ∆Pl, are related with: 

σl = 1.465 ∆Pl (4) 
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This relationship is obtained by accepting a maximum attenuation in the pass band of -3dB and a 

minimum attenuation in the stop band of -40dB [20]1. Different attenuation values lead to a different 

proportionality constant between ∆Pl and σl. To apply the Gaussian filter, the data should be equally 

sampled in correspondence to the grid crossings {k}. That is, the set {zk,l} = {S(Pkl)} should be 

available. Unfortunately this is not the case here where the data are unevenly sampled. However, 

since many points are usually digitized (surface oversampling), a reliable estimate of S(Pkl) can be 

obtained through the following weighted mean estimate (cf. also [21]): 
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where A(Pkl) is the Receptive field associated to the k th Gaussian in the lth grid. It is set, somewhat 

arbitrarily, as the square region centered Pkl of side ∆Pl. The estimate in (5) is carried out locally on 

the input space, and it can be parallelized to achieve quasi-real-time processing. 

The grid filter can be now written as: 
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Comparing (6) with (3) it can be demonstrated that the parameters {wkl} can be obtained simply 

as )(~
klPz ∆Pl

2 [20]. 

 

3.4 The hierarchical multi-scale structure  

If only one grid was adopted, a serious drawback is introduced: the Guassian scale should be 

small enough to resolve the finest details. This requires very dense packing of the Gaussians also in 

                                                 
1 These values produce a cut-off frequency of v cut-off = 0.1874/σl and a transition band of [0.1874/ σl, 0.7327/ σl]. 
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those regions where the details can be resolved at a coarser scale, causing a waste of resources and 

overfitting in those space regions. Moreover, as the sampled point local density reflects the local 

richness of details, those regions which lack high-frequency details will contain points spaced apart 

far, and receptive fields A(Pkl) may come out empty there. A better solution would be to adaptively 

allocate the Gaussian units, with an adequate scale and, consequently, adequate receptive fields, in 

the different space regions. The novel idea is to analyze the local residual and to stack non-complete 

grids over a first grid at a coarse scale, obtaining what is termed a sparse approximation (cf. Fig. 6). 

The first grid will output a rough estimate of the surface, a1(P) (Fig. 5a) as: 
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The residual {r1(Pj)} is computed for each sampled data point, (Pj, S(Pj)), as: 

r1(Pj) = S(Pj) - a1(Pj) (8) 

This residual will be the input to a second grid which features a smaller scale than the first one; 

somewhat arbitrarily we have chosen σ2 = σ1/2 which is the same choice made in wavelet 

decomposition [22]. This second grid does not need to reconstruct the original surface but only the 

residual one. Its output, a2(P), will be a reconstruction of the residual r1(⋅) at the scale σ2, and it will 

provide a second residual: 

r2(Pj) = r1(Pj) - a2(Pj) = S(Pj) – a1(Pj) - a2(Pj) (9) 

This grid will not be full, but Gaussians will be inserted only when a poor approximation is given. 

This is evaluated through the residual itself: a Gaussian is inserted in the grid crossing Pkl only if:  
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where σ2
ν is the noise variance and Nk is the number of sampled points which belong to A(Pkl). A 

mathematical proof of HRBF convergence can be found in [23] and goes beyond the scope of this 

paper. Grids are created one after the other, until the condition in (10) is not true over the entire input 

domain (Figs. 5a–d).  

 

INSERT FIGURE 4 HERE 

 

4. Conversion into a mesh and color application 

When required, the reconstructed continuous surface can be sampled as densely as desired (at 

1mm in Fig. 7a) to obtain a mesh of triangular elements. The sampling could be optimized according 

to topological or geometrical criteria to obtain a lighter mesh [24]. When the color appearance is 

important (e.g. in computer graphics applications), a bitmap obtained from the snapshot of the 

surface is applied. This is achieved by using standard texture mapping procedures after having 

aligned it to the mesh through a semi-automatic graphical tool [25, 26]. The final result is a 3D very 

realistic reconstruction of human face (Figs 2b and 7b). A detailed description of this procedure goes 

beyond the scope of this paper. 

 

5. Results 

The system has been intensively used in scanning human body parts and faces in particular. This is 

a particularly difficult task because the face's spatial frequency content is highly variable. Three to 

four layers are usually sufficient. A typical result is reported in Figs 5 and 7 for Stefano’s face. In the 

set-up used the angle between the cameras was of ≈ 50 degrees with an estimated rms measurement 

error of 0.65mm. The surface is reconstructed starting from N = 17,080 data points collected in 

three minutes. As can be seen in Fig. 6, in the higher layers the units are inserted in clusters, only in 
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those regions where the face has the highest frequency content: the HRBF network automatically 

adapts its local cut-off frequency and resolution to the local frequency of the data. Only 10,355 

Gaussian units have been used versus the 21,750 units, which were required by a complete Gaussian 

filter at the smallest scale. The quantitative results are reported in Table I, where the residuals and the 

parameters of each layer are shown. As it can be seen, the mean error on the reconstructed surface 

(bias) is already very close to zero in the second layer, while the standard deviation decreases down 

to 0.72mm in the fourth layer. The distribution of the residuals becomes progressively Gaussian 

shaped and approaches that of the digitization error as can be seen in Figs. 5. 

 

INSERT FIGURE 5 HERE 

 

INSERT FIGURE 6 HERE 

 

INSERT FIGURE 7 HERE 

 

6. Discussion 

The 3D scanner presented here is based on a digitization module characterized by scalability, 

flexibility and accuracy. In fact, acquisition of objects of complex topology can be easily 

accomplished by zippering multiple acquisitions carried out with a single pair of cameras placed in 

different positions and orientations [27] or increasing the number of video cameras used 

simultaneously. The use of pattern recognition to compute the spot’s centroid gives a spot accuracy 

higher than that of commercial 3D scanners [1]. This figure decreases when the angle between the 

pair of video cameras, used to reconstruct the 3D position of the spot, differs from ninety degrees 

with approximately a quadratic curve [28, 29]. In real situations, where the angle between the 

cameras has to be negotiated with the amplitude of the common field of view of the two cameras, an 
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angle between 40 and 60 degrees is usually adopted, with an accuracy decrease between 1.5 and 3 

times. When higher accuracy is required, smaller working volumes can be set-up or the angle 

between the cameras increased.  

Given the relatively long acquisition time, such a high accuracy can be reached only when still 

objects are scanned. Therefore, when scanning human faces, maximum comfort of the subject has to 

be provided to avoid non-intentional movements, which do decrease the accuracy. These small 

movements could be eliminated by using at least three circular markers solid with the head, of the 

same dimension of the laser spot; they would be recognized by the pattern matching processor, and 

used to compensate head motion. Given the high accuracy achieved, this procedure has not been 

adopted, but it could suggest a possible implementation in which moving objects can be scanned.  

This high accuracy is preserved in the reconstruction of the 3D surface, which is achieved by a 

novel hierarchical model: the HRBF network. The requirement of only operations carried out locally 

on the data points with no iterations is the main characteristic, which makes it suitable to real-time 

implementations. Few algorithms aimed to real-time, can be found in the literature. The closest 

approach is the hierarchical reconstruction based on B-splines [21] where the reconstructed surface 

is the sum of a set of intermediate surfaces generated through a hierarchy of control grids. The main 

difference is that, in the HRBF model, the grids in the superior layers are not complete, but Gaussian 

units are inserted in clusters where the residual is over threshold, with a large saving in resources. The 

same adaptive unit allocation schema offers to HRBF an advantage versus Multi-Resolution Analysis 

(MRA) carried out through wavelet decomposition [22]. The MRA works in a direction opposite to 

HRBF as it produces a hierarchy of approximating surfaces from fine to coarse. Each surface is the 

sum of a very low-frequency surface and a set of surfaces called details, where each of them is 

obtained as a linear combination of basis functions. Small coefficients can be set to zero, giving a 

sparse approximation of the surface. The MRA structure closely resembles the reconstruction in the 

HRBF model (cf. Fig. 4), although the coefficients are computed differently. In fact, the k th detail 
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surface in the HRBF is computed from the difference between the surface approximated at the lower 

level and the surface samples. This allows recovering errors in the computation, e.g. due to finite 

precision, or the effect of zeroing the coefficients in the previous layers. In MRA instead, the detail is 

computed directly by projecting the residual at the higher layer onto an adequate basis. This 

procedure, although faster as it does not require computing the residual for each data point, does not 

allow correcting for any error in the computation.  

Another advantage of the HRBF model is its minimalism, as it requires a single basis, the 

Gaussian, versus the four bases required by MRA, at least in the most common biorthogonal setting 

[30].  

Finally, the scale of each layer in HRBF does not have to be necessarily halved as in MRA, but 

can be adapted to the data frequency content. Moreover, if a norm different from L2 were required, 

it can be introduced by simply changing the norm in which the error and the residuals are evaluated. 

For example, if outliers are often collected, a more suitable norm to measure the residual would be 

L1 [20]. 

The limitation of HRBF networks, and of basis function approximation in general, lies in the use of 

filtering, which makes the reconstruction of structured objects, with sharp edges and corners, 

difficult. For these, procedures which reconstruct the surface through an intermediate stage based on 

extraction of objects’ geometrical primitives can be more powerful [31, 32]. 

 

7. Conclusion 

Overall, the 3D scanner system presented here is able to furnish a detailed 3D reconstruction of 

surfaces by using simple hardware components in conjunction with adaptive data processing. The 

operations involved both in spot detection and mesh construction are performed locally on the data 

set. They can be easily parallelized and implemented on general purpose, low-cost, processing 
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boards (e.g. FPGA) to obtain a low cost system which shall be seen as a standard measurement 

device of next generation graphical workstations. 
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Figures & Table Legend 

 

Figure 1. The System: scanning a Human face. The beam of a commercial laser pointer is 

directed over the subject’s face. Scanning is performed moving the laser manually with the aim of 

collecting more data points in the most difficult regions: lips, eyes…. At the same time a commercial 

CCD video camera acquires a snapshot of the face (a). A schematic diagram of the processing 

blocks is reported in (b). 

 

Figure 2. The distance of 5,000 spots with respect to the best fitting plane is reported in panel 

(a). Panel (b) shows how the distribution of the error can be considered Gaussian; its standard 

deviation is assumed as a measure of the digitization rms error. 

 

Figure 3. Ensemble of the N = 17,080 3D points (a) and bitmap (b) of Stefano’s face. A direct 

tessellation of the data points (e.g. through Delaunay triangulation) [33] would produce a jerky 

surface which is plotted with texture (c). 

 

Figure 4. HRBF network structure. 

 

Figure 5. The multi-scale reconstruction of Stefano’s face is reported here. It is obtained adding 

the contributions of all the four layers (a); of the first three layers (b); of the first two layers (c). In (d) 

the output of the first layer is plotted. The residual distribution is plotted besides each layer in the 

form of a histogram whose area is normalized to one. 

 

Figure 6. Position of the Gaussian units in the four layers for Stefano reconstruction. Cluster of 

Gaussians are inserted in the higher layers determined an increase in the local frequency of the 

reconstruction.  

 

Figure 7. The tessellation resulting from sampling the HRBF surface at 1mm step (a) and the final 

result where texture has been applied (b). 

 

Table I. Performance indexes and parameters of each layer of the HRBF network. 
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Table I 

 

 

 

 
#grid Error mean 

[mm] 
Error std 

[mm] 
#gauss νcut-off 

[Hz] 
Grid 

dimension 
1 1.89 3.66 282/315 0.015 15x21 

2 0.07 1.45 1124/1333 0.03 31x43 

3 -0.005 0.96 3020/5394 0.06 62x87 

4 -0.002 0.72 5929/21750 0.12 125x174 

 
 


