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Abstract

A portable and flexible system for 3D scanning is here presented. It is constituted of four main
modules. The first module is devoted to the acquisition of a set of 3D points over the surface
through laser scanning (digitization). The second module reconstructs a continuous 3D
surface, filtering the measurement noise. Whenever required (e.g. in CAD applications), a
third module converts the surface into a 3D mesh which can then be colored by projecting
over it a bitmap of the surface, obtained from a snapshot to obtain a highly realistic textured
3D model. This instrument improves upon the commercially available scanners in two main
aspects. The digitizer proves to be highly flexible and accurate, and it can easily
accommodate objects of different dimension. The construction of the surface and the filtering
of the digitization noise are performed in a single step through a fully adaptive algorithm
which produces a multi-scale surface and can be parallelized to work in real time. Results on

the reproduction of human faces are reported and discussed.

1. Introduction

Virtud 3D modds are required by an increesng number of gpplications ranging from basic image
processing to video conferencing, congtructive and plastic surgery, 3D fax, reversed engineering and
3D CAD (virtud prototyping). A host of devices (3D scanners), have come to the market in the last
few years to provide these modds. Essentialy a 3D scanner captures the 3D visble surface of an
object as a mesh suitable to be processed by CAD and graphica systems [1]. Although ultrasound
[2] or mechanical (e.g. Microscribe™) devices are available, optical technology is preferred because
it dlows a high resolution and it does not require any contact with the surface. The gold-standard is

represented by the Cyberware™ scanners which are suitable to most gpplications. However, apart
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from their very high cogt, they have two drawbacks: a complex structure, insde which the object is
placed, hasto be set up, and only objects within limited Size ranges can be digitized.

In this paper, a modular 3D scanner, which is devoted to opposite criteria is described (Fig. 1).
The first module is devoted to the acquisition of a set of 3D points over the surface through laser
scanning (digitizetion). The second module reconstructs a 3D continuous surface which filters out the
noise introduced by the digitization process. At this stage, a 3D model is dready available. For some
gpplications in CAD/CAM and computer graphics, the representation of the surface in the form of a
mesh is more siitable; this is done in a third module, which converts the surface into a mesh. In a
fourth module, a bitmap of the surface, obtained from a sngpshat, is digned and projected over the
3D mesh to obtain a highly redigtic textured 3D mode. The aim of this paper isto present the overal
dructure, focusing on the accuracy of the digitization process and on the recongruction of the 3D
surface. The overal processing dlows achieving a high accuracy and can be implemented onto PC
boards to achieve rea-time 3D modding. The system has been widdy tested in the recongtruction of

3D objects and of human facesin particular.

INSERT FIGURE 1 HERE

2. Data acquisition

The firg step towards creating a 3D modd is the digitization of a set of 3D points on the object’s
surface, which is carried out here by the Autoscan system introduced in [3]. This is condtituted of a
commercid laser pointer of 5SmW of power, a set of video cameras, which provide each an image of
256 © 256 pixels with a frame rate of 100 frames/second, a real-time image processor and a host
computer. The processor computes a cross-correlation between a6~ 6 mask, template of the laser

gpot, and each image of the stream coming from the video cameras. This dlows achieving a high
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SNR (a laser spot can be detected aso in outdoor conditions) and sub-pixd accuracy (by averaging
the over-threshold pixeds of the laser spot, weighted with their cross-correation vaue), which has
been experimentaly determined in 0.1 pixd [4]. Digitd cameras can therefore be used as a vdid
aternative to analog sensors for spot detection (cf. [5]). The pattern matching procedure alows aso
to automatically discard those spots which are poorly seen: in this case, cross-corrdation is over-
threshold only for one row and/or column of the image, loang sub- pixel accuracy in the computation
of the spot center. The cross-correlation is computed in red-time through a custom board which
contains essentidly delay lines, adders and multipliers [6]; it can be replaced by less expengve
generd-purpose hardware (e.g. on FPGA board), without degrading the performances. The 3D
position of the laser spot is computed with standard photogrammetric procedures from the spot
position on two cameras. For this purpose, the cameras are calibrated by surveying arigid bar with
two spherica markers on its extremities, the same Size of the laser spot, ingde the volume where the
object is scanned [7]. This makes the sysem extremdy smple to set-up. We explicitly remark that
there are no condraints on the set-up and on the size of the object to be scanned: this depends only
on the lens used and the reldive pogtion of the cameras. Fexibility, scaability and portability
therefore characterize the acquisition module.

Surface digitization & carried out by moving the laser pointer manudly (Fig. 1a). To hep in
directing the laser beam, a red-time feedback is provided on the host PC monitor. This scanning
procedure offers the great advantage to increase the number of measured points in those regions
which are richer of spatid details (where the surface has the highest spatial frequency content),
achieving a densr sampling there. The digitization accuracy has been experimentaly assessed
amilarly to [5], and the results are reported here (Fig. 2). The position of 5,000 laser spots
projected over a plane positioned in the center of the working volume is anadlyzed. For a medium-
szevolume (0.8m ~ 0.6 m ~ 1m), the accuracy is of 0.27mm = 0.0063mm (rms error), averaged

over 100 different experiments, with the two cameras at an angle close to ninety degrees (86.9
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degrees). This figure scdes linearly with the dimenson of the working volume, and it is consstent
with the accuracy reported in the motion andyss field [7]. The didtribution of the measurement error
is zero-mean and normaly distributed (cf. Fig. 2b) as it is the outcome of severd error sources
(quantization error in the video cameras, numericad approximation in the cross-correlators, non
uniform spot appearance, etc.).

At the end of the digitization process, a set of N 3D pointsis obtained {P; = (x;, Vi, z)} (cf. Fig.
33). At the same time, through a standard CCD camera a color snapshot of the surface is acquired
(cf. Fig. 3b), which is converted into a bitmap of 576 © 768 (PAL standard), with 24bitspixel. The
sustained peak acquisdition rate is of 100 spots/second. This rate decreases when the spot is not
vidble to the cameras. In red acquiditions, an average rate of 90-95spots/second is obtained. By

using arrays of laser pointersin place of asingle pointer, this rate could be increased.

INSERT FIGURE 2 HERE

3. Surface reconstruction through the HRBF model

The conversion of the cloud of 3D points into a 3D geometricad modd is the critical operation of
any 3D scanner. Due to measurement noise a direct tessellation of the data points obtained by Ssmply
connecting them, would produce an undesirable wobbling surface (Fig. 3c). Such asurfaceis usdess
to graphics, CAD or any other gpplication, and the need of some sort of filtering is evident.

When the shape of the object surface is known, modd fitting can be a vauable solution. In this
approach a parameterized surface modd is progressvely adapted to the range data by minimizing
their distance from the surface (e.g. [8] for human faces). This gpproach is improved when features
can be extracted from the range data[9] (cf. aso [10, 11]). However these approaches are heavily
based on predefined models and lack in generdity. Generic parametric shapes (semi-parametric

fitting), which are warped to fit the data topology, offer amore generd solution [12]. The smplest of
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these is the 2D lattice, proposed in the seventies in the connectionist domain, as a tool to represent
multivariate data digtributions. This moddl, caled Sdf-Organizing Maps (SOM) [13], has been more
recently applied to recongtruct 3D surfaces from range data [14]. Its limitation liesin the requirement
that the surface topology is homomorphic to the lattice structure (usudly a plane). When this is not
the case, twigting of the plane and poor gpproximation arise. Superquadrics have been introduced as
more powerful semi-parametric geometrica models [9]. Introducing a B-spline surface on the top of
superquadric [9] or meshes [15] can further refine the obtained surface. This approach, termed
“surface on surface’, gives rise to a week hierarchical structure; the superquadric is adapted first to
capture the overdl shape of the data, and the spline patch is used to deform the superquadrics
surface to better fit the data localy, by reproducing the surface details. To reconstruct complex
surfaces, more than one superquadric can be employed [16].

All these gpproaches are iterative and cannot operate in real-time on the data points. A novel
different gpproach is presented here aimed to produce 3D models in red-time. The recongruction is
achieved with a sparse gpproximation with adaptive variable resolution spatid filtering, where the
correlation between neighbor data points is exploited to diminate noise introduced by the sampling
process. It is based on the Hierarchical Radid Basis Function Network (HRBF) moddl, proposed
origindly in the connectionis domain as a tool for multi-scae signa processing [17]; it is extended
here to surface approximation from scattered data. In the following, the overview of the HRBF
mode is presented first dong with the robust determination of its parameters. The hierarchica, multi-

scae, structure is then introduced to make the approach fully adaptive both in resolution and scale.

INSERT FIGURE 3 HERE

3.1 Congtruction of a 3D surface through approximation
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We assume that the surface can be represented as a function S(P): RR® R This assumption is
motivated by the shape of the human face which can described as a height fidd (2v2D). However this
does not lack in generdity as full 3D surfaces can be recovered by zippering multiple 222D models
[18]. Under this hypothedis, it is more convenient to reframe the data points collected with the
scanning procedure as: {(x;, ¥i, 2) | = 1, ..., N} astheset {(P;, S(P)) | P, = (x;, ) T R S(P) =
z1 RSR®R.

Our find god is the recongtruction of the true surface up to the measurement error. Thet is, the
distance between the points reconstructed by the HRBF model, and those sampled on the surface,
should be digtributed according to the measurement error. The reconstructed surface S(P) should

sidfy the following conditions:

%g (s.(P)- S(P))=EW=0 (1a)

as the measurement noise in zero mean (Section 2.), and:

l (’)\‘ ( )2 )
~alse)-sk)f=s? (1b)
j=1
which can be evauated, for a given sat-up, through the experiment reported in Section 2. Asthe
measurement error is uniform, (1) should be satisfied not only on the entire input domain, but also

locally in sub-regions of it (cf. Section 3.4).

3.2 The HRBF network
The HRBF mode combines the output of many smple units to achieve the recongtruction of a

complex surface. In particular, the HRBF network is compaosed of radidly symmetric Gaussan units:

(P

ﬁe 52 @

g(Pim|s )=
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whereP, mi Rands T R In the HRBF modd, the units are organized in layers (subnetworks),
where the k™ layer is composed of equally spaced Gaussians, which have the same standard
deviation, sy (cf. Figs. 4 and 6). Therefore the surface, S(P), is congtructed by adding the
contribution of a few grids of Gaussan functions, where, as shownin Fig. 5, each grid operates at a
certain scale (or cut-off frequency).

Given a s, a, of parameters which characterize the HRBF network, the actud shape of the

reconstructed surface (i.e. the output of the net), SPJa), is.

M,
S(Pla)=a & W 9(P:P, Is)) ©)
1=1 k=1
where L is the number of grids and M, is the number of Gaussian unitsin the I™ grid. wy isthe

weight associated to the k™ Gaussian in the |™

orid, and Ry is its pogtion in the grid. s, isthe
standard deviation of dl the Gaussians in the ™ grid which determines the filtering scale of thet grid.
The parameters a = {L, M, {wy}, {P«}, {Si}} determine the actual shape of S(PJa). Although
these parameters could be determined by globa optimization, e.g. [19], the time required to obtain a
reasonable solution has suggested exploring dternative solution schemes. HRBF networks, in
particular, offer avery fast solution as the determination of the parametersin (3) does not require any

iteration, and it is performed with only loca operations on the data points. This makes this gpproach

particularly suitable to 3D scanning gpplication.

3.3 Determination of the parametersin each layer
Each grid, I, of the HRBF modd redlizes alow-pass filter, which is able to recongtruct the surface
up to a certain scde, determined by s,. It can be shown that s, and the spacing between two

consecutive Gaussans on the same grid, DP;, are related with:

s| = 1.465 DP, )
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This relaionship is obtained by accepting a maximum atenuation in the pass band of -3dB and a
minimum atenuation in the stop band of -40dB [20]*. Different attenuation values lead to a different
proportionality constant between DP, and s,. To gpply the Gaussian filter, the data shoud be equaly
sampled in correspondence to the grid crossings {k}. Thet is, the set {z} = {S(Py)} should be
available. Unfortunately this is not the case here where the data are unevenly sampled. However,
gnce many points are usudly digitized (surface oversampling), a religble estimate of S(Py) can be

obtained through the following weighted mean estimate (cf. dso [21]):

IPa- RI°

a _ PRI APR)
S( Pki ) - ] IR - Pr”2 (5)

ae *

P A(Py)
where A(Py) is the Receptive field associated to the k™ Gaussian in the 1" grid. It is set, somewhat
arbitrarily, as the square region centered Py of Sde DP,. The estimatein (5) is carried out locdly on
the input space, and it can be pardldized to achieve quas-red-time processng.
The grid filter can be now written as.

S.(P)= & S(R,)g(P;P, |s,)DR? ()

k=1

Comparing (6) with (3) it can be demonstrated that the parameters {wy} can be obtained smply

as Z(P, ) DP/*[20].

3.4 The hierarchical multi-scale structure
If only one grid was adopted, a serious drawback is introduced: the Guassan scae should be

small enough to resolve the finest details. This requires very dense packing of the Gaussans aso in

! These values produce a cut-off frequency of V.o = 0.1874/s, and atransition band of [0.1874/ s,, 0.7327/ s]].
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those regions where the details can be resolved at a coarser scae, causing a waste of resources and
overfitting in those gpace regions. Moreover, as the sampled point loca dengty reflects the loca
richness of details, those regions which lack high-frequency detals will contain points spaced apart
far, and receptive fields A(Py) may come out empty there. A better solution would be to adaptively
alocate the Gaussan units, with an adequate scae and, consequently, adequate receptive fidds, in
the different space regions. The novel ideais to andyze the locd resdua and to stack non-complete
grids over afirst grid a a coarse scae, obtaining what is termed a sparse gpproximation (cf. Fig. 6).
Thefirgt grid will output arough estimeate of the surface, a;(P) (Fig. 59) as:

a,(P)= & S(R,)9(P:P, |s )DR’ @

k=1
Theresidua {ry(P,)} is computed for each sampled data point, (P;, S(P))), as.

r(P) = S(P) - ay(Py) ®

This resdua will be the input to a second grid which features a samaler scde than the first one;
somewha arbitrarily we have chosen s, =s4/2 which is the same choice made in waveet
decomposition [22]. This second grid does not need to reconstruct the origina surface but only the
resdua one. Its output, a,(P), will be a recongruction of the resdud r,(¥ a the scale s ,, and it will
provide a second resdud:

r2(Py) = ra(Py) - ax(Py) = §(P)) —au(P) - ax(P) ©)

This grid will not be full, but Gaussians will be inserted only when a poor gpproximation is given.
Thisis evauated through the resdud itsdlf: a Gaussan isinserted in the grid crossing Py only if:

arn(r)

PT AR ) <s 2 10
N, (10)
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where s?, is the noise variance and N is the number of sampled points which bdong to A(Py). A
mathematica proof of HRBF convergence can be found in [23] and goes beyond the scope of this
paper. Grids are created one after the other, until the condition in (10) is not true over the entire input

domain (Figs. 5a—d).

INSERT FIGURE 4 HERE

4. Conversion into a mesh and color application

When required, the reconstructed continuous surface can be sampled as densely as desired (at
1mm in Fg. 7a) to obtain a mesh of triangular dements. The sampling could be optimized according
to topologica or geometricd criteria to obtain a lighter mesh [24]. When the color appearanceis
important (eg. in computer graphics applications), a bitmap obtained from the snapshot of the
surface is gpplied. This is achieved by usng standard texture mapping procedures after having
digned it to the mesh through a semi-automatic graphical tool [25, 26]. The find result isa 3D very
redligtic recongtruction of human face (Figs 2b and 7b). A detailed description of this procedure goes

beyond the scope of this paper.

5. Results

The system has been intengvely used in scanning human body parts and faces in particular. Thisis
a paticularly difficult task because the face's spatia frequency content is highly variable. Three to
four layers are usudly sufficient. A typica result is reported in Figs 5 and 7 for Stefano’s face. In the
set-up used the angle between the cameras was of » 50 degrees with an estimated rms measurement
error of 0.65mm. The surface is recongtructed garting from N = 17,080 data points collected in

three minutes. As can be seen in Fig. 6, in the higher layers the units are inserted in clugters, only in
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those regions where the face has the highest frequency content: the HRBF network automaticaly
adapts its loca cut-off frequency and resolution to the locd frequency of the data. Only 10,355
Gaussan units have been used versus the 21,750 units, which were required by a complete Gaussian
filter a the smalest scale. The quantitative results are reported in Table |, where the resduals and the
parameters of each layer are shown. As it can be seen, the mean error on the reconstructed surface
(bias) is dready very close to zero in the second layer, while the stlandard deviation decreases down
to 0.72mm in the fourth layer. The digribution of the resduas becomes progressively Gaussian

shaped and approaches that of the digitization error as can be seenin Figs. 5.

INSERT FIGURE 5 HERE

INSERT FIGURE 6 HERE

INSERT FIGURE 7 HERE

6. Discussion

The 3D scanner presented here is based on a digitization module characterized by scdahility,
flexibility and accuracy. In fact, acquidtion of objects of complex topology can be eesly
accomplished by zippering multiple acquisitions carried out with a single pair of cameras placed in
different pogtions and orientations [27] or increesng the number of video cameras used
samultaneoudy. The use of pattern recognition to compute the spot’ s centroid gives a spot accuracy
higher than that of commercia 3D scanners [1]. This figure decreases when the angle between the
pair of video cameras, used to reconstruct the 3D postion of the spot, differs from ninety degrees
with gpproximately a quadratic curve [28, 29]. In red Stuations, where the angle between the

cameras hasto be negotiated with the amplitude of the common field of view of the two cameras, an
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angle between 40 and 60 degreesis usualy adopted, with an accuracy decrease between 1.5 and 3
times. When higher accuracy is required, smdler working volumes can be set-up or the angle
between the cameras increased.

Given the rdaively long acquigtion time, such a high accuracy can be reached only when ill
objects are scanned. Therefore, when scanning human faces, maximum comfort of the subject hasto
be provided to avoid nortintentionad movements, which do decrease the accuracy. These smdl
movements could be eiminated by using at least three circular markers solid with the heed, of the
same dimension of the laser spot; they would be recognized by the pattern matching processor, and
used to compensate head motion. Given the high accuracy achieved, this procedure has not been
adopted, but it could suggest a possible implementation in which moving objects can be scanned.

This high accurecy is preserved in the recongtruction of the 3D surface, which is achieved by a
novel hierarchical modd: the HRBF network. The requirement of only operations carried out locally
on the data points with no iteraions is the main characteristic, which makes it suitable to red-time
implementations. Few agorithms amed to red-time, can be found in the literature. The closest
approach is the herarchical reconstruction based on B-splines [21] where the reconstructed surface
is the sum of a set of intermediate surfaces generated through a hierarchy of control grids. The main
difference is that, in the HRBF mode, the grids in the superior layers are not complete, but Gaussan
units are inserted in clusters where the resdud is over threshold, with alarge saving in resources. The
same adaptive unit alocation schema offers to HRBF an advantage versus Multi-Resolution Anayss
(MRA) carried out through wavelet decomposition [22]. The MRA works in adirection opposite to
HRBF as it produces a hierarchy of gpproximating surfaces from fine to coarse. Each surface is the
sum of a very low-frequency surface and a set of surfaces cdled details, where each of them is
obtained as a linear combination of basis functions. Small coefficients can be set to zero, giving a
parse gpproximation of the surface. The MRA structure closely resembles the recongtruction in the

HRBF modd (cf. Fig. 4), athough the coefficients are computed differently. In fact, the k™ detail
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asurface in the HRBF is computed from the difference between the surface gpproximated at the lower
level and the surface samples. This alows recovering errors in the computation, e.g. due to finite
precison, or the effect of zeroing the coefficients in the previous layers. In MRA ingtead, the detall is
computed directly by projecting the resdud at the higher layer onto an adequate bass. This
procedure, dthough faster as it does not require computing the residua for each data point, does not
alow correcting for any error in the computation.

Another advantage of the HRBF mode is its minimdism, as it requires a dngle bass, the
Gaussan, versus the four bases required by MRA, at least in the most common biorthogond setting
[30].

Findly, the scale of each layer in HRBF does not have to be necessarily halved asin MRA, but
can be adapted to the data frequency content. Moreover, if anorm different from L? were required,
it can be introduced by smply changing the norm in which the error and the resduds are evauated.
For example, if outliers are often collected, a more suitable norm to measure the residua would be
L' [20].

The limitation of HRBF networks, and of basis function gpproximetion in generd, liesin the use of
filtering, which makes the recongtruction of structured objects, with sharp edges and corners,
difficult. For these, procedures which reconstruct the surface through an intermediate stage based on

extraction of objects geometrica primitives can be more powerful [31, 32].

7. Conclusion

Overdl, the 3D scanner system presented here is able to furnish a detailed 3D recongtruction of
surfaces by usng smple hardware components in conjunction with adaptive data processing. The
operations involved both in spot detection and mesh congtruction are performed locdly on the data

set. They can be easly pardldized and implemented on generd purpose, low-cost, processing
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boards (e.g. FPGA) to obtain a low cost system which shal be seen as a sandard measurement

device of next generation graphical workstations.
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Figures& Tablel egend

Figure 1. The Sysem: scanning a Human face. The beam of a commercid laser pointer is
directed over the subject’s face. Scanning is performed moving the laser manudly with the aim of
collecting more data points in the mogt difficult regions: lips, eyes.... At the same time a commercid
CCD video camera acquires a sngpshot of the face (d). A schematic diagram of the processing

blocksis reported in (b).

Figure 2. The distance of 5,000 spots with respect to the best fitting plane is reported in pane
(8. Pand (b) shows how the digtribution of the error can be consdered Gaussan; its standard

deviation is assumed as a measure of the digitization rms error.

Figure 3. Ensemble of the N = 17,080 3D points (a) and bitmap (b) of Stefano’s face. A direct
tessdlation of the data points (e.g. through Deaunay triangulation) [33] would produce a jerky
surface which is plotted with texture (C).

Figure 4. HRBF network structure.

Figure 5. The multi-scale reconstruction of Stefano’s face is reported here. It is obtained adding
the contributions of dl the four layers (a); of thefirst three layers (b); of the first two layers (). In (d)
the output of the first layer i plotted. The resdud digtribution is plotted besides each layer in the

form of a hisogram whose areais normalized to one.
Figure 6. Pogtion of the Gaussan units in the four layers for Stefano recongtruction. Cluster of
Gaussans are inserted in the higher layers determined an increase in the locd frequency of the

reconstruction.

Figure 7. The tessdlation resulting from sampling the HRBF surface a 1mm step (a) and the final
result where texture has been applied (b).

Tablel. Performance indexes and parameters of each layer of the HRBF network.
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Tablel

#orid | Error mean Error std #gauss Neut-off Grid
[mm] [mm] [HZ] dimenson

1 1.89 3.66 282/315 0.015 15x21

2 0.07 1.45 1124/1333 0.03 31x43

3 -0.005 0.96 3020/539%4 0.06 62x87

4 -0.002 0.72 5929/21750 0.12 125x174
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