
© 2025 Thoughtworks | Restricted

AI-Powered
Software Development
Matteo Vaccari

© 2025 Thoughtworks | Restricted 2

About me & my employer
● Technical Principal in Thoughtworks
● Extreme Programmer
● Developer, trainer and coach

We're a leading global technology consultancy
that integrates design,engineering and AI

Martin Fowler Me

© 2025 Thoughtworks | Restricted

1. Software development is changing
2. State of the art
3. Problems
4. A process that works
5. Skills for the AI-Assisted Future

3

© 2025 Thoughtworks | Restricted

1. Software development is changing
2. State of the art
3. Problems
4. A process that works
5. Skills for the AI-Assisted Future

4

© 2025 Thoughtworks | Restricted 5

Mark Zuckenberg, Jan 2025

Feb 2024

Mar 2025

Eric Schmidt, Jan 2025

We believe that in
the next year, the
vast majority of

programmers will
be replaced by AI

https://www.linkedin.com/posts/alvinfsc_former-google-ceo-eric-schmidt-we-believe-activity-7318082240360390658-PXTJ?utm_source=share&utm_medium=member_desktop&rcm=ACoAAAAdvYEB_WYMP5bxaJQCQng5nC_wODYfbu8

© 2025 Thoughtworks | Restricted 6

© 2025 Thoughtworks | Restricted 7

© 2025 Thoughtworks | Restricted

Major advances: high level languages

8

main:
 finit

 ; Initialize registers and stack
 push rbp
 mov rbp, rsp

 ; Load initial values
 fld qword [guess]

newton_loop:
 fld qword [two]
 fld st1
 fdiv
 fadd
 fld qword [half]
 fmul

 ; Check for convergence
 fld st0
 fld st2
 fsub
 fabs
 fld qword [epsilon]
 fcomip st1
 fstp st0

 ja continue_loop

 ; Prepare for printf
 sub rsp, 8
 fstp qword [rsp]
 mov rdi, format
 movsd xmm0, [rsp]
 mov rax, 1
 call printf

 add rsp, 8
 jmp end_program

continue_loop:
 fstp st1
 jmp newton_loop

end_program:
 mov rsp, rbp
 pop rbp
 ret

function newtonRaphson(f, df, x0, tol, maxIter) {
 // ..
 while (Math.abs(fx) > tol && iteration < maxIter) {
 const dfx = df(x);

 // Check for division by near-zero
 if (Math.abs(dfx) < 1e-10) {
 state.iterations[state.iterations.length - 1].converged = false;
 return {
 root: x,
 fx,
 iterations: iteration,
 converged: false,
 reason: "Derivative too close to zero"
 };
 }
 const delta = fx / dfx;
 const xNew = x - delta;
 iteration++;
 // Save this iteration info
 state.iterations.push({
 iteration,
 x: xNew,
 fx: f(xNew),
 dfx: df(xNew),
 delta,
 converged: Math.abs(f(xNew)) <= tol
 });

 // Update for next iteration
 x = xNew;
 fx = f(x);

 state.xValues.push(x);
 state.fValues.push(Math.abs(fx));
 }

 const converged = Math.abs(fx) <= tol;

 return {
 root: x,
 fx,
 iterations: iteration,
 converged,
 reason: converged ? "Converged within tolerance" : "Maximum
iterations reached"
 };
}

© 2025 Thoughtworks | Restricted

Major advances: Extreme Programming (XP)

9

© 2025 Thoughtworks | Restricted

Major advances: Extreme Programming (XP)

10

1. Have a running app from day 1

2. Small working increments

3. Continuous integration

4. Continuous testing

5. Continuous attention to code quality

© 2025 Thoughtworks | Restricted 11

M
ajor advances IV: AI-pow

ered program
m

ing

https://docs.google.com/file/d/1syhKyErPvO7Q5SvIfbEinPQ66p5t-3QA/preview

© 2025 Thoughtworks | Restricted

1. Software development is changing
2. State of the art
3. Problems
4. A process that works
5. Skills for the AI-Assisted Future

12

© 2025 Thoughtworks | Restricted

Programming with completions - Copilot 2021

13

© 2025 Thoughtworks | Restricted

Conversational programming – 2023-24

14

func makeFixture(db *sql.DB) {
 test.Exec(db, "DELETE FROM child_table")
 test.Exec(db, "DELETE FROM parent_table")
 insertParentRow := `INSERT INTO parent_table (parent_id, registration, location, path)
 VALUES (456, 'registration', 'location', 'path')`
 test.Exec(db, insertParentRow)
 insertChildRow := `INSERT INTO child_table (child_id, parent_id, id, type, name, description, launch)
 VALUES (111, 456, 'http://id', 'http://type', 'Test', 'description', 'http://launch')`
 test.Exec(db, insertChildRow)
}

Part of test code (obfuscated) for real work

This function works, but itʼs going to be hard to maintain.

The sql code is slow and error-prone to maintain by hand

© 2025 Thoughtworks | Restricted

Ask copilot!

15

© 2025 Thoughtworks | Restricted

The function produced by copilot

16

// MakeInsert generates a SQL INSERT statement for the given table and field map.
// It returns the SQL string and a slice of arguments that can be passed to sql.DB.Exec.
func MakeInsert(table string, fields map[string]interface{}) (string, []interface{}) {
 if len(fields) == 0 {
 return "", nil
 }

 fieldNames := make([]string, 0, len(fields))
 placeholders := make([]string, 0, len(fields))
 args := make([]interface{}, 0, len(fields))

 for field, value := range fields {
 fieldNames = append(fieldNames, field)
 placeholders = append(placeholders, "?")
 args = append(args, value)
 }

 query := fmt.Sprintf(
 "INSERT INTO %s (%s) VALUES (%s)",
 table,
 strings.Join(fieldNames, ", "),
 strings.Join(placeholders, ", "),
)

 return query, args
}

I could have written this myself.

It would take me 1520 minutes.

Copilot did it in half a minute

© 2025 Thoughtworks | Restricted

… and sample usage

17

You'll need to import the fmt and strings packages if they're not already imported. This function can be added to your test
package or directly in your test file.

Now you can simplify your fixture creation like this:

func makeFixture(db *sql.DB) {
 test.Exec(db, "DELETE FROM child_table")
 test.Exec(db, "DELETE FROM parent_table")

 parentFields := map[string]interface{}{
 "parent_id": 456,
 "registration": "registration",
 "location": "location",
 "path": "path",
 }
 query, args := MakeInsert("parent_table", parentFields)
 test.Exec(db, query, args...)

 childFields := map[string]interface{}{
 "child_id": 111,
 "parent_id": 456,
 "id": "http://id",
 "type": "http://type",
 "name": "Test",
 "description": "description",
 "launch": "http://launch",
 }
 query, args = MakeInsert("child_table", childFields)
 test.Exec(db, query, args...)
}

Copilot generated the utility function,
and
suggested how to use it to simplify the
original function

I copied and pasted from the chat
window to the code file

© 2025 Thoughtworks | Restricted

Agent mode, late 2024

18

© 2025 Thoughtworks | Restricted

Make tests tabular

19

func TestFetcherService_FetchDomainModelById_ok(t *testing.T) {
 mockRepo := MockRepo{result: tm.New("tm1-name")}
 service := NewFetchService(&mockRepo)
 tmid := tm.Id(1)

 result, err := service.FetchDomainModelById(context.Background(), tmid)

 assert.NoError(t, err)
 assert.Equal(t, tm.Name("tm1-name"), result.Name())
 assert.Equal(t, tm.Id(1), mockRepo.receivedID)
}

func TestFetcherService_FetchDomainModelById_Not_Found(t *testing.T) {
 mockRepo := MockRepo{err: tm.ErrDomainModelNotFound}
 service := NewFetchService(&mockRepo)
 tmid := tm.Id(99)

 _, err := service.FetchDomainModelById(context.Background(), tmid)

 assert.Error(t, err)
 assert.Equal(t, "domain model not found", err.Error())
}

In Go, most tests are
tabular.

I could rewrite these two
tests in tabular format

But copilot is faster and
more precise

© 2025 Thoughtworks | Restricted 20

Cursor or Copilot in Agent
mode will change the code
directly in the editor

No need to
copy-and-paste

© 2025 Thoughtworks | Restricted 21

Good but not perfect.

I ask for an improvement

© 2025 Thoughtworks | Restricted 22

Almost there!

I ask for another improvement

© 2025 Thoughtworks | Restricted 23

func TestFetcherService(t *testing.T) {
 testCases := []struct {
 name string
 tmid tm.Id
 mockRepo MockRepo
 expectedErrMsg string
 expectedTMName tm.Name
 }{
 {
 name: "Success",
 tmid: tm.Id(1),
 mockRepo: MockRepo{result: tm.New("tm1-name")},
 expectedTMName: tm.Name("tm1-name"),
 },
 {
 name: "Not Found",
 tmid: tm.Id(99),
 mockRepo: MockRepo{err: tm.ErrDomainModelNotFound},
 expectedErrMsg: "domain object not found",
 },
 }

 for _, tc := range testCases {
 t.Run(tc.name, func(t *testing.T) {
 service := NewFetchService(&tc.mockRepo)

 result, err := service.FetchDomainObjectById(context.Background(), tc.tmid)

 if tc.mockRepo.err != nil {
 assert.Error(t, err)
 if tc.expectedErrMsg != "" {
 assert.Equal(t, tc.expectedErrMsg, err.Error())
 }
 } else {
 assert.NoError(t, err)
 assert.Equal(t, tc.expectedTMName, result.Name())
 }
 assert.Equal(t, tc.tmid, tc.mockRepo.receivedID)
 })
 }
}

And hereʼs the result

Much faster than by hand

I still have to review it closely!

© 2025 Thoughtworks | Restricted

Software development agents (in early 2025)

24

What Software Development Agents Can Do

1. Use a variety of tools
a. read and write files in the codebase
b. perform regex searches
c. run commands in the terminal (eg run tests)
d. perform web searches

2. Handle entire tasks independently - They can work on substantial tasks with minimal human supervision
3. Understand complex contexts - They can look for additional information in your codebase or on the internet
4. Conduct systematic problem-solving - They can track down bugs in your codebase, propose fixes, write

tests to verify the fix, and run those tests - all in a loop without requiring constant human intervention
5. Write throwaway programs - They might even write temporary programs to help themselves solve a problem,

like fetching ticket information

© 2025 Thoughtworks | Restricted

How it works

25

© 2025 Thoughtworks | Restricted 26

Large-language models

Trained on huge amounts of text, they work by guessing the best continuation

© 2025 Thoughtworks | Restricted 27

© 2025 Thoughtworks | Restricted 28

Every message in the chat
builds on the context of the
conversation so far

© 2025 Thoughtworks | Restricted

LLMs are stateless

29

But if I start a new chat, the LLM
forgets everything!

Every session is independent of
previous ones

© 2025 Thoughtworks | Restricted

LLMs are stateless

30

LLM
User

Prompt
Continuat

ion

Training knowledge
System
Prompt

© 2025 Thoughtworks | Restricted

LLMs are stateless

31

LLM
New user
Prompt

New contin
uation

Training knowledge
System
PromptPrev.

conti-
nuation

Prev. user
Prompt

© 2025 Thoughtworks | Restricted 32

Developer machine Hosted service

Model(s)IDE Editor
VS Code,
IntelliJ

IDE plugin /
extension

Backend
Composed
prompt {}

The main components of an AI coding assistant

The backend is stateless

It does not “rememberˮ anything of past
conversations

Every time we send a chat message, a
new prompt is sent with all the context

User prompt +
file(s)

© 2025 Thoughtworks | Restricted 33

Composed
prompt {}

The main components of an AI coding assistant

1. System prompt
2. User prompt “can you explain this code to me?ˮ
3. Context: attached file RPG.java lines 307351

© 2025 Thoughtworks | Restricted 34

You are a powerful agentic AI coding assistant, powered by Claude 3.7 Sonnet.

You are pair programming with a USER to solve their coding task.

<communication>
1. Be conversational but professional.
2. Refer to the USER in the second person and yourself in the first person.
3. Format your responses in markdown. Use backticks to format file, directory, function, and class names. Use \(and \) for inline
math, \[and \] for block math.
4. NEVER lie or make things up.
…
</communication>

… (lots more)…

<user-prompt>
Can you explain this code to me?
</user-prompt>

<attached-file path=ˮsrc/main/java/mykera/engine/RPG.javaˮ lines=ˮ307351ˮ>
public static boolean test(int a, int b) {

if (a <= 0)
return false;

if (b <= 0)
return true;

return rand.nextInt(a + b) < a;
}

…
</attached-file>

See How Cursor AI IDE Works by Shrivu Shankar

System prompt

User prompt

Context

https://blog.sshh.io/p/how-cursor-ai-ide-works

© 2025 Thoughtworks | Restricted 35

We need to attach context

● The LLM knows nothing about our codebase
● ⇒ attach appropriate files to the prompt

a. We can do it manually (for best results)
b. The assistant Cursor, CoPilot, …) will also

do it automatically

All the kinds of
context we can add

in Github Copilot

© 2025 Thoughtworks | Restricted

The answer becomes a part of the next prompt

36

Composed
prompt {}

1. All the previous conversation
2. System prompt
3. User prompt
4. attached file RPG.java

© 2025 Thoughtworks | Restricted 37

You are a powerful agentic AI coding assistant, powered by Claude 3.7 Sonnet.

You are pair programming with a USER to solve their coding task.
System prompt

Context

Prev prompt #1

LLM Response #1

LLM Response #2

Prev prompt #2

…
New prompt

The composed
prompt will get

long

© 2025 Thoughtworks | Restricted

The context window

38

The context window is the amount of text and code that the LLM) can consider at once

Composed
prompt {}

1. All the previous conversation
2. System prompt
3. User prompt
4. Attached files

If we exceed the context window, the LLM forgets parts of the conversation!

AI assistants optimize the context window by pruning non-essential information

© 2025 Thoughtworks | Restricted

What is a “token”?
Q: in the context of ai assisted sw development, what counts as a "token"? Does every char in the
code count as a token?

A (Claude): In AI-assisted software development, a "token" is not a single character but rather a unit of text that the
language model processes. For code (and text), tokens are typically:

1. A complete word
2. A common substring
3. Special characters
4. Punctuation marks

For example, in code:
● function might be 1 token
● myVariable might be 1-2 tokens
● console.log() might be 3-4 tokens
● { is typically 1 token

Most LLMs use tokenizers that split text into roughly 4 characters per token on average, but this varies
significantly.

39

© 2025 Thoughtworks | Restricted

Context window size for current models
Gemini 2.5 Pro: 1M tokens

Claude Sonnet 3.7: 200K tokens

GPT4.x: 128K tokens

40

$ repomix

📊 Pack Summary:
────────────────
 Total Files: 201 files
 Total Chars: 1,952,009 chars
 Total Tokens: 487,448 tokens

For instance: a mid-size
Java codebase with
42KLOC, 2M chars
⇒ 481K tokens

Very small codebases will fit in
the context window;

Most codebases will not

You can help the LLM by
hand-picking the context

The AI IDE will have its own
algorithms for selecting the
context

Most AI IDE will index your
codebase

© 2025 Thoughtworks | Restricted

User:
Please take a look at this codebase, and upgrade all tests to use JUnit 5 and AssertJ.
Go over all the Test*.java files one by one, fix one and test it before moving to the next one

AI agent:
<finds all Test*.java files. They are 40.>
<fixes file #1>
<runs the tests. All good>
<fixes file #2>
<runs the tests. All good>

… after 10 files or so...

<starts doing something nonsensical>
<stops running the tests>

Problem: Exceeding the context window

41

As of May 2025, itʼs not easy to get an agent to
“perform the same change across a large

number of filesˮ

© 2025 Thoughtworks | Restricted 42

© 2025 Thoughtworks | Restricted

Improving AI effectiveness

43

● Keep chats short: one task, one chat, one commit

● Use strongly-typed languages (eg TypeScript over JavaScript)
○ ← it gives better “lintˮ information to the LLM

● Add file-level and function-level comments
○ ← it helps the LLM make sense of attached files

● Keep files short 500 LOC
○ ← Improves efficiency of LLM applying editing instructions

© 2025 Thoughtworks | Restricted

1. Software development is changing
2. State of the art
3. Problems
4. A process that works
5. Skills for the AI-Assisted Future

44

© 2025 Thoughtworks | Restricted

About “vibe coding”

45

● Forget that the code even
exists

● “Accept Allˮ always

● Not too bad for a
throwaway weekend
projects

There's a new kind of coding I call "vibe coding", where you fully give in to
the vibes, embrace exponentials, and forget that the code even exists. It's
possible because the LLMs (e.g. Cursor Composer w Sonnet) are getting
too good. Also I just talk to Composer with SuperWhisper so I barely even
touch the keyboard. I ask for the dumbest things like "decrease the
padding on the sidebar by half" because I'm too lazy to find it. I "Accept All"
always, I don't read the diffs anymore. When I get error messages I just
copy paste them in with no comment, usually that fixes it. The code grows
beyond my usual comprehension, I'd have to really read through it for a
while. Sometimes the LLMs can't fix a bug so I just work around it or ask
for random changes until it goes away. It's not too bad for throwaway
weekend projects, but still quite amusing. I'm building a project or webapp,
but it's not really coding - I just see stuff, say stuff, run stuff, and copy paste
stuff, and it mostly works.

© 2025 Thoughtworks | Restricted 46

http://www.youtube.com/watch?v=1_rSrkXovOk

© 2025 Thoughtworks | Restricted 47

© 2025 Thoughtworks | Restricted

You can’t trust AI-generated code

48

● The AI makes mistakes
● It can create complex code
● It does not care about security
● It “hallucinatesˮ

© 2025 Thoughtworks | Restricted

Example hallucination from the initial demo

49

!?! 🤦

This is not how TDD works!

© 2025 Thoughtworks | Restricted

Three Categories of Problems

50

1. “Code does not workˮ – obvious failures (minutes)
2. “Team notices quicklyˮ – integration issues, requirements mismatches (days)
3. "Insidious problems" – maintainability debt (months)

We need to talk about
“vibe codingˮ

(podcast)

Birgitta Böckeler

The role of developer
skills in agentic coding

(article, video)

https://www.thoughtworks.com/en-us/insights/podcasts/technology-podcasts/vibe-coding
https://martinfowler.com/articles/exploring-gen-ai/13-role-of-developer-skills.html
https://learning.oreilly.com/videos/coding-with-ai/0642572017171/0642572017171-video386908/

© 2025 Thoughtworks | Restricted

1. Code does not work

51

© 2025 Thoughtworks | Restricted

2. Team notices quickly

52

Too much up-front work

Example: During a frontend tech stack migration task, it tried converting all UI components at once
rather than starting with one component and a vertical slice that integrates with the backend.

Brute-force fixes instead of root cause analysis

Example: When encountering a memory error during a Docker build, it increased the memory
settings rather than questioning why so much memory was used in the first place.

Misunderstood or incomplete requirements

AI jumps to the wrong conclusions. Catching this requires attention; this misunderstanding will be
caught later in the story lifecycle, and it will cause a bunch of back and forth to correct the work.

© 2025 Thoughtworks | Restricted

3. Long-term insidious problems
● Verbose and redundant tests
● Lack of reuse
● Overly complex or verbose code

53

… the code will work fine for now, but
will be harder to change in the future.
Unfortunately, [here] my 20+ years of

programming experience mattered
the most.

© 2025 Thoughtworks | Restricted

Balance features with ease of change

54

Features

O
pt

io
ns

Whenever we add a feature,
we make the code harder to

change later

Features

O
pt

io
ns

Unless we apply
refactoring to

improve the code
structure

© 2025 Thoughtworks | Restricted

AI code is hard to change

55

Features

O
pt

io
ns

A healthy process balances
new features with refactoring

Features

O
pt

io
ns AI is all for

features, not great
for structure

You can get to the point
of bankruptcy, where the
code is too expensive to

change

See Kent Beck,
Augmented coding and design

https://tidyfirst.substack.com/p/augmented-coding-and-design

© 2025 Thoughtworks | Restricted

Data about code quality

56See the 2023 and 2025 Gitclear reports

https://gitclear-public.s3.us-west-2.amazonaws.com/Coding-on-Copilot-2024-Developer-Research.pdf
https://www.gitclear.com/ai_assistant_code_quality_2025_research

© 2025 Thoughtworks | Restricted

1. Software development is changing
2. State of the art
3. Problems
4. A process that works
5. Skills for the AI-Assisted Future

57

© 2025 Thoughtworks | Restricted

A process that works

58

● Plan: rules for the AI
○ Concept – what are we building
○ Architecture and technology
○ Process for the AI

● Execute: rules for the human
■ One prompt, one commit
■ Only commit working code
■ Always review before commit
■ Focused prompts – one prompt, one concern
■ When stuck, roll back
■ When tired, walk away and take a pause

Inspired by Uberto Barbiniʼs upcoming book)

© 2025 Thoughtworks | Restricted

Plan
I want to build an implementation of microchess, please find the rules here: https://greenchess.net/rules.php?v=microchess
The app should allow a person to play against the computer.

It should be implemented

● in Go
● UI in HTML and CSS with bootstrap.
● The app will generate the HTML with templates
● Apply the Model-View-Controller pattern

for long-term maintainability, we wave these internal quality requirements

● We want the code to be as simple as possible
● It must be verified by automated tests so that we can quickly check that it’s correct
● All code should clearly express its intent, making future extensions and maintenance easier
● We want to avoid duplication of logic to reduce the risk of inconsistencies

You must help me in writing a detailed but concise document that can be used by AI assistants for coding

Ask me clarifying questions, one at a time, until you have a clear understanding. I prefer yes/no questions

59

https://greenchess.net/rules.php?v=microchess

© 2025 Thoughtworks | Restricted

Step 1 - walking skeleton
It is a minimal end-to-end implementation of
the intended architecture

UI → backend → DB

You can run it and verify it works!

60

write a walking skeleton that shows a hello
world in the browser.
Please write also a document with the design
and the role of each source file as you go

© 2025 Thoughtworks | Restricted

Demo 1st prompt: walking skeleton

61

© 2025 Thoughtworks | Restricted

Demo 2nd prompt: show the board

62

Adding the above
image to the prompt

© 2025 Thoughtworks | Restricted

Demo 2nd prompt: show the board

63

© 2025 Thoughtworks | Restricted

Vertical slices

64

Products

Desirable Usable Functional

Vertical slice

Products

Apps and Services

Channel Dashboard Customer
experience

PaaS

IaaS

Horizontal slice

Products

Channel Dashboard Customer
experience

IaaS

Apps and Services

PaaS

Desirable Usable Functional

© 2025 Thoughtworks | Restricted

Break large changes in small tasks

Every task should be a vertical slice

⇒You can demo it and verify it works!

65

Desirable Usable Functional

Vertical slice

Products

Apps and Services

Channel Dashboard Customer
experience

PaaS

IaaS

© 2025 Thoughtworks | Restricted

There’s a place for everything

66

Full vibe, not
looking at the

code

Fully supervised,
review every

change

Weekend projects
Quick demos
Proofs-of-concept
Throwaway experiments
Visual CSS changes

Production code

something in
between

Use your judgement!
You are responsible for all the code you push to production

© 2025 Thoughtworks | Restricted

Circling back to Extreme Programming

67

What works well with AI assistants?

● Have a running app from day 1

● Small working increments

● Continuous integration

● Continuous testing

● Continuous attention to code design

AIFriendly code
design

https://www.thoughtworks.com/radar/techniques/ai-friendly-code-design
https://www.thoughtworks.com/radar/techniques/ai-friendly-code-design

© 2025 Thoughtworks | Restricted

Circling back to waterfall?
What works well with AI assistants?

Start with clear docs

● requirements
● design
● code documentation

Written and continuously updated by AI

68

© 2025 Thoughtworks | Restricted

Circling back to waterfall?
What works well with AI assistants?

Start with clear docs

● requirements
● design
● code documentation

Written and continuously updated by AI

In cycles of 15 minutes!

69

It’s Waterfall in 15 minutes!

Harper Reed

https://harper.blog/2025/04/10/waterfall-in-15-minutes-or-your-money-back/

© 2025 Thoughtworks | Restricted

1. Software development is changing
2. State of the art
3. Problems
4. A process that works
5. Skills for the AI-Assisted Future

70

© 2025 Thoughtworks | Restricted

What is the future of software?

71

© 2025 Thoughtworks | Restricted

Future scenario 1

72

Low-skilled developers create tons of unsecure,
buggy software

© 2025 Thoughtworks | Restricted

Small teams
of highly skilled developers
coordinate agents
and write high quality software

Future scenario 2

73

Business
Analyst agent

Coding agent

QA agent

Coding agent

Coding agent

© 2025 Thoughtworks | Restricted 74

You need to be a reasonably
skilled developer to detect if

the tool is giving you the right
kind of output

https://www.linkedin.com/posts/thoughtworks_will-ai-replace-developers-learn-from-ugcPost-7326458985031553025-_aXw
https://www.linkedin.com/posts/thoughtworks_will-ai-replace-developers-learn-from-ugcPost-7326458985031553025-_aXw
https://www.linkedin.com/posts/thoughtworks_will-ai-replace-developers-learn-from-ugcPost-7326458985031553025-_aXw
https://www.linkedin.com/posts/thoughtworks_will-ai-replace-developers-learn-from-ugcPost-7326458985031553025-_aXw

© 2025 Thoughtworks | Restricted

The threat to junior developers
1. Simple tasks can now be delegated to AI
2. Companies need senior developers to direct and validate AI
3. Demand for juniors decreases

⇒You better acquire senior developer skills quickly!

75
 👉 The Death of the Junior Developer by Steve Yegge

https://sourcegraph.com/blog/the-death-of-the-junior-developer

© 2025 Thoughtworks | Restricted

Get experience any way you can

76

● Contribute to open source projects
○ How to get started with open source projects

● Build hobby projects
○ With AI you can build stuff quickly

● Take your classes seriously
○ Learn more than strictly required to pass
○ Algorithms
○ Data structures
○ Discrete math,
○ Operating systems,
○ Compilers,
○ Databases,
○ Networks

© 2025 Thoughtworks | Restricted

Learn how systems work
● Understand how every system in a computer works
● Understand how cloud services work
● Read the docs
● Then read the design docs

77

© 2025 Thoughtworks | Restricted

Learn about software design (aka architecture)

78

● Learn about coupling and cohesion
● Follow Kent Beck on Substack
● Read

○ Tidy first? by Kent Beck
○ Understanding The Four Rules of Simple Design by Corey Haines
○ A software design philosophy by John Ousterhout
○ Design Patterns
○ Ports & Adapters Hexagonal) Architecture by Alistair Cockburn
○ Implementing Domain-Driven Design by Vaughn Vernon
○ CUPID by Dan North
○ SOLID by Robert Martin
○ Fundamentals of Software Architecture
○ Software Architecture: the Hard Parts
○ refactoring.guru
○ tddbuddy.com
○ … do your own exploring!

https://learning.oreilly.com/library/view/tidy-first/9781098151232/
https://leanpub.com/4rulesofsimpledesign
https://refactoring.guru/design-patterns
https://dannorth.net/cupid-for-joyful-coding/
https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://learning.oreilly.com/library/view/software-architecture-the/9781492086888/
https://refactoring.guru/
https://www.tddbuddy.com/

© 2025 Thoughtworks | Restricted

Learn about operations
“One of the key things that differentiates a senior developer from a junior one, ..., is
Operations experienceˮ – Steve Yegge

79

👈 “Read it cover to coverˮ – Steve Yegge

Itʼs available online for free

https://sre.google/sre-book/table-of-contents/

© 2025 Thoughtworks | Restricted 80

https://www.linkedin.com/posts/simonwardley_x-whats-the-future-of-software-engineering-activity-7329193463961296897-iEva

https://www.linkedin.com/posts/simonwardley_x-whats-the-future-of-software-engineering-activity-7329193463961296897-iEva

© 2025 Thoughtworks | Restricted

Thanks for listening!

Matteo Vaccari
Technical Principal
matteo.vaccari@thoughtworks.com

81

