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Abstract. In the double TSP with multiple stacks, a vehicle with sev-
eral stacks performs a Hamiltonian circuit to pick up some items and
stores them in its stacks. It then delivers every item by performing an-
other Hamiltonian circuit while satisfying the last-in-first-out policy of
its stacks. The consistency requirement ensuring that the pickup and
delivery circuits can be performed by the vehicle is the major difficulty
of the problem. This requirement corresponds, from a polyhedral stand-
point, to a set covering polytope. When the vehicle has two stacks this
polytope is obtained from the description of a vertex cover polytope. We
use these results to develop a branch-and-cut algorithm with inequalities
derived from the inequalities of the vertex cover polytope.
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The traveling salesman problem (TSP) is the problem of finding a Hamil-
tonian circuit of minimum cost in a complete weighted digraph. The TSP is a
well-known NP-hard problem. Nevertheless, one of the greatest advances in com-
binatorial optimization has been the design of algorithms that made possible to
practically solve TSP instances of considerable size [1].

In this paper, we study a generalization of the TSP, namely the double TSP
with multiple stacks (DTSPMS ). In this problem, n items have to be picked up
in one city, stored in a vehicle having s identical stacks of finite capacity, and
delivered to n customers in another city. We assume that the pickup and the
delivery cities are far from each other, thus the pickup phase has to be completed
before the delivery phase starts. The pickup (resp. delivery) phase consists in a
Hamiltonian circuit performed by the vehicle which starts from a depot and visits
the n pickup (resp. delivery) locations exactly once before coming back to the
depot. Each time a new item is picked up, it is stored on the top of an available
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stack of the vehicle and no rearrangement of the stacks is allowed. During the
delivery circuit the stacks are unloaded by following a last-in-first-out policy:
only the items currently on the top of their stack can be delivered. The goal is
to find a pickup and a delivery circuit that are s-consistent and that minimize
the total traveled distance — a pickup and a delivery Hamiltonian circuits are
s-consistent if a vehicle with s stacks can perform both while satisfying the
last-in-first-out policy and the capacity of the stacks.

The DTSPMS has been recently introduced in [22] and has received since
considerable attention. Several heuristics [6], [7], [9], [22], combinatorial exact
methods [15,16] and branch-and-cut algorithms [17], [21] have been proposed
for its resolution. When the vehicle has two stacks, the best algorithms [2], [5]
solve to optimality instances with up to 16 items, but mostly fail from 18 items.
The main conclusion that can be drawn is that the DTSPMS is extremely hard
to solve in practice. We emphasize that, as noted in [2], the finiteness of the
capacity is not the major computational difficulty.

An explanation of the fact that exact approaches fail to solve the DTSPMS
efficiently is the following. The combinatorial structure behind the consistency
of the two circuits has not been deeply addressed. In contrast, the routing part
associated with TSP circuits is well understood.

In this paper, we enhance the approach of [2] to overcome this difficulty. More
precisely, by focusing on the consistency requirements, we reveal a strong poly-
hedral connection between the formulation of [2] and set cover problems. This
allows us to derive new valid inequalities for the DTSPMS which are embedded
into a competitive branch-and-cut algorithm.

The approach of [2] mainly considers the variant of the problem where the
stacks have an infinite capacity. The authors develop theoretical results which are
implemented in a branch-and-cut framework. A second version of their algorithm
is developed with additional features to handle stacks of finite capacity. As we
focus on the consistency requirements, we restrict our attention to the problem
with stacks of infinite capacity. Indeed, the features of [2] to handle the finite
capacities can also be added to our framework. We refer to [2] for more details
on these additional features. For a sake of clarity, DTSPMS will now refer to the
variant where the stacks have an infinite capacity.

This paper is organized as follows. In Section 1 we recall the formulation for
the DTSPMS introduced in [2] and the known results about the routing part
associated with this formulation. In Section 2 we study the set covering polytope
that arises from the consistency requirements. In Section 3 we consider the case
of the DTSPMS with two stacks. We show that in this case the set covering
polytope associated with the consistency requirements corresponds to a vertex
cover polytope. By using this observation, we derive valid inequalities for the
DTSPMS with two stacks. Finally, we test these inequalities in a branch-and-
cut algorithm.
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1 Formulation of the DTSPMS

In this section, we first describe the DTSPMS in terms of graphs and then present
the integer linear formulation for the DTSPMS introduced in [2].

An instance of the DTSPMS with n items is given by a complete digraph,
two cost vectors defined on its arcs and a positive integer. The complete digraph
D = (V,A) with V = {0, . . . , n} and A = {(i, j) : i 6= j ∈ V } models both cities.
The depot is vertex 0. Item i has to be picked up from vertex i of the first city,
and delivered to vertex i of the second city. The vectors c1 ∈ R|A| and c2 ∈ R|A|
represent the distances between the locations of the pickup and delivery cities,
respectively. The positive integer s is the number of stacks of the vehicle. Hence,
the DTSPMS consists in finding a pair of s-consistent Hamiltonian circuits C1

and C2 whose cost c1(C1) + c2(C2) is minimum.

Each Hamiltonian circuit of D induces a linear order on V \ {0} correspond-
ing to the order in which the vertices of V \ {0} are visited starting from 0.
Since the pickup and delivery circuits are Hamiltonian circuits of D, the follow-
ing proposition characterizes the s-consistency thanks to the linear orders they
induce:

Proposition 1 ([4], [6], [25]). A pickup circuit and a delivery circuit are s-
consistent if and only if no s+ 1 vertices of V \ {0} appear in the same order in
the linear orders induced by the two circuits.

Our starting point is the formulation of the DTSPMS of [2], which we now
explain. First, the Hamiltonian circuits of D are represented with arc variables
x ∈ R|A| which model the arcs of the Hamiltonian circuits, and precedence vari-
ables y ∈ Rn(n−1) which model the associated linear orders. They are described
by the following constraints [24]:∑

j∈V \{i}

xij = 1 for all i ∈ V, (1)

∑
i∈V \{j}

xij = 1 for all j ∈ V, (2)

yij + yji = 1 for all distinct i, j ∈ V \ {0}, (3)

yij + yjk + yki ≥ 1 for all distinct i, j, k ∈ V \ {0}, (4)

xij ≤ yij for all distinct i, j ∈ V \ {0}, (5)

yij ∈ {0, 1} for all distinct i, j ∈ V \ {0}, (6)

xij ∈ {0, 1} for all distinct i, j ∈ V. (7)

By the integrality constraints (6) and (7), constraints (1) and (2) ensure
that each vertex has exactly one leaving and one entering arc. Inequalities (3)
and (4) are the antisymmetry and transitivity constraints respectively, and each
binary vector y satisfying them represents a linear order on V \{0} [13]. Finally,
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constraints (5) imply that if the arc (i, j) is in the Hamiltonian circuit then i
precedes j in the associated linear order.

Therefore, the DTSPMS can be formulated as follows. Let (x1, y1, x2, y2) ∈
R|A| × Rn(n−1) × R|A| × Rn(n−1). The variables (x1, y1) will correspond to the
arc and precedence variables associated with the pickup circuit whereas (x2, y2)
will refer to the arc and precedence variables associated with the delivery circuit.
The solutions to the DTSPMS are described by the following constraints:1

(xt, yt) satisfies (1)–(7) for t = 1, 2, (8)
s∑

i=1

(y1vivi+1
+ y2vivi+1

) ≥ 1 for all distinct v1, . . . , vs+1 ∈ V \ {0}. (9)

Inequalities (8) ensure that (xt, yt) corresponds to a Hamiltonian circuit for
t = 1, 2. Inequalities (9) imply that the two Hamiltonian circuits are s-consistent.
Indeed, if a constraint (9) is not satisfied, then the vertices vs+1, . . . , v1 associated
with this constraint appear in this order in both the pickup and delivery circuits
— a contradiction to Proposition 1. Proposition 1 being an equivalence, the
correctness of the above formulation follows.

In the rest of the paper, we will denote by DTSPMSn,s the convex hull of
the solutions to (8)–(9). Moreover, ATSPn will denote the convex hull of the
solutions to (1)–(7).

The above formulation makes apparent that the DTSPMS may be separated
into two parts: a routing part associated with (8) and a consistency part asso-
ciated with (9). Every valid inequality for ATSPn can be used to strengthen
the linear relaxation of the DTSPMS. Actually, every facet of ATSPn gives two
facets of DTSPMSn,s, as expressed in the following theorem.

Theorem 2 ([2]). For n ≥ 5 and s ≥ 2, if ax + by ≥ c defines a facet of
ATSPn, then axt + byt ≥ c defines a facet of DTSPMSn,s, for t = 1, 2.

Theorem 2 characterizes a super-polynomial number of facets ofDTSPMSn,s

since ATSPn has a super-polynomial number of facets [10]. Unfortunately, none
of these facets relies on the consistency part of the problem. This part has ac-
tually not been well studied, and the next section will address this matter.

2 A Set Covering Approach for the s-consistency

As stated in the previous section, there is a one-to-one correspondence between
Hamiltonian circuits of D and linear orders on V \{0}. Thus, the projection onto
the precedence variables y1, y2 of the solutions to the DTSPMS corresponds to

1 In the rest of the paper, the DTSPMS will refer to either the problem and the integer
linear formulation depending on the context.
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the couples of linear orders on V \{0} satisfying (9). When focusing on the consis-
tency part of the problem, we will consider only the consistency constraints (9).
In this case, we are interested in the following polytope:

SCn,s = conv{(y1, y2) ∈ {0, 1}n(n−1) × {0, 1}n(n−1) : (9) are satisfied}.

Clearly, we have proj(y1,y2)(DTSPMSn,s) ⊆ SCn,s. Moreover, SCn,s is a set

covering polytope, that is a polytope of the form conv{x ∈ {0, 1}d : Ax ≥ 1},
with A being a 0,1-matrix. Set covering polytopes have been intensively studied
— see for instance [3].

In constraints (9), the coefficients associated with y1ij and y2ij are the same
for all i 6= j ∈ V \ {0}, and hence SCn,s has a specific form. Indeed, it turns
out that all facets of SCn,s can be obtained by studying the following polytope,
hereafter called restricted set covering polytope:

RSCn,s = conv{ y ∈ {0, 1}n(n−1) :
s∑

i=1

yvivi+1
≥ 1 for all distinct v1, . . . , vs+1 ∈ V \ {0}}.

Moreover, as shown in the following lemma, the vertices of RSCn,s are con-
nected to the ones of SCn,s.

These results are not surprising, yet we did not find them in the literature,
thus we provide our own proof. In our proofs we often implicitly use the fact
that a binary point of a binary polytope is one of its vertices.

Lemma 3. For y = (y1, y2) ∈ Rn(n−1) × Rn(n−1), define f(y) ∈ Rn(n−1) by
f(y)ij = max{y1ij , y2ij}, for all distinct i, j ∈ {1, . . . , n}. Then,

RSCn,s = conv{f(y) ∈ Rn(n−1) : y is a vertex of SCn,s}.

Proof. Let P = conv{f(y) ∈ Rn(n−1) : y is a vertex of SCn,s}.
To show P ⊆ RSCn,s, let v̄ be a vertex of P . By construction, v̄ = f(ȳ)

for some vertex ȳ of SCn,s. Since ȳ is binary, so is v̄. In addition, v̄jiji+1
= 0

if and only if ȳ1jiji+1
= ȳ2jiji+1

= 0. The vector v̄ being binary,
∑s

i=1 v̄jiji+1 <
1 if and only if v̄jiji+1 = 0 for all i = 1, . . . , s. But this can happen only if∑s

i=1(ȳ1jiji+1
+ ȳ2jiji+1

) = 0, which is impossible by ȳ ∈ SCn,s and (9). Hence,
v̄ ∈ RSCn,s. As this holds for every vertex v̄ of P , convexity implies P ⊆ RSCn,s.

We prove now that RSCn,s ⊆ P . Given a vertex v̄ of RSCn,s, we define
ȳ = (ȳ1, ȳ2) ∈ {0, 1}n(n−1) × {0, 1}n(n−1) as follows.

ȳ1jiji+1
= ȳ2jiji+1

= 1 if vjiji+1
= 1,

ȳ1jiji+1
= ȳ2jiji+1

= 0 otherwise.

For distinct j1, . . . , js+1, we have
∑s

i=1(ȳ1jiji+1
+ ȳ2jiji+1

) = 0 if and only if v̄j1j2 =
v̄j2j3 = · · · = v̄jsjs+1

= 0. The latter is impossible since v̄ ∈ RSCn,s. Hence, since
ȳ is binary, it satisfies (9). Thus ȳ is a vertex of SCn,s. By construction, we have
v̄ = f(ȳ), therefore v̄ is a vertex of P . This holds for every vertex v̄ of RSCn,s,
hence RSCn,s ⊆ P by convexity. ut
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The next proposition shows how the linear description of SCn,s can be de-
duced from the one of RSCn,s. Inequalities that consist in 0,1 bounds on the
variables are called trivial.

Proposition 4. Every non-trivial facet-defining inequality of SCn,s is of the
form ay1 + ay2 ≥ b, where ay ≥ b is a non-trivial facet-defining inequality of
RSCn,s.

Proof. Well-known results about set covering polytopes — see e.g., [19] — im-
mediately imply the following:

(i) SCn,s is full dimensional.
(ii) Inequalities ytij ≤ 1 define facets of SCn,s for all distinct 1 ≤ i, j ≤ n and

t = 1, 2.
(iii) If a1y1 + a2y2 ≥ b is non-trivial and defines a facet of SCn,s, then b > 0

and atij ≥ 0 for all distinct 1 ≤ i, j ≤ n and t = 1, 2.

We first show that all facets of RSCn,s define facets of SCn,s.

Claim. If ay ≥ b is a non-trivial facet-defining inequality of RSCn,s, then ay1 +
ay2 ≥ b is a facet-defining inequality of SCn,s.

Proof. We first prove that ay1 +ay2 ≥ b is valid for SCn,s. Let γ = (γ1, γ2) be a
vertex of SCn,s and suppose that aγ1 + aγ2 < b. By Lemma 3, f(γ) is a vertex
of RSCn,s. From γ ≥ 0, we get f(γ)ij ≤ γ1ij + γ2ij for all distinct 1 ≤ i, j ≤ n.

Since, by (iii), aij ≥ 0, we get af(γ) ≤ aγ1 + aγ2 < b, contradicting the validity
of ay ≥ b for RSCn,s.

We now prove that ay1 + ay2 ≥ b defines a facet of SCn,s. Let F ′ denote the
facet of RSCn,s defined by ay ≥ b and {ξ1, . . . , ξn(n−1)} be an affine base of F ′.
Since b > 0 these vectors are linearly independent. Thus the 2n(n − 1) vectors
{(ξ`,0), (0, ξ`)}`=1,...,n(n−1) are linearly independent points of SCn,s, satisfying
ay1 + ay2 ≥ b with equality. �

We now show that non-trivial facet-defining inequalities of SCn,s have a
symmetric structure:

Claim. Let a1y1 + a2y2 ≥ b be a non-trivial facet-defining inequality of SCn,s.
Then a1 = a2.

Proof. Let us fix i, j ∈ {1, . . . , n} with i 6= j and let us write for convenience the
vectors γ ∈ R2n(n−1) as (γ̄, γ1ij , γ

2
ij). By contradiction, we suppose that a1ij > a2ij .

By (iii), we get a1ij > 0. If (γ̄, 1, 1) is a vertex of SCn,s, then so are (γ̄, 1, 0) and

(γ̄, 0, 1), since, in each of constraints (9), the coefficients of y1ij and y2ij are the
same.

Let F = SCn,s∩{a1y1+a2y2 = b} be the facet defined by the given inequality
and B a base of F . It is not restrictive to assume B is composed of vertices of
SCn,s. Then, no element of B has the form (γ̄, 1, 1), as otherwise, by āγ̄ + a1ij +

a2ij = b and a1ij > 0, we would get that (γ̄, 0, 1) violates the given inequality.
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Given that F arises from a non-trivial facet-defining inequality of SCn,s, there
exists (γ̄, 1, 0) ∈ B as otherwise, F ⊆ SCn,s∩{y1ij = 0}. This implies that (γ̄, 0, 1)

violates the facet-defining inequality. We deduce that a1ij ≤ a2ij . Symmetrically,

a2ij ≤ a1ij and the desired equality follows. �

We finally prove that all the facets of RSCn,s can be obtained from those
of SCn,s.

Claim. If ay1 + ay2 ≥ b is a non-trivial facet-defining inequality of SCn,s, then
ay ≥ b is a non-trivial facet-defining inequality of RSCn,s.

Proof. The point (γ,0) is a vertex of SCn,s whenever γ is a vertex of RSCn,s.
Thus the validity of ay ≥ b for RSCn,s follows from the validity of ay1 +ay2 ≥ b
for SCn,s.

Now, let us suppose, by contradiction, that ay ≥ b does not define a facet
of RSCn,s. Then there exists an integer f ≥ 2 such that a =

∑f
i=1 λia

i and

b =
∑f

i=1 λib
i, where λi > 0 and aiy ≥ bi is a facet of RSCn,s for every

0 ≤ i ≤ f . Thus, the inequalities aiy1 + aiy2 ≥ bi are valid for SCn,s. However,

(a, a) =
∑f

i=1 λi(a
i, ai), contradicting the fact that ay1 +ay2 ≥ b defines a facet

of SCn,s. �
ut

Proposition 4 asserts that the linear description of RSCn,s immediately
gives the description of SCn,s. Since proj(y1,y2)(DTSPMSn,s) ⊆ SCn,s, the
s-consistency of two Hamiltonian circuits can be modeled by using inequalities
which are valid for RSCn,s. Our goal is to use such inequalities to better capture
the s-consistency in a branch-and-cut algorithm to solve the DTSPMS.

3 Focus on Two Stacks

In this section we first observe that, in the special case of the DTSPMS with
two stacks, the restricted set covering polytope is a vertex cover polytope. This
result allows us to derive valid inequalities for the DTSPMS. These inequalities
are then embedded in a branch-and-cut algorithm, described at the end of the
section together with the corresponding experimental results.

3.1 A Vertex Cover Approach

As explained in the previous section, the linear relaxation of our formulation
can be strengthened by studying facet-defining inequalities of RSCn,s. When
considering only two stacks, the polytope RSCn,2 is:

conv{y ∈ {0, 1}n(n−1) : yij + yjk ≥ 1 for all distinct i, j, k ∈ V \ {0}}.

As it turns out, RSCn,2 can be expressed as a vertex cover polytope. Let
Gn = (U,E) be the graph whose vertices are uij for all distinct i, j ∈ V \ {0}
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and the edges are {uij , ujk} for all distinct i, j, k ∈ V \ {0}. A vertex cover of
a graph is a set S of vertices such that each edge contains a vertex of S. The
vertex cover polytope of a graph is the convex hull of the incidence vectors of its
vertex covers.

Please note that RSCn,2 and the vertex cover polytope of Gn have the same
variables. Moreover, each non-trivial inequality of RSCn,2 contains two variables
which correspond to the extremities of an edge of Gn. Therefore RSCn,2 is
nothing but the vertex cover polytope of Gn.

The vertex cover polytope has been intensively studied. Many families of
valid inequalities are known. We will more specifically use the so-called odd hole
inequalities to derive new valid inequalities for the DTSPMS with two stacks.

Odd Hole Inequalities. An odd hole of a graph G = (W,F ) is a vertex subset
H = {v1, . . . , v2k+1} such that {vi, vj} ∈ F if and only if |i−j| = 1 or |i−j| = 2k
for all distinct i, j ∈ {1, . . . , n}. The following inequalities are valid for the vertex
cover polytope of G [20]:

y(H) ≥ |H|+ 1

2
for all odd holes H of G. (10)

Corollary 5. Inequalities

y1(H) + y2(H) ≥ |H|+ 1

2
for all odd holes H of Gn, (11)

are valid for DTSPMSn,2.

There is a one-to-one correspondence between the vertices of Gn and the
arcs of D. However, if every odd circuit of D provides an odd hole of Gn, the
converse is not true. Thus, inequalities (11) generalize the odd circuit inequalities
introduced in [2].

3.2 A Branch-and-Cut Algorithm

This section presents a branch-and-cut algorithm for the DTSPMS with two
stacks. The reader interested in an exhaustive description of branch-and-cut
methods can refer to e.g., [18].

Initialization. The linear program we start with for computing the lower bounds
is the one given by inequalities (1)–(3) and (5) and the trivial inequalities. Since
the available instances are symmetrical, we add the constraint y112 = 1 to our
starting formulation. This trick halves the number of solutions to our problem
without affecting the correctness of the algorithm. In addition, we provide our
algorithm with the upper bound given by the heuristic algorithm of [7].
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Separation. To strengthen the routing part we consider the so-called GDDL
inequalities [12] and the 2-simple cut inequalities [11]. The separation phase is
as follows. The families of inequalities are separated in this order:

– 2-consistency constraints (9),
– GDDL inequalities,
– 2-simple cut inequalities,
– transitivity constraints (4),2

– odd hole inequalities (11).

Constraints (4) and (9) are separated by enumeration. For the 2-simple cut
inequalities we use the exact separation algorithms given in [11]. We also use for
separating the GDDL inequalities the algorithm of [11] which we restrict to the
most promising cases to speed it up. Finally we apply the heuristic separation
algorithm given in [23] for the odd hole inequalities to the point ȳ = ȳ1+ȳ2, where
(ȳ1, ȳ2) are the precedence variables of the current solution. The separation of
each family is performed when separating the previous ones yielded no violated
constraint. Moreover we mention that, since inequalities (4) and (9) are problem-
defining, we always separate them on integer current points.

3.3 Experimental Results

The branch-and-cut algorithm described above is a first and preliminary imple-
mentation of the vertex cover approach for the DTSPMS with two stacks. The
algorithm has been coded in C++ using CPLEX 12.5 [8]. The graph-based rou-
tines have been coded with the COIN-OR library LEMON [14]. The algorithm
is tested over the benchmark instances introduced in [22], with a CPU time limit
of 3 hours. Tests are run in a Linux environment, using a 3.4 GHz Intel Core i7
processor, in sequential mode (1 thread).

Since we test our algorithm only for two stacks of unlimited capacity, we
present a comparison with the approach given in [2]. However, please recall the
conclusion of [2] stating that the capacity of the stacks has little impact on the
performance of the algorithm, in terms of CPU time and enumerated nodes of
the search tree.3 Both versions of the algorithm of [2] with finite and infinite
capacity for the stacks outperform all other exact approaches.

Table 1 presents the results obtained by the branch-and-cut algorithm de-
scribed in this paper and those obtained in [2]. Each row of the table corresponds
to a tested instance. The first two columns contain the information relative to
each instance: its name given in [22] and the number of items it involves. For
both algorithms the remainder of the table consists of five columns. Columns
UB and LB respectively contain the value of the best integer feasible solution
obtained for that instance, and the best lower bound obtained by the algorithm
within the 3 hours. Columns CPU and Nodes respectively report the time spent

2 We use the lifted version yij + yjk + yki − xji ≥ 1, for all distinct i, j, k ∈ V \ {0}.
3 Note that the optimal values can differ when passing from the finite capacity case

to the infinite capacity case.



10 Michele Barbato, Roland Grappe, Mathieu Lacroix, Roberto Wolfler Calvo

(in seconds) and the number of nodes of the branch-and-cut tree. Finally, column
Gap reports the gap for each instance, calculated as 100·(UB-LB)/UB.

The algorithm proposed in this paper solves all the instances up to 16 items
to optimality. Moreover, it solves nine out of the 20 instances with 18 items. For
the instances not solved to optimality, the average gap is 1.94% for 18 items.

Compared with [2], our current algorithm exhibits a better performance.
More precisely, it needs respectively 5.9%, 33.7% and 7.3% less time to solve
the instances with 14, 16 and 18 items. Moreover, it solves within the time limit
one instance more with 18 items with respect to the algorithm of [2]. Finally,
we mention that the algorithm presented in this paper solves at optimality two
instances with 20 items, within the time limit.

4 Concluding Remarks

In this paper we have considered the DTSPMS. We have focused on the s-
consistency requirements ensuring that both the pickup and delivery circuits
can be performed by a vehicle with s stacks satisfying the last-in-first-out policy
conditions. We have considered the polytope defined by the consistency con-
straints and the trivial inequalities. It is a relaxation of the convex hull of the
solutions to the DTSPMS but it catches most of the difficulty of the problem and
every valid inequality for this polytope can be used to reinforce the DTSPMS.
This polytope is a set covering polytope and we have shown that when we have
only two stacks, this latter can be reduced to a vertex cover polytope.

We used these results to develop a branch-and-cut algorithm to solve the DT-
SPMS with two stacks of infinite capacity. This algorithm uses the inequalities
derived from the odd hole inequalities which are valid for the vertex cover poly-
tope. This branch-and-cut algorithm is competitive with respect to the existing
algorithms for the DTSPMS. We believe that strengthening the formulation us-
ing inequalities derived from the vertex cover approach will provide an efficient
algorithm to solve instances of a larger size.

Apart from these algorithmic questions, one can wonder whether the relax-
ation we have considered is far from the convex hull of the solutions to the
DTSPMS. A way to answer this question is to determine which facets of the set
covering polytope define facets of the convex hull. This is another direction of
our future work.
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Table 1. Computational results of our algorithm and comparison with the results
of [2].

Our B&C B&C of [2]

Instance Items UB LB CPU Nodes Gap UB LB CPU Nodes Gap

R00 14 766 766.00 147.99 1717 0.00 766 766.00 118,39 1544 0.00
R01 14 761 761.00 22.80 239 0.00 761 761.00 27.97 346 0.00
R02 14 690 690.00 68.65 833 0.00 690 690.00 129.33 1648 0.00
R03 14 791 791.00 28.77 336 0.00 791 791.00 52.13 593 0.00
R04 14 756 756.00 606.73 8305 0.00 756 756.00 509.33 6918 0.00
R05 14 773 773.00 87.35 958 0.00 773 773.00 127.46 1589 0.00
R06 14 811 811.00 16.10 167 0.00 811 811.00 28.71 304 0.00
R07 14 693 693.00 24.13 239 0.00 693 693.00 28.21 319 0.00
R08 14 824 824.00 288.28 3749 0.00 824 824.00 259.09 3573 0.00
R09 14 733 733.00 9.15 67 0.00 733 733.00 5.93 58 0.00
R10 14 733 733.00 95.29 1267 0.00 733 733.00 99.86 1330 0.00
R11 14 719 719.00 362.73 4359 0.00 719 719.00 238.89 2975 0.00
R12 14 803 803.00 86.78 1088 0.00 803 803.00 59.10 722 0.00
R13 14 743 743.00 28.04 319 0.00 743 743.00 36.56 508 0.00
R14 14 747 747.00 193.64 2207 0.00 747 747.00 353.82 4847 0.00
R15 14 765 765.00 29.90 308 0.00 765 765.00 32.47 484 0.00
R16 14 685 685.00 37.69 411 0.00 685 685.00 31.57 376 0.00
R17 14 818 818.00 142.82 1591 0.00 818 818.00 246.35 2992 0.00
R18 14 774 774.00 68.06 920 0.00 774 774.00 94.40 1325 0.00
R19 14 833 833.00 211.86 2472 0.00 833 833.00 237.57 3002 0.00

Average 127.84 1577.60 0.00 135.86 1772.65 0.00

R00 16 795 795.00 1346.11 10356 0.00 795 795.00 1498.13 12002 0.00
R01 16 794 794.00 104.99 686 0.00 794 794.00 169.58 1467 0.00
R02 16 752 752.00 5239.07 40516 0.00 752 752.00 6688.66 51700 0.00
R03 16 855 855.00 2431.51 18037 0.00 855 855.00 1879.71 13641 0.00
R04 16 792 792.00 3350.76 26204 0.00 792 792.00 6616.13 52883 0.00
R05 16 820 820.00 1203.36 9616 0.00 820 820.00 4248.95 32078 0.00
R06 16 900 900.00 813.29 5930 0.00 900 900.00 988.01 8057 0.00
R07 16 756 756.00 87.90 624 0.00 756 756.00 130.26 958 0.00
R08 16 907 907.00 1057.53 9036 0.00 907 907.00 1526.68 12634 0.00
R09 16 796 796.00 67.47 535 0.00 796 796.00 99.46 789 0.00
R10 16 755 755.00 357.42 2791 0.00 755 755.00 664.12 5300 0.00
R11 16 759 759.00 1095.26 8151 0.00 759 759.00 909.18 7377 0.00
R12 16 825 825.00 348.77 2661 0.00 825 825.00 653.00 5264 0.00
R13 16 824 824.00 427.94 3051 0.00 824 824.00 719.47 5878 0.00
R14 16 823 823.00 2764.04 20967 0.00 823 823.00 5892.60 41223 0.00
R15 16 807 807.00 934.73 6731 0.00 807 807.00 568.39 4549 0.00
R16 16 781 781.00 462.52 3850 0.00 781 781.00 2347.62 18234 0.00
R17 16 852 852.00 1584.47 12029 0.00 852 852.00 2136.11 16101 0.00
R18 16 846 846.00 1674.27 13835 0.00 846 846.00 1289.01 10532 0.00
R19 16 882 882.00 1566.98 11750 0.00 882 882.00 1589.97 12501 0.00

Average 1345.92 10367.80 0.00 2030.75 15658.40 0.00

R00 18 839 839.00 3485.49 17926 0.00 839 839.00 5128.95 28232 0.00
R01 18 825 825.00 1101.54 5129 0.00 825 825.00 1574.57 7119 0.00
R02 18 793 759.81 10800.00 47666 4.19 793 750.06 10800.00 46046 5.42
R03 18 896 864.13 10800.00 44448 3.56 896 848.67 10800.00 43700 5.28
R04 18 832 781.29 10800.00 41852 6.09 832 781.50 10800.00 44790 6.07
R05 18 873 858.42 10800.00 55248 1.67 873 847.60 10800.00 50545 2.91
R06 18 930 930.00 6454.46 33943 0.00 930 930.00 9257.50 44850 0.00
R07 18 805 805.00 1686.81 9072 0.00 805 805.00 1488.97 7918 0.00
R08 18 962 922.29 10800.00 47664 4.13 962 907.68 10800.00 43758 5.65
R09 18 815 815.00 254.36 1354 0.00 815 815.00 448.44 2510 0.00
R10 18 856 820.18 10800.00 47890 4.18 856 825.04 10800.00 44155 3.62
R11 18 813 795.99 10800.00 55568 2.09 823 788.97 10800.00 51234 4.13
R12 18 871 871.00 2650.59 12942 0.00 871 871.00 4291.89 21560 0.00
R13 18 845 845.00 3415.79 17689 0.00 845 845.00 3455.85 19047 0.00
R14 18 862 830.62 10800.00 47245 3.64 873 813.67 10800.00 40037 6.80
R15 18 869 840.90 10800.00 48243 3.23 869 834.64 10800.00 47370 3.95
R16 18 811 811.00 3195.68 16843 0.00 811 811.00 5499.46 28197 0.00
R17 18 900 862.50 10800.00 43859 4.17 900 840.50 10800.00 38099 6.61
R18 18 883 867.22 10800.00 50824 1.79 883 867.33 10800.00 47342 1.77
R19 18 909 909.00 7982.98 37904 0.00 909 893.13 10800.00 51974 1.75

Average 7451.39 34165.45 1.94 8037.28 35424.15 2.70
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