
A computational evaluation of online ATSP
algorithms

Michele Barbato, Alberto Ceselli, and Filippo Mosconi

Abstract We prove that state-of-the-art online asymmetric traveling salesman prob-
lem algorithms can successfully be used in real time practical systems, in terms of
both solutions quality and computational efficiency. At the same time, we show that
such a good behaviour can only be obtained by a careful fine tuning of the algorithms,
often clashing with their theoretical analysis.
Keywords: Asymmetric Traveling Salesman; online algorithms; experimental anal-
ysis

1 Introduction

Server routing problems involve a set of requests to be served by a server in the
minimum amount of time. Usually, every request is identified with a point in a
space. A request is then served if the server visits the corresponding point. In the
online asymmetric traveling salesman problem (OL-ATSP), requests are generated
in sequence along time and each request must be served after it has been generated.
In general, the generation time of the next request is unknown to the server. The goal
in the OL-ATSP is to minimize the time at which all requests have been served.

The OL-ATSP and its variations arise in a number of real-world applications.
Our interest in the OL-ATSP actually stems from its application to the management
of automated warehouses [3], which is critical in highly custom production contexts
like cosmetics manufacturing [1].

A warehouse consists of racks. They are typically identical, growing in vertical
shelves of the same height, with an aisle between them which is traversed both
horizontally and vertically by a stacker crane. The stacker crane moves containers
to and from the racks: we refer to any such a movement as a task. One may assume

Michele Barbato, Alberto Ceselli, Filippo Mosconi
Università Degli Studi di Milano, Dipartimento di Informatica, via Celoria 18, 20133 Milano (Italy)
e-mail: michele.barbato@unimi.it, alberto.ceselli@unimi.it, filippo.mosconi@studenti.unimi.it

1

ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’ 1

2 Michele Barbato, Alberto Ceselli, and Filippo Mosconi

that the complete set of possible tasks is known in advance, and so are both the cost
to perform each task and the time needed to start a task immediately after another
one has been executed. Given a reasonable time horizon, only a small subset of all
possible tasks appear: the goal is to find a sequence of them that can be performed
by the stacker crane minimizing the total completion time.

Often in practical circumstances there is no knowledge on the temporal distribu-
tion of the tasks. That is, the order in which tasks will be revealed, as the time at
which this will happen, is unknown. Algorithms operating the stacker crane in the
above situation must therefore act in an online fashion: decisions at a given instant
are taken by looking only at the sequence of requests generated until that instant.
Under this assumption, the problem of optimally sequencing the completion of the
tasks is exactly an OL-ATSP where the requests are the tasks to be performed and
the server is the stacker crane.

The quality of OL-ATSP solutions, as in general with online algorithm, is assessed
by comparing its cost to that potentially achievable by an exact offline algorithm,
that is one where decisions are taken with complete knowledge on the sequence of
requests. The worst-case ratio between the former and the latter is called competitive
ratio. The lower the competitive ratio, the better the corresponding online algorithm.
In this regard, the OL-ATSP is well understood, since algorithms providing optimal
competitive ratio are known for several variants [5].

However these proven competitive algorithms do not necessarily exhibit good per-
formance in practice, and a corresponding suitable experimental validation is often
missing. The OL-ATSP is a relevant case: despite its high potential in applications, no
experimental evaluation is carried out in the literature. Additionally, the complexity
of the sub-problems that need to be solved undermines their practical applicability,
finally imposing to resort to heuristics, thereby losing quality guarantees.

In this paper we fill in such a gap by performing an extensive experimental evalu-
ation of OL-ATSP algorithms. We prove that state-of-the-art OL-ATSP algorithms
can successfully be used in real time practical systems, in terms of both solutions
quality and computational efficiency. At the same time, we show that such a good
behaviour can only be obtained by a careful fine tuning of the algorithms, often
clashing with the theoretical analysis.

More precisely, we experimentally study SmartStart, a family of algorithms for
the OL-ATSP presented in [5] (Section 2). The theoretical analysis performed in [5]
shows that, for several variations of the OL-ATSP, SmartStart yields algorithms
with the best possible competitive ratio. We extensively test SmartStart algorithms,
designing instances with specific spatial and temporal distribution of the requests
(Section 3). We analyze the discrepancy between an experimental fine tuning of
SmartStart and the theoretically predicted guarantees as the choice of these dis-
tributions changes (Section 3.1). We also consider lower bounding procedures, and
use them to evaluate the actual gap obtained by SmartStart under various settings,
thereby checking the tightness of the theoretical analysis in practical instances (Sec-
tion 3.2). Finally, we evaluate the potential performance of SmartStart algorithms
when employed in real-time applications (Section 3.3).

2 ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’

A computational evaluation of online ATSP algorithms 3

2 Definitions and SmartStart Algorithms

Throughout let V be a set of points in a space with a distance d : V × V → R>0
satisfying the triangular inequality d(u, v) + d(v,w) ≥ d(u,w) for every u, v,w ∈ V .
In general, d(u, v) , d(v, u), hence we model such a space as a complete digraph
D = (V, A), having weight d(u, v) on arc (u, v) ∈ A. According to [5], asymmetry
makes the problem harder. We select an origin vertex O ∈ V , where a server is
located at time 0. To reach v ∈ V from u ∈ V the server employs a time tuv = d(u, v).
A request is a pair r = (v, t) with v ∈ V \{O} and t ∈ R+. Given request r = (v, t), we
define ν(r) = v and τ(r) = t. We say that request r is served if the server visits ν(r)
at any time t ≥ τ(r), unserved otherwise. Let R = {r1, r2, . . . , rk} be a sequence of
requests such that k ≤ |V | and τ(ri) ≤ τ(rj) whenever 1 ≤ i < j ≤ k. In the homing
OL-ATSP, the server must minimize the total completion time, that is, the time re-
quired to serve all requests in R and subsequently return at O. Note that the homing
OL-ATSP where k = |V | and τ(r) = 0 for every r ∈ R is the classical offline asym-
metric traveling salesman problem (ATSP), thoroughly described e.g., in [7]. Online
algorithms operate the server by taking decisions on the fly, considering at time t ≥ 0
only the requests r such that τ(r) ≤ t. Let cA(R) be the completion time of a server
operated by algorithm A, defined as the time to serve all requests in R and return
to O afterwards. Let cbest(R) be the best possible completion time for the request
sequence R. Given K ≥ 0, algorithm A is K-competitive if cA(R)/K ≤ cbest(R) for
every request sequence R. The real value K is the competitive ratio of A.

SmartStart Algorithms. SmartStart is a family of algorithms first introduced
in [4] in the context of online dial-a-ride problems. It has been used for the OL-
ATSP in [5]. Let us assume that requests are generated over time at some vertices
of the digraph D described above. The behavior of SmartStart is parametric on a
real value: for a fixed α > 0 the corresponding algorithm A(α) works as follows.
At every t ≥ 0 let Rt ⊆ R be the subset of unserved requests r with τ(r) ≤ t. The
server computes d(Rt), the value of the tour S needed to visit all requests of Rt

starting from and returning to O. At the minimum t ′ such that t ′ ≥ αd(Rt) the server
executes S serving all requests in Rt and ignoring all requests generated meanwhile.
When the server is back at O the above process is repeated.

If the weights on the arcs of D obey the triangular inequality, the competitive
ratio of A(α) only depends on whether the last request arrives while the server is
idle at O. Exploiting this fact the authors of [5] prove the following:

Theorem 1 ([5])
For every α > 0, A(α) is max{1 + α, 2 + 1/α}-competitive for the homing OL-

ATSP. The best SmartStart algorithm is A(φ) where φ = 1+
√

5
2 is the golden ratio.

The value φminimizes max{1+α, 2+1/α}. Since 1+ φ = 2+1/φ, algorithm A(φ)
is (1 + φ)-competitive. The study in [5] also shows that (1 + φ) is a lower bound on
the competitive ratio of any possible OL-ATSP algorithm. Thus, A(φ) yields the
best competitive ratio among online algorithms for the homing OL-ATSP.

ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’ 3

4 Michele Barbato, Alberto Ceselli, and Filippo Mosconi

3 Experimental analysis

In this section we address two experimental questions. The first concerns solutions
quality, that is low completion time objective values, as defined in Section 2. In
particular we investigate whether the theoretical best setting of α is effective also
in experiments (subsections 3.1 and 3.2). We stress that, by definition, SmartStart
algorithms need an exact solver for the ATSP as a subroutine to serve partial sets
of requests every time the server leaves the origin. Therefore, the second question
concerns computing times, that is if the need of an exact ATSP solver turns out to
be a bottleneck for the applicability of SmartStart or not (subsection 3.3).

Dataset Design. Our investigation started from preliminary experiments on TSPLib
instances [9]. We found that the behavior of SmartStart on these instances was
affected by requests appearing in clusters. In fact, assuming constant inter-arrival
times, if requests are generated spatially very close to each other and far from the
origin O, a good heuristic for the OL-ATSP would be to never return to O before
having served all of them, as this would imply unnecessary round-trips between
the origin and their locations. The same applies to the temporal distribution of the
requests: if all data was known in advance a good heuristic would merge requests
generated in short time intervals, exploiting large time gaps for returning back to O.

Therefore, we decided to build a more reliable experimental setting, by controlling
both spatial and temporal distributions of the requests. Indeed, spatial and temporal
distributions are intertwined in determining the complexity of an instance.

Concerning the spatial distribution, SmartStart algorithms are designed to start
a tour serving subsets of requests based on the trade-off between distance to be
traveled and elapsed time. As sketched above, we argue space cluster tendency to be
predictive of easy instances. Oppositely, when requests are uniformly scattered, no
particular rationale is obviously yielding good policies; in particular, SmartStart
algorithms has no design elements to perform a wise choice of the subsets of requests
to serve.

Motivated by the above arguments, digraphs D = (V, A) in our dataset are con-
structed as follows. In the bi-dimensional Euclidean space, we initially consider a
point O and six points m1, . . . ,m6 uniformly disposed on a large circumference with
centre in O and radius 500. Next, we generate clusters C1, . . . ,C6 each including
20 points drawn at random from a bi-variate Gaussian distribution centred at mi ,
with covariance matrix [[502, 0], [0, 502]], for every i = 1, . . . , 6. The origin of D is
located at O, and all other vertices are located at the points of the clusters (note that
the mi’s may not be vertices of D).

In order to have asymmetric distances between vertices, we define d : A → R≥0
as:

d(v,w) =
⌈

(

| |p(v) − p(w)| |2 + G · max{0, y(w) − y(v)}
)1/2

⌉

∀v,w ∈ V (1)

4 ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’

A computational evaluation of online ATSP algorithms 5

where for every v ∈ V , p(v) (resp. y(v)) is the Euclidean point (resp. its y-coordinate)
where vertex v is located, | |p − q | | is the Euclidean distance between points p and q
and G > 0 is an asymmetry parameter. It is not difficult to show that the arc weight
function d defined in (1) satisfies the triangular inequality. Moreover, by varying the
asymmetry parameter, we can easily control the total amount of asymmetry degree
of D defined in [5] as supv,w∈V

d(x,y)
d(y,x) , which is relevant in the competitive analysis

of online algorithms for the OL-ATSP. We remark that, given this setting, O is not
guaranteed to be the center of the smallest circle containing all the points. On the
whole, we created 50 weighted digraphs (D, d) with d having asymmetry parameter
G = 1 and 50 additional digraphs with G = 10.

In the following we assume that the clusters C1, . . . ,C6 are disposed in clock-
wise order around O with Ci being the predecessor of Ci+1, for every i = 1, . . . , 5.
We consider three types of order in which the requests are generated: (i) cluster
order: 20 requests are generated consecutively in the same cluster, one at each vertex
of that cluster. Then the operation repeats on successive clusters by following the
cluster order C1,C2,C3,C4,C5,C6; (ii) jumping order: 20 requests are generated
consecutively in the same cluster, one at each vertex of that cluster. The operation
is iterated following the cluster order C1,C4,C6,C2,C5,C3; (iii) random order: one
request is generated in one vertex of a cluster, among the vertices where no request
has been generated yet. The operation is iterated cyclically following the cluster
order C1,C4,C6,C2,C5,C3.

Concerning the temporal distribution we designed three scenarios: (a) Uniform:
requests appear at constant time intervals; (b) Dense-first: let T be the time at which
the last request appears. The first 75% requests are generated uniformly between 0 and
time T/2; the remaining 25% requests are generated uniformly between time T/2 and
T . (c) Sparse-first: as in Dense-first case but generating the first 25% requests before
time T/2 and the last 75% between T/2 and T . In all three temporal distributions
above, we let the time of the last generated request be equal to the length of the
optimal ATSP solution on the corresponding instance, computed in preprocessing,
in such a way that the inter-arrival times are of the same order of magnitude of the
traveling time between requests.

For each of the 100 digraphs created as above we combine each spatial order from
types (i)–(iii) with each temporal distributions from types (a)–(c). Hence, overall,
our dataset consists of 900 instances.

3.1 Effect of α

We first analyze how the behavior of SmartStart algorithm A(α) varies according
to the choice of the parameter α. According to Theorem 1, the value of α yielding
the best competitive ratio on generic instances is α = φ ≃ 1.6. We performed tests
with α ∈ {0.2, 0.4, 0.8, 1.0, 1.4, 1.6} on our dataset.

In Table 1 we provide the average completion times corresponding to several
values of α in our set. In this table the first column corresponds to the three orders

ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’ 5

6 Michele Barbato, Alberto Ceselli, and Filippo Mosconi

Table 1 Average completion times for varying values of α.

Spatial
Distribution

Temporal
Distribution α

0.2 0.4 0.8 1 1.4 1.6
Uniform 11063.22 11027.58 11154.02 13883.85 16699.46 18091.09

C Dense-first 10476.31 10895.53 12760.20 14903.36 16699.46 18091.09
Sparse-first 11783.40 11923.03 11854.01 11831.93 12696.33 17664.01
Uniform 12143.51 12303.67 12186.78 13999.04 16699.46 18091.09

J Dense-first 11507.02 11654.39 12862.41 14877.36 16699.46 18091.09
Sparse-first 13102.64 13214.90 13096.30 13176.66 14018.01 17782.99
Uniform 15175.50 15503.38 15728.75 14215.77 16699.46 18091.09

R Dense-first 15122.27 13193.61 15847.49 14990.32 16699.46 18091.09
Sparse-first 14680.25 15928.97 14809.05 14336.07 16699.46 18091.09

of request generation (C is for the cluster order, J for jumping, R for random);
similarly, the second column of Table 1 specifies the temporal distribution followed
to generate the instances. The best average completion times of Table 1 are reported
in boldface for every combination of spatial and temporal distributions. Table 1
highlights that on seven out of the nine types of instances the best average completion
times correspond to α ∈ {0.2, 0.4}. The other two types of instances are instead
optimized in average by the valueα = 1 and belong to the random spatial distribution.
We report that the theoretically optimal algorithm A(φ) yielded the best completion
time only on 1 instance out of the 900 tested instances.1 Oppositely, for about 77%
of instances the best α belongs to {0.2, 0.4, 0.8}. This suggests that our instances are
better solved by SmartStart algorithms serving small sets of unserved requests,
almost immediately after their generation. From these results we conclude that
when considering structured OL-ATSP instances, the theoretical analysis of [5] can
be imprecise in predicting the value of α giving the best SmartStart algorithm in
practice. We mention that a similar result was reported in [2] on the online symmetric
traveling salesman problem. On the other hand, for less structured instances, our
experiments seem to indicate that the theoretically best α is closer to the best
experimental α.

3.2 Lower Bound Comparison

We now compare the results described in Section 3.1 with a theoretical lower bound
for the OL-ATSP. Given an instance of the OL-ATSP, let r̄ be its last generated
request. Then a valid lower bound on the optimal completion time is τ(r̄)+d(ν(r̄),O).
Indeed, a server at least waits until time τ(r̄) for the last request to arrive and uses at
least d(ν(r̄),O) time units to go from ν(r̄) to O (visiting ν(r̄) is required to serve r).

1 The instance hasG = 1, following a cluster ordering of the requests and a sparse-first distribution.

6 ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’

A computational evaluation of online ATSP algorithms 7

Table 2 Comparison of SmartStart with a theoretical lower bound.

Spatial
Distribution

Temporal
Distribution L A Gap%

Uniform 7423.65 11027.58 48.55
C Dense-first 7500.01 10476.31 39.68

Sparse-first 7422.70 11783.40 58.75
Uniform 7392.34 12143.51 64.27

J Dense-first 7468.70 11507.02 54.07
Sparse-first 7391.39 13102.64 77.27
Uniform 7392.34 14215.77 92.30

R Dense-first 7468.70 13193.61 76.65
Sparse-first 7391.39 14336.07 93.96

In Table 2, we compare SmartStart and the theoretical lower bound. Every row
of the table represents a fixed instance type, obtained combining a spatial and a
temporal distribution, as indicated by the first two columns while column L reports
the average lower bounds on instances belonging to a given type. For each instance
type, column A reports the average completion time of the SmartStart algorithms
yielding the best average completion times on that instance type. Note that the
values in column A correspond to the boldface values of Table 1. The last column
of the table reports the relative gap between the values of column A and column L,
computed as 100 · A−L

L .
On instances with sparse-first temporal distribution or random ordering generation

of requests, the best SmartStart algorithm in average yields large relative increasing
with respect to the average lower bound. However, on all other instances the best
SmartStart algorithm in average yields completion times which are less than 60%
greater than the corresponding average lower bound.

We recall that, by results in [5], the worst-case competitive ratio of A(α) is 1+ φ
for every α > 0. Since φ ≃ 1.6 this results in a worst-case relative increasing with
respect to an optimal offline algorithm of roughly 160%, for every SmartStart
algorithm. Table 2 indicates that, in practice, SmartStart algorithms never attain
this worst-case competitive ratio. In fact, this ratio is not reached even by comparing
with the average lower bound in place of the optimum.

In Figure 1 we provide a more detailed view of the same experiment. There, the y-
axis represents values of completion times; one boxplot summarizes the distribution
of solution values for each choice of α ∈ {0.2, 0.4, 0.8, 1.0, 1.4, 1.6}, as indicated
on the x-axis. The leftmost (resp. rightmost) boxplot refers to LB values (resp.
(1 + φ) · LB values, that is, the best competitive ratio of SmartStart). Average
values are marked with filled squares. First, we observe that the trend of each
quartile reflects that of average values (see Table 1). Second, we notice that A(1.6)
solution values are in general lower than (1+φ) ·LB; in turn, we know the theoretical
analysis to be tight, so we expect at least random instances to exist in our dataset on
which A(1.6) approaches the theoretical worst case (1+φ) ·OPT : in those instances

ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’ 7

8 Michele Barbato, Alberto Ceselli, and Filippo Mosconi

Fig. 1 Comparison of several SmartStart algorithms and the lower bounds computed on our
dataset.

LB is approaching OPT ; at the same time, the dispersion of LB values is low. This
makes us conjecture that the LB is of good quality in our instances.

3.3 Realtime Applicability

As discussed, SmartStart involves the iterative resolution of ATSPs. While being
an NP-hard problem, the size of ATSP instances manageable by current state-of-
the-art solvers is matching the size of instances arising from real-world applications.
Hence, it is of interest to evaluate the actual applicability of SmartStart in real-
world OL-ATSPs.

We proceed as follows. For all t ≥ 0, let Rt be the set of unserved requests, the
last of which appearing at instant t and let S(Rt) be the time A(α) employs to solve
the ATSP on Rt ∪ {O}. It never pays off to postpone the resolution of such an ATSP.
Then A(α) has a timeout whenever there exists a new request r appearing between t
and t + S(Rt). That is, in a real system, a new request appears while the algorithm is
still evaluating the previous ones. We use the probability of occurrence of a timeout
as a measure of applicability of SmartStart in a real-time context.

In fact, the occurrence of a timeout is a random variable Y = 1 if T < S, Y = 0
otherwise where in turn T is a random variable modeling the time interval between
two consecutive requests, and S is a random variable modeling the ATSP resolution
time using the ATSP solver. In our experiments we decided to map ATSP instances to
instances of the symmetric traveling salesman problem by means of a standard Karp
reduction [8], subsequently solved with Concorde [6], a state-of-the-art solver for the
symmetric traveling salesman problem. We approximate the cumulative distribution
function of S by its empirical counterpart through numerical simulation, considering
all ATSP runs in our experiments (that is 401.925 heterogeneous Concorde single

8 ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’

A computational evaluation of online ATSP algorithms 9

Fig. 2 Distribution of Concorde run times (top) and prob. of SmartStart timeouts (bottom).

thread calls on a 4.00GHz Intel(R) Core(TM) i7-6700K and 32GB RAM). In Figure 2
(top) we report such an empirical cumulative distribution function F(x), that is
estimating the probability that a Concorde run employs at most x seconds. For what
concerns T , instead, we assumed an exponential distribution for the time intervals
between two consecutive requests, whose density function is q(x) = λe−λx , that is a
standard modeling of independent inter-arrival times. We finally estimated

E[Y] = P[Y = 1] = P[S > T] =

=

∫ +∞

x=0
P[S > T |T = x]P[T = x]dx =

∫ +∞

x=0
P[S > x |T = x]P[T = x]dx

by numerically computing
∫ +∞
x=0 (1 − F(x)) · q(x) · dx.

That is, we statistically determine the probability of a SmartStart timeout in
our setting, for varying values 1/λ of the average time intervals between consecutive
requests. Results are plotted in Figure 2 (bottom). We deduce that the timeout
probability approaches 10% already for average time intervals not smaller than 7
seconds. As a conclusion, SmartStart can be considered a viable solution to solve
OL-ATSPs whose requests are generated at a high frequency (of the order of ≃ 5

ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’ 9

10 Michele Barbato, Alberto Ceselli, and Filippo Mosconi

seconds) and hence successfully embeddable in modern systems handling real-time
order satisfaction like automated warehouses.

4 Conclusions

In this paper we have performed an experimental analysis of SmartStart, a family of
algorithms for the OL-ATSP. First, we have shown that the parameter α determining
the SmartStart behavior requires careful fine-tuning to take advantage of a prior
knowledge on instance structure. In particular, often on structured instances the best
theoretical α resulted in SmartStart algorithms behaving poorly in practice. Even if
more aggressive settings of α always pay off in our experiments, the theoretical anal-
ysis of [5] becomes closer to our results when requests are spatially more randomly
distributed. We have additionally observed that well-tuned SmartStart algorithms
may produce solutions whose value is nearly optimal. This result was shown by com-
paring the quality of SmartStart solutions with a theoretical lower bound. Finally,
we have evaluated the usability of SmartStart in real-time applications by means
of a statistical framework, concluding that, also thanks to the performance level
reached by exact ATSP solvers and modern hardware, SmartStart can currently be
embedded in realtime systems dealing with OL-ATSP applications.

Acknowledgement. This research was partially funded by Regione Lombardia,
grant agreement n.E97F17000000009, project AD-COM.

References

1. AD-COM. Project website. https://ad-com.net/, last access April 2019.
2. M. Aprea, E. Feuerstein, G. Sadovoy, and A. S. de Loma. Discrete online TSP. In International

Conference on Algorithmic Applications in Management, pages 29–42. Springer, 2009.
3. N. Ascheuer, M. Grötschel, and A. A.-A. Abdel-Hamid. Order picking in an automatic

warehouse: Solving online asymmetric tsps. Mathematical Methods of Operations Research,
49(3):501–515, 1999.

4. N. Ascheuer, S. O. Krumke, and J. Rambau. Online dial-a-ride problems: Minimizing the
completion time. In H. Reichel and S. Tison, editors, STACS 2000, pages 639–650, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

5. G. Ausiello, V. Bonifaci, and L. Laura. The on-line asymmetric traveling salesman problem.
Journal of Discrete Algorithms, 6(2):290–298, 2008.

6. Concorde. D. L. Applegate, R. E. Bixby, V. Chvatal and W. J. Cook.
http://www.math.uwaterloo.ca/tsp/concorde.html, 2003.

7. G. Gutin and A. P. Punnen. The traveling salesman problem and its variations, volume 12.
Springer Science & Business Media, 2006.

8. R. Roberti and P. Toth. Models and algorithms for the asymmetric traveling salesman problem:
an experimental comparison. EURO Journal on Transportation and Logistics, 1(1):113–133,
2012.

9. TSPLib. Maintained by G. Reinelt.
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/, 2013.

10 ODS2019, 021, v2 (major): ’A computational evaluation of online ATSP algorithms’

