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Monopolar Graphs: Complexity of Computing Classical Graph
Parameters

Michele Barbato*, Dario Bezzi
Universita degli Studi di Milano, Dipartimento di Informatica, OptLab, Via Bramante 65, 26013 Crema (CR), Italy

Abstract

A graph G = (V, E) is monopolar if V can be partitioned into a stable set and a set inducing the union
of vertex-disjoint cliques. Motivated by an application of the clique partitioning problem on monopolar
graphs to the cosmetic manufacturing, we study the complexity of computing classical graph parameters
on the class of monopolar graphs. We show that computing the clique partitioning, stability and chromatic
numbers of monopolar graphs is NP-hard. Conversely, we prove that every monopolar graph has a polyno-
mial number of maximal cliques thus obtaining that a maximum-weight clique can be found in polynomial
time on monopolar graphs.

Keywords: Computational complexity, Monopolar graph, Maximum-weight clique, Clique partitioning,
Stable set, Graph coloring

1. Introduction

We consider simple undirected graphs whose terminology can be found in [2]. Given a graph G =
(V, E), a partition (A, B) of V is monopolar if A is a stable set and G[B], the graph induced by B in G, is
a cluster, that is, the union of vertex-disjoint cliques. The graph G is monopolar if its vertex set admits a
monopolar partition.

Recently, monopolar graphs have been used to detect core-periphery structure of protein interaction
networks [3]. ILP formulations and heuristic methods are given in [3] to extract a monopolar subgraph
from a general graph by removing as few edges as possible. Here, the input graph represents a protein
interaction network measurement affected by independent stochastic errors and the extracted monopolar
subgraph corresponds to the real structure of the observed network.

Our interest in monopolar graphs stems from their relation to another real-world problem, which arises
in cosmetic manufacturing and is described at the end of this introduction.

From a theoretical perspective, monopolar graphs have been mainly studied in connection with other
graph classes, such as polar graphs first defined in [25] and unipolar graphs treated, e.g., in [7, 10, 24]. All
these classes can be concisely described by means of the following definition used in [16]. Given I14 and
I1p two graph properties, G = (V, E) is a (Il4, I1p)-graph if V is partitionable into A and B such that G[A]
has property I14 and G[B] has property I1z. Monopolar graphs are easily seen to be the (K,-free, P3-free)-
graphs, see e.g., [3]. Similarly, polar graphs can be defined as the (P3-free, P3-free)-graphs and the unipolar
graphs as the (K,-free, P3-free)-graphs. Note that polar graphs generalize both unipolar and monopolar
graphs.

Most of works concerned with monopolar graphs are focused on the monopolarity recognition problem,
consisting in deciding whether a given input graph is monopolar. Monopolar recognition is relevant for
solving the analogous problem of recognizing polar graphs. Indeed, for several special classes of input
graphs, the monopolarity recognition problem admits polynomial-time algorithms which are also used
as subroutines to efficiently recognize polar graphs in those classes, see e.g., [5, 8, 9]. Other efficient

*Corresponding author.
Email addresses: michele.barbato@unimi.it (Michele Barbato), dario.bezzi@unimi. it (Dario Bezzi)

Preprint submitted to Discrete Applied Mathematics February 16, 2019



26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

algorithms for monopolarity recognition are given if the number of maximal cliques in the cluster induced
by a monopolar partition is treated as a fixed parameter [16], for superclasses of chair-free and hole-free
input graphs, and for classes of input graphs with bounded clique- or tree-width, see [18] and the references
therein. On the other hand, the results in [11] imply that it is NP-complete to recognize (mono)polar graphs
in general and the same holds for (mono)polar recognition of K3-free input graphs [6, 17] and K3-free planar
input graphs of maximum degree three [18].

The NP-completeness of recognizing (mono)polar graphs contrasts with the fact that unipolar graphs
can be recognized in polynomial time, as shown in [7, 10, 24]. In fact, [10] also shows that unipolar
graphs are perfect (see e.g., [15, Sect. 9.2] for the definition of perfect graphs). Hence it is well-known [15,
Chapt. 9] that the stability, chromatic, clique and clique partitioning numbers of unipolar graphs can be
computed in polynomial time and, to this end, specific combinatorial algorithms exploiting the unipolar
structure are provided in [10].

Conversely, little seems to be known about the complexity of determining the same four parameters
on monopolar graphs. In particular, a polynomial-time algorithm for the stability number is guaranteed
to exist in monopolar 2Ps-free graphs, see [19], while [22] provides efficient combinatorial algorithms for
computing the clique and stability numbers of (mono)polar graphs which are trivially perfect, as defined
in [14].

Contribution. We contribute to the investigation on the complexity of computing classical graph param-
eters on monopolar graphs. We prove that determining the clique partitioning, stability and chromatic
numbers on monopolar graphs is NP-hard. The NP-hardness of the chromatic number computation is de-
rived from the NP-completeness of the 3-CoLorRABILITY problem on monopolar graphs. The NP-hardness of
computing the clique partitioning number is proven along with the NP-hardness of recognizing a positive
clique partitioning-stability number gap on monopolar graphs. All these complexity results are obtained by
reductions of classical NP-complete problems and involve graphs whose vertex set is explicitly partitioned
in a monopolar fashion. Hence they hold even if a monopolar partition is known. Clearly, they also extend
to the more general class of polar graphs and to the weighted versions of the considered problems. Subse-
quently, we prove that the Max-WEiGHT CLIQUE problem can be solved in polynomial time on monopolar
graphs. We derive this latter result from a more general one, namely, that (K,,-free, P3-free)-graphs have a
polynomial number of maximal cliques for every fixed m > 1.

A Monopolar Graph Model for Manufacturing. We conclude the introduction by describing the afore-
mentioned real-world problem that can be modelled by means of monopolar graphs. The problem, which
we call ParTiTioNING-COVERING, is as follows. We are given a set of ingredients N, a set of containers
C={Cy,...,C¢} with C; € N forevery i € {1,...,k} and a set of d cosmetic products, each obtained by
combining ingredients in the containers. Let P; C N be the set of ingredients needed for making product
jel{l,....d} and P = {Py,...,Ps}. The goal is to decide whether there exists a partition of C into d
subsets Sy,...,S, such that P; C UCES‘/_ C forevery j = 1,...,d. The sets N, C and P define a feasible
instance of the PARTITIONING-COVERING problem whenever such a partition exists.

By definition, a feasible instance of the PArTITIONING-COVERING problem admits an assignment of each
container to exactly one product. The covering condition P; C (Jces, C for every j = 1,...,d guarantees
that every product can be obtained by using the ingredients in its assigned containers. The partitioning
condition is imposed because every product requires a series of time-consuming tasks to be performed on
its assigned containers. Hence we assume that an ingredient in a container assigned to product j € {1,...,d}
cannot be used to make product £ # j, even if it is not present in P;.

Let I be an instance of the ParTiTIoNING-COVERING problem defined by N, C and # as above. We model /
as a monopolar graph G; = (Vy, &) as follows. The vertex set V; is given by the union of two sets A and B
such that A contains a vertex v¢ for each element of C € C and B contains a vertex v; p for every pair {i, P}
withi € N and P € P such thati € P. The edge set &, is obtained by linking v¢ and v; p wheneveri € CN P
for some C € C and P € P and by linking v; p and v;p whenever i, j € P for some P € . Then (A, B)
is a monopolar partition of V, since A is a stable set and G,[B] is a cluster whose maximal cliques are in
one-to-one correspondence with the elements of P.

Proposition 1.1 below reveals a relation between the PartiTioNiNg-CoveERING problem and the clique
partitioning number of monopolar graphs.
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Proposition 1.1. Let N, C and P define an instance I of the PARTITIONING-COVERING problem and let G| be
its corresponding graph. Then I is feasible if and only if the clique partitioning number of Gy is |C].

Proof. Throughout the proof we use the notation adopted in the description of G; = (V;, E;). We observed
that A = {v¢: C € C} is a stable set of G; and (A, B) with B = V; \ A is a monopolar partition. For
Jj=1,...,d, let H; be the maximal clique of G,[B] corresponding to P; € P.

If I is feasible there exists a partition S1,...,S,4 of C such that P; C UCeS,- Cforj=1,...,d. For
every C € C let j(C) € {1,...,d} be the unique index such that C € § j¢). We define K¢ as the subgraph
of G; induced by v¢ and its neighborhood in H ). The subgraph K¢ is a clique for every C € C. Let now
j€fl,....,dyandi € P;. Theni € C* for some C* € §;. Note that j(C*) = jand v;p, € H;. Then
vip; € Kc+. Hence the set {K¢: C € C} is a clique cover of G. It follows that G, can be partitioned into at
most |C] cliques. Since |C| = |A] and A is a stable set, the clique partitioning number of G, is exactly |C].

Let now K be a clique partition of G; consisting of |C| cliques. For every j = 1,...,d,let K; € K
be such that every vertex of H; belongs to a clique of ;. The maximal cliques of G;[B] are vertex-

disjoint, so K; N K, = 0 for all distinct j, £ € {1,...,d}. Since every vertex of B belongs to some clique
of K, we extend K, ..., Ky to a partition of K by including in K every clique K € K with KN B = 0.
From |C| = |A| and A being stable, every clique of K contains exactly one vertex of A. It follows that

the sets §; = {C € C: v¢ € K forsome K € K} for j = 1,...,d partition C. Let us take j € {1,...,d}
and i € P;. Vertex v; p, belongs to some K* € K. Hence there exists C* € C such that ve~ € K* and, as a
consequence, {vcs,vip,} € &. Theni € C* N P;. This ensures that P; C Uces, C for j =1,...,d. These
properties of S 1, ..., S prove that [ is feasible. ]

2. Complexity Results

Throughout this section, the symbols a(G), y(G) and w(G) respectively denote the stability, chromatic
and clique number of a graph G. The clique partitioning number is indicated by x(G) to emphasize that it
equals the chromatic number of the complement G, see e.g., [15, Sect. 9.4].

2.1. NP-Hardness Results

Clique Partitioning Monopolar Graphs and Related Problems. The PARTITIONING-COVERING problem of
the introduction is easily seen to be in NP. We now prove that it is NP-complete. This, together with
Proposition 1.1 and the monopolarity of G; for every PartitioNiNg-CovERING instance [, implies that it is
NP-hard to compute the clique partitioning number of generic monopolar graphs.

Our construction relies on a reduction from the well-known SEr CovERING problem. An instance of the
Set CovERING problem is a triple (U, 7, ) where U is a set, 7 is a collection of k subsets of U such that
Urer T = U and € < k is a positive integer. A subset 7' C 7 such that | Jye~ T = U is said to cover U,
and it is called a feasible cover if it additionally satisfies |7'| < £. Deciding whether a generic instance of
the SET CoveRING problem has a feasible cover is NP-complete [12, p. 222].

Given a SEt CoverING instance J = (U, T, ) as above, we construct an instance of the PARTITIONING-
CoverING problem described in the introduction as follows. First, let E = {ey, ..., e;_¢} be a set of dummy
elements such thate; ¢ U fori = 1,...,k—£. We define ingredients N = UUE, containers C = {TUE: T €
TYand P = {U,{e;}: i = 1,...k—{}. Let I; be the ParTrTioNING-COVERING instance defined by N, C and P.
We observe that the size of I; is polynomial in the size of J.

Lemma 2.1. Instance J has a feasible cover if and only if I; is feasible. Thus, the PARTITIONING-COVERING
problem is NP-complete.

Proof. 1t is not restrictive to assume that a feasible cover 7 of J consists of £ elements of 7. Let 7 \ 7' =
{T,...Tr_¢}. We consider the partition of C given by the sets §; = {T; U E} foreveryi=1,...,k— € and
Si—e+1 ={TUE: T € T'}. We assign S; to {¢;} foreveryi = 1,...,k— € and Sy to U. Then I; is
feasible since |{P| = k— €+ 1 and 7' covers U.

Conversely, if /; is feasible, C is partitioned so that every part is assigned to exactly one element of .
Let S C C be the part assigned to U in such a partition. Since |C| = k and |E| = k — £ then S contains
at most ¢ sets Cy,...,Cj, of C with h < €. Finally, 77 = {Ty,...,T;} defined by T; = C; \ E for every
ie€{l,...,h}isafeasible cover of J,since T; C7 ande;j ¢ U for j=1,...,k— ¢, so T’ covers U. Hence
the PARTITIONING-COVERING problem is NP-complete. 0
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Proposition 2.2. Computing the clique partitioning number on the class of monopolar graphs is NP-hard.

Proof. Immediate from Proposition 1.1 and Lemma 2.1, the graph G; being monopolar for every PARTITIONING-
CovERING instance /, as proven in the introduction. O

The specific structure of instance I; constructed for the proof of Lemma 2.1 also allows us to prove that
it is NP-hard to determine whether y(G) = a(G) for a monopolar graph G. This latter problem has been
shown to be NP-hard on generic graphs in [4]. For next proposition, we adapt the proof of [4].

Proposition 2.3. Deciding whether x(G) = a(G) for a generic monopolar graph G is NP-hard even if
some minimum stable set of G is known.

Proof. Given an instance J = (U, T, ) of the SET COvERING problem, let /; be the PARTITIONING-COVERING
instance constructed as above, with C its set of containers. Let also G;, = (Vy,,&;,) be the graph corre-
sponding to /; as described in the introduction. Clearly, G;, has size polynomial in the size of J. More-
over, V;, has a monopolar partition (A, B) with every vertex in A corresponding to an element of C and
every maximal clique of G,,[B] corresponding to an element of . In particular, G, has a vertex in B for
every set {e;} withi = 1,...,k — €. We call F the set of these vertices. Then A U F induces a complete
bipartite subgraph of G;,. From £ > 1 we get |F| < |A| — 1. By construction, every vertex in the maximal
clique of G;,[B] corresponding to U is adjacent to at least one vertex in A, since 7~ covers U. Finally, we
observe that |C| = |7, so (G1,) = |A| = |C| = |7|. By Proposition 1.1 and Lemma 2.1, a polynomial-time
algorithm for deciding whether y(G) = @(G) for every monopolar graph G allows one to determine whether
X(G1,) = |7 and, as a consequence, whether J has a feasible cover. This proves the result. O

Stability Number of Monopolar Graphs. We give a reduction of the 3-CoLoRABILITY problem on general
graphs to the stable set problem on monopolar graphs. In the 3-CoLoraBILITY problem we have to decide
whether a given input graph admits a proper coloring with at most three colors. The 3-COLORABILITY
problem is NP-complete, see [12, p. 191].

For our purposes, we consider the gadget shown in Figure 2.1a. Its vertices of degree one will be called
extreme. Let G = (V, E) be a graph. We construct a graph Hg = (Vi5, Eg) from G by replacing each vertex
v € V by three vertices vy, v, and v; linked to form a K3 and by joining the two cliques corresponding to
v and w as in Figure 2.1b whenever {v,w} € E. More precisely, for every pair {v;, w;} where i = 1,2,3
and {v, w} is an edge of G, we add a gadget having v; and w; as extreme vertices.

wi w3

R —

-

V] V3
(a) Gadget used in Hg. (b) Transformation of an edge {v, w} of G into a monopolar subgraph of H.
Square vertices are a stable set, round vertices induce a cluster.

Figure 2.1

Computing a(Hg) is enough to solve the 3-CoLoRABILITY problem on G, as we prove in next lemma.

Lemma 2.4. Let G = (V,E) be a graph and Hg = (Vg, Eg) be the associated monopolar graph defined
above. Then G is 3-colorable if and only if a(Hg) = |V| + 9|E|.

Proof. Let I = {1,2,3},C ={vi € Vg:v e V,ie I}and D = Vi \ C. The graph Hg[C] is a cluster
consisting of |V| vertex-disjoint K3 graphs, hence a(Hg[C]) = |V|. The graph Hg[D] is the union of

4
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3|E| vertex-disjoint cycles of length six, thus a(Hg[D]) = 9|E|. Since C and D partition Vi, we get that
a(Hg) < |V| + 9|E|. The same argument also proves that the right-hand-side value is reached only by
the cardinality of stable sets including exactly one vertex for each K3 corresponding to a vertex of V and
exactly three vertices per cycle being part of the gadgets corresponding to the edges of G.

So, if § is a maximum stable set of Hg of cardinality |V| + 9|E|, we get that v; € § implies w; ¢ S
whenever {v,w} € E. Otherwise, S would contain at most two vertices in the cycle of the gadget having v;
and w; as extreme vertices. It follows that, whenever {v,w} € E, if v; € S for some i € 1 then w; € S for
some j € 1 \ {i}, as S contains one vertex for each K3 corresponding to a vertex of V. As a consequence,
assigning color i € J to vertex v such that v; € § yields a proper coloring of G using at most three colors.

Conversely, let G be 3-colorable with colors in 7. We define the stable set S| = {v; € Vg: v €
V has color i € T}. Let us consider the graph H(; obtained from Hg by removing all vertices in S| and their
neighbors. Since every vertex v € V is assigned a color this implies that all K3 graphs corresponding to
the vertices of G are removed. Moreover, at most one vertex per gadget is removed since for every edge
{v,w} € E vertices v and w are assigned distinct colors. It follows that Hy, has 3|E| connected components
each being either a path on five vertices or a cycle on six vertices. All these connected components admit
a stable set of size three, hence a maximum stable set S, of H; has size 9|E|. Now, § =51 U S is a stable
set of Hg of cardinality |V| + 9|E|, hence it is a maximum stable set of Hg. O

Proposition 2.5. Computing the stability number on the class of monopolar graphs is NP-hard.

Proof. The size of H; = (Vg, Eg) is polynomial in the size of G. By Lemma 2.4 it is enough to prove
that Hg is monopolar for every graph G. Let us consider the partition (A, B) of Vi where A contains all
vertices of degree three of the gadgets corresponding to the edges of G, while B contains all other vertices
of V. (Figure 2.1b illustrates this partition on the graph Hg,.) By construction of Hg the vertices of
distinct gadgets corresponding to the edges of G are not adjacent except for their extreme vertices, thus A is
a stable set. The same argument shows that a P3 in Hg[B] can only be induced by three extreme vertices of
the gadgets used in the construction of H;. However, every connected subgraph containing three extreme
vertices is a K3. Hence Hg[B] is a cluster and (A, B) a monopolar partition of V. O

Chromatic Number of Monopolar Graphs. We conclude the section by proving that the 3-CoLoRrABILITY
problem on monopolar graphs is NP-complete. This immediately proves that computing the chromatic
number of monopolar graphs is NP-hard in general. We adapt a well-known reduction of the 3-SAT prob-
lem to 3-CoLoraBILITY problem on general graphs [13, Thm. 2.1].

An instance of the 3-SAT problem is a set of disjunctive clauses each consisting of three literals from
a given set of positive and negated variables. The goal is to determine the existence of a truth assignment
for the instance, i.e., an assignment of boolean values to the variables making all clauses true. The 3-SAT
problem is NP-complete [12, p. 259].

Our reduction relies on two gadgets. The first gadget is constructed by first taking a diamond obtained
from K4 by removing an edge. We call p and g the two vertices of the diamond of degree two and f and ¢
the other two vertices. For every variable x of the given instance, we add a cycle of length five having p as
a vertex. The neighbors of p in the cycle of variable x will be referred to as x and x. Finally, we link the
remaining two vertices of the cycle to vertex ¢g. In Figure 2.2a we illustrate this gadget for two variables x
and y.

The second gadget is depicted in Figure 2.2b and it is the same that is used in [13]. We call it clause
gadget. A vertex of a clause gadget is a literal vertex if it has degree one and truth vertex if it has degree
two.

Given an instance I of the 3-SAT problem, we construct a graph G, as follows. We start with a gadget
of the first type as above. Subsequently, for every clause C = (€, {»,{3) of I we create a clause gadget
whose literal vertices are identified with the vertices of the first gadget corresponding to the same literals.
Finally, we link the truth vertex of each clause gadget to vertices p and f.

Lemma 2.6. The graph G is monopolar for every instance I of the 3-SAT problem.

Proof. The vertex set of the gadget of first type admits a monopolar partition (A, B) with f,p € B and
x, X € A for every variable x, see Figure 2.2a. The vertex set of a clause gadget has a monopolar partition

5
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0
p
4
X y B
(a) First monopolar gadget. Square vertices are in A, round ver- (b) Clause gadget. It is monopolar: Square ver-
tices in B. tices are in A, round vertices in B.

Figure 2.2

(A, B) in which all literal vertices and the truth vertex belong to A, see Figure 2.2b. Hence identifying the
literal vertices across gadgets of different type and linking all truth vertices to p and f does not break the
monopolarity. O

We just sketch the proof of next lemma, as the argument is the same as in classical reductions of the
3-SAT problem to the 3-CoLoraBILITY problem given in [13, Thm. 2.1].

Lemma 2.7. Given an instance I of the 3-SAT problem, the graph G is 3-colorable if and only if there is
a truth assignment for I.

Proof. The gadget of first type is 3-colorable. Let F and T be the colors respectively assigned to f and ¢
and let N be the third color in such a 3-coloring (note that p and g are colored N). A literal is assigned
boolean value true if the corresponding vertex in the first gadget is colored T, otherwise it is assigned
false. Itis easy to see that, for every variable x of I, vertices x and X cannot be colored N and must have
distinct colors, so the above is a consistent assignment of boolean values to the variables. As observed
in [13], under the above 3-coloring, the truth vertex of a clause gadget can be colored T if and only if at
least one literal vertex in the same clause is. Since the truth vertices are all linked to f and p, the graph G,
is 3-colorable if and only if 7 admits a truth assignment. O

The proof of the following proposition is now immediate.

Proposition 2.8. The 3-CoLoRABILITY problem on monopolar graphs is NP-complete. Computing the chro-
matic number on monopolar graphs is NP-hard.

In Section 2.2 we show that the largest clique of a monopolar graph can be found in polynomial time.
In view of this fact, the result of Proposition 2.8 is quite surprising after observing that w(G) < x(G) <
w(G) + 1 for every monopolar graph G = (V, E). It is well-known that the lower bound holds for every
graph. For the upper bound note that if (A, B) is a monopolar partition of V, then the maximal cliques of
G[B] can be colored with at most w(G) colors. Then we can assign an additional color to all vertices in A
to obtain a proper coloring of G.

2.2. Polynomial-Time Algorithms for Clique Problems on Monopolar Graphs

We follow to a large extent the definitions given in [21]. A clique is maximal if it is not contained in
another clique. A graph class is hereditary if it is closed under taking induced subgraphs. A hereditary
graph class has few cliques if there exists a polynomial p(n) such that every G = (V, E) in the class has no
more than p(|V|) maximal cliques. The octahedral graph O,, is obtained from K, by removing a perfect
matching.

For every m € Z, the octahedral graph O,, is a complete m-partite graph with every part of the partition
containing exactly two vertices. Moreover, taking one vertex in each part induces a maximal clique of

6
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size m in O,, and this easily shows that the class of graphs containing all octahedral graphs has not few
cliques. However, octahedral graphs are the only forbidden graphs in hereditary classes having few cliques,
as stated in the following result.!

Theorem 2.9 (see [20]). A hereditary graph class G has few cliques if and only if O, ¢ G for some
constant m € Z,.

We now prove a corollary of Theorem 2.9.
Corollary 2.10. Let m > 1 be a fixed integer. The class of (K,,-free, P3-free)-graphs has few cliques.

Proof. The class of (K,,-free, Ps3-free)-graphs is hereditary. Thus by Theorem 2.9 it suffices to show that
Opy41 18 not a (K,,-free, P3-free)-graph. Assume it is. Let A and B denote a vertex partition of O,,,; such
that O,,,1[A] is K,-free and O,,,1[B] is P3-free. We recall that O, is a complete (m + 1)-partite graph. If
there are m parts in the (m + 1)-partition of O,,;| each having at least one vertex in A, then O,,,|[A] contains
a K,,. As a consequence, there are at least two parts contained in B but this contradicts the hypothesis that
O,,+1[B] is P3-free. ]

Corollary 2.11. Let G = (V, E) be a monopolar graph and c: V — R be a weight function on V. Then the
Max-WEiGHT CLIQUE problem max{c(K): K is a clique of G} can be solved in polynomial time. In particu-
lar, w(G) can be determined in polynomial time.

Proof. The result holds for all graph classes having few cliques, as shown in [21]. By Corollary 2.10 this
is the case for monopolar graphs which are exactly the (K,-free, P3-free)-graphs. O

We conclude with a few observations.

Remark 2.12. Let G = (V, E) be a monopolar graph on n vertices and m edges and let us assume to know a
monopolar partition (A, B) of V. Then, representing G by an adjacency list, the maximal cliques of G[B] can
be constructed in O(|B|) time. There are O(|B|) such cliques. Every v € A together with its neighborhood
in a maximal clique H of G[B] induces a maximal clique of G, whenever the neighborhood of v in H is
nonempty. Moreover, an edge incident to v € A belongs to exactly one such a clique. It follows that there
are O(m) maximal cliques of G with a vertex in A and a vertex in B and all of them can be constructed in
O(m) when the maximal cliques of G[B] are known. Every other maximal clique of G is either maximal in
GI[B] or an isolated vertex of A. Since |A| + |B| = n constructing all maximal cliques of G takes O(n + m)
time if (A, B) is known. The above discussion shows that G has O(n + m) maximal cliques. Consequently,
the Max-WEiGHT CLIQUE problem can be solved in O(n + m) time on G if (A, B) is known. In general, the
h maximal cliques of a graph with n vertices and m edges can be listed in O(hnm) time [23]. Thus the
maximal cliques of a monopolar graph can be listed in O(n*>m + nm?) time if no monopolar partition is
explicitly known and this gives a more direct proof of Corollary 2.11.

Remark 2.13. Corollary 2.11 and the results shown in [21] imply that the problem of partitioning the
vertices of a monopolar graph into at most k cliques is polynomially solvable whenever k is constant (i.e.,
it is not part of the input). We sketch the overall idea of a polynomial algorithm, referring the reader to [21,
p. 133] for a more detailed treatment. One first shows that only maximal cliques are needed in a k-covering
of the vertices into cliques; next, since k is constant and the number of maximal cliques is polynomially
bounded, enumerating all subsets of maximal cliques of cardinality k can be done in polynomial time;
finally, evaluating whether a set of cliques covers all vertices can be done in quadratic time and this yields
the result.
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