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Abstract

A graph G = (V, E) is monopolar if V can be partitioned into a stable set and a set inducing the union
of vertex-disjoint cliques. Motivated by an application of the clique partitioning problem on monopolar
graphs to the cosmetic manufacturing, we study the complexity of computing classical graph parameters
on the class of monopolar graphs. We show that computing the clique partitioning, stability and chromatic
numbers of monopolar graphs is NP-hard. Conversely, we prove that every monopolar graph has a polyno-
mial number of maximal cliques thus obtaining that a maximum-weight clique can be found in polynomial
time on monopolar graphs.

Keywords: Computational complexity, Monopolar graph, Maximum-weight clique, Clique partitioning,
Stable set, Graph coloring

1. Introduction1

We consider simple undirected graphs whose terminology can be found in [2]. Given a graph G =2

(V, E), a partition (A, B) of V is monopolar if A is a stable set and G[B], the graph induced by B in G, is3

a cluster, that is, the union of vertex-disjoint cliques. The graph G is monopolar if its vertex set admits a4

monopolar partition.5

Recently, monopolar graphs have been used to detect core-periphery structure of protein interaction6

networks [3]. ILP formulations and heuristic methods are given in [3] to extract a monopolar subgraph7

from a general graph by removing as few edges as possible. Here, the input graph represents a protein8

interaction network measurement affected by independent stochastic errors and the extracted monopolar9

subgraph corresponds to the real structure of the observed network.10

Our interest in monopolar graphs stems from their relation to another real-world problem, which arises11

in cosmetic manufacturing and is described at the end of this introduction.12

From a theoretical perspective, monopolar graphs have been mainly studied in connection with other13

graph classes, such as polar graphs first defined in [25] and unipolar graphs treated, e.g., in [7, 10, 24]. All14

these classes can be concisely described by means of the following definition used in [16]. Given ΠA and15

ΠB two graph properties, G = (V, E) is a (ΠA,ΠB)-graph if V is partitionable into A and B such that G[A]16

has property ΠA and G[B] has property ΠB. Monopolar graphs are easily seen to be the (K2-free, P3-free)-17

graphs, see e.g., [3]. Similarly, polar graphs can be defined as the (P3-free, P3-free)-graphs and the unipolar18

graphs as the (K2-free, P3-free)-graphs. Note that polar graphs generalize both unipolar and monopolar19

graphs.20

Most of works concerned with monopolar graphs are focused on the monopolarity recognition problem,21

consisting in deciding whether a given input graph is monopolar. Monopolar recognition is relevant for22

solving the analogous problem of recognizing polar graphs. Indeed, for several special classes of input23

graphs, the monopolarity recognition problem admits polynomial-time algorithms which are also used24

as subroutines to efficiently recognize polar graphs in those classes, see e.g., [5, 8, 9]. Other efficient25

∗Corresponding author.
Email addresses: michele.barbato@unimi.it (Michele Barbato), dario.bezzi@unimi.it (Dario Bezzi)

Preprint submitted to Discrete Applied Mathematics February 16, 2019



algorithms for monopolarity recognition are given if the number of maximal cliques in the cluster induced26

by a monopolar partition is treated as a fixed parameter [16], for superclasses of chair-free and hole-free27

input graphs, and for classes of input graphs with bounded clique- or tree-width, see [18] and the references28

therein. On the other hand, the results in [11] imply that it is NP-complete to recognize (mono)polar graphs29

in general and the same holds for (mono)polar recognition of K3-free input graphs [6, 17] and K3-free planar30

input graphs of maximum degree three [18].31

The NP-completeness of recognizing (mono)polar graphs contrasts with the fact that unipolar graphs32

can be recognized in polynomial time, as shown in [7, 10, 24]. In fact, [10] also shows that unipolar33

graphs are perfect (see e.g., [15, Sect. 9.2] for the definition of perfect graphs). Hence it is well-known [15,34

Chapt. 9] that the stability, chromatic, clique and clique partitioning numbers of unipolar graphs can be35

computed in polynomial time and, to this end, specific combinatorial algorithms exploiting the unipolar36

structure are provided in [10].37

Conversely, little seems to be known about the complexity of determining the same four parameters38

on monopolar graphs. In particular, a polynomial-time algorithm for the stability number is guaranteed39

to exist in monopolar 2P3-free graphs, see [19], while [22] provides efficient combinatorial algorithms for40

computing the clique and stability numbers of (mono)polar graphs which are trivially perfect, as defined41

in [14].42

Contribution. We contribute to the investigation on the complexity of computing classical graph param-43

eters on monopolar graphs. We prove that determining the clique partitioning, stability and chromatic44

numbers on monopolar graphs is NP-hard. The NP-hardness of the chromatic number computation is de-45

rived from the NP-completeness of the 3-Colorability problem on monopolar graphs. The NP-hardness of46

computing the clique partitioning number is proven along with the NP-hardness of recognizing a positive47

clique partitioning-stability number gap on monopolar graphs. All these complexity results are obtained by48

reductions of classical NP-complete problems and involve graphs whose vertex set is explicitly partitioned49

in a monopolar fashion. Hence they hold even if a monopolar partition is known. Clearly, they also extend50

to the more general class of polar graphs and to the weighted versions of the considered problems. Subse-51

quently, we prove that the Max-Weight Clique problem can be solved in polynomial time on monopolar52

graphs. We derive this latter result from a more general one, namely, that (Km-free, P3-free)-graphs have a53

polynomial number of maximal cliques for every fixed m ≥ 1.54

A Monopolar Graph Model for Manufacturing. We conclude the introduction by describing the afore-55

mentioned real-world problem that can be modelled by means of monopolar graphs. The problem, which56

we call Partitioning-Covering, is as follows. We are given a set of ingredients N, a set of containers57

C = {C1, . . . ,Ck} with Ci ⊆ N for every i ∈ {1, . . . , k} and a set of d cosmetic products, each obtained by58

combining ingredients in the containers. Let P j ⊆ N be the set of ingredients needed for making product59

j ∈ {1, . . . , d} and P = {P1, . . . , Pd}. The goal is to decide whether there exists a partition of C into d60

subsets S 1, . . . , S d such that P j ⊆
⋃

C∈S j
C for every j = 1, . . . , d. The sets N, C and P define a feasible61

instance of the Partitioning-Covering problem whenever such a partition exists.62

By definition, a feasible instance of the Partitioning-Covering problem admits an assignment of each63

container to exactly one product. The covering condition P j ⊆
⋃

C∈S j
C for every j = 1, . . . , d guarantees64

that every product can be obtained by using the ingredients in its assigned containers. The partitioning65

condition is imposed because every product requires a series of time-consuming tasks to be performed on66

its assigned containers. Hence we assume that an ingredient in a container assigned to product j ∈ {1, . . . , d}67

cannot be used to make product ` , j, even if it is not present in P j.68

Let I be an instance of the Partitioning-Covering problem defined by N, C and P as above. We model I69

as a monopolar graph GI = (VI ,EI) as follows. The vertex setVI is given by the union of two sets A and B70

such that A contains a vertex vC for each element of C ∈ C and B contains a vertex vi,P for every pair {i, P}71

with i ∈ N and P ∈ P such that i ∈ P. The edge set EI is obtained by linking vC and vi,P whenever i ∈ C∩P72

for some C ∈ C and P ∈ P and by linking vi,P and v j,P whenever i, j ∈ P for some P ∈ P. Then (A, B)73

is a monopolar partition of VI , since A is a stable set and GI[B] is a cluster whose maximal cliques are in74

one-to-one correspondence with the elements of P.75

Proposition 1.1 below reveals a relation between the Partitioning-Covering problem and the clique76

partitioning number of monopolar graphs.77
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Proposition 1.1. Let N, C and P define an instance I of the Partitioning-Covering problem and let GI be78

its corresponding graph. Then I is feasible if and only if the clique partitioning number of GI is |C|.79

Proof. Throughout the proof we use the notation adopted in the description of GI = (VI ,EI). We observed80

that A = {vC : C ∈ C} is a stable set of GI and (A, B) with B = VI \ A is a monopolar partition. For81

j = 1, . . . , d, let H j be the maximal clique of GI[B] corresponding to P j ∈ P.82

If I is feasible there exists a partition S 1, . . . , S d of C such that P j ⊆
⋃

C∈S j
C for j = 1, . . . , d. For83

every C ∈ C let j(C) ∈ {1, . . . , d} be the unique index such that C ∈ S j(C). We define KC as the subgraph84

of GI induced by vC and its neighborhood in H j(C). The subgraph KC is a clique for every C ∈ C. Let now85

j ∈ {1, . . . , d} and i ∈ P j. Then i ∈ C? for some C? ∈ S j. Note that j(C?) = j and vi,P j ∈ H j. Then86

vi,P j ∈ KC? . Hence the set {KC : C ∈ C} is a clique cover of GI . It follows that GI can be partitioned into at87

most |C| cliques. Since |C| = |A| and A is a stable set, the clique partitioning number of GI is exactly |C|.88

Let now K be a clique partition of GI consisting of |C| cliques. For every j = 1, . . . , d, let K j ⊆ K89

be such that every vertex of H j belongs to a clique of K j. The maximal cliques of GI[B] are vertex-90

disjoint, so K j ∩ K` = ∅ for all distinct j, ` ∈ {1, . . . , d}. Since every vertex of B belongs to some clique91

of K , we extend K1, . . . ,Kd to a partition of K by including in K1 every clique K ∈ K with K ∩ B = ∅.92

From |C| = |A| and A being stable, every clique of K contains exactly one vertex of A. It follows that93

the sets S j = {C ∈ C : vC ∈ K for some K ∈ K j} for j = 1, . . . , d partition C. Let us take j ∈ {1, . . . , d}94

and i ∈ P j. Vertex vi,P j belongs to some K? ∈ K j. Hence there exists C? ∈ C such that vC? ∈ K? and, as a95

consequence, {vC? , vi,P j } ∈ EI . Then i ∈ C? ∩ P j. This ensures that P j ⊆
⋃

C∈S j
C for j = 1, . . . , d. These96

properties of S 1, . . . , S d prove that I is feasible.97

2. Complexity Results98

Throughout this section, the symbols α(G), χ(G) and ω(G) respectively denote the stability, chromatic99

and clique number of a graph G. The clique partitioning number is indicated by χ(G) to emphasize that it100

equals the chromatic number of the complement G, see e.g., [15, Sect. 9.4].101

2.1. NP-Hardness Results102

Clique Partitioning Monopolar Graphs and Related Problems. The Partitioning-Covering problem of103

the introduction is easily seen to be in NP. We now prove that it is NP-complete. This, together with104

Proposition 1.1 and the monopolarity of GI for every Partitioning-Covering instance I, implies that it is105

NP-hard to compute the clique partitioning number of generic monopolar graphs.106

Our construction relies on a reduction from the well-known Set Covering problem. An instance of the107

Set Covering problem is a triple (U,T , `) where U is a set, T is a collection of k subsets of U such that108 ⋃
T∈T T = U and ` ≤ k is a positive integer. A subset T ′ ⊆ T such that

⋃
T∈T ′ T = U is said to cover U,109

and it is called a feasible cover if it additionally satisfies |T ′| ≤ `. Deciding whether a generic instance of110

the Set Covering problem has a feasible cover is NP-complete [12, p. 222].111

Given a Set Covering instance J = (U,T , `) as above, we construct an instance of the Partitioning-112

Covering problem described in the introduction as follows. First, let E = {e1, . . . , ek−`} be a set of dummy113

elements such that ei < U for i = 1, . . . , k−`. We define ingredients N = U∪E, containers C = {T∪E : T ∈114

T } and P = {U, {ei} : i = 1, . . . k − `}. Let IJ be the Partitioning-Covering instance defined by N, C and P.115

We observe that the size of IJ is polynomial in the size of J.116

Lemma 2.1. Instance J has a feasible cover if and only if IJ is feasible. Thus, the Partitioning-Covering117

problem is NP-complete.118

Proof. It is not restrictive to assume that a feasible cover T ′ of J consists of ` elements of T . Let T \T ′ =119

{T1, . . .Tk−`}. We consider the partition of C given by the sets S i = {Ti ∪ E} for every i = 1, . . . , k − ` and120

S k−`+1 = {T ∪ E : T ∈ T ′}. We assign S i to {ei} for every i = 1, . . . , k − ` and S k−`+1 to U. Then IJ is121

feasible since |P| = k − ` + 1 and T ′ coversU.122

Conversely, if IJ is feasible, C is partitioned so that every part is assigned to exactly one element of P.123

Let S ⊆ C be the part assigned to U in such a partition. Since |C| = k and |E| = k − ` then S contains124

at most ` sets C1, . . . ,Ch of C with h ≤ `. Finally, T ′ = {T1, . . . ,Th} defined by Ti = Ci \ E for every125

i ∈ {1, . . . , h} is a feasible cover of J, since Ti ⊆ T and e j < U for j = 1, . . . , k − `, so T ′ coversU. Hence126

the Partitioning-Covering problem is NP-complete.127
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Proposition 2.2. Computing the clique partitioning number on the class of monopolar graphs is NP-hard.128

Proof. Immediate from Proposition 1.1 and Lemma 2.1, the graphGI being monopolar for every Partitioning-129

Covering instance I, as proven in the introduction.130

The specific structure of instance IJ constructed for the proof of Lemma 2.1 also allows us to prove that131

it is NP-hard to determine whether χ(G) = α(G) for a monopolar graph G. This latter problem has been132

shown to be NP-hard on generic graphs in [4]. For next proposition, we adapt the proof of [4].133

Proposition 2.3. Deciding whether χ(G) = α(G) for a generic monopolar graph G is NP-hard even if134

some minimum stable set of G is known.135

Proof. Given an instance J = (U,T , `) of the Set Covering problem, let IJ be the Partitioning-Covering136

instance constructed as above, with C its set of containers. Let also GIJ = (VIJ ,EIJ ) be the graph corre-137

sponding to IJ as described in the introduction. Clearly, GIJ has size polynomial in the size of J. More-138

over, VIJ has a monopolar partition (A, B) with every vertex in A corresponding to an element of C and139

every maximal clique of GIJ [B] corresponding to an element of P. In particular, GIJ has a vertex in B for140

every set {ei} with i = 1, . . . , k − `. We call F the set of these vertices. Then A ∪ F induces a complete141

bipartite subgraph of GIJ . From ` ≥ 1 we get |F| ≤ |A| − 1. By construction, every vertex in the maximal142

clique of GIJ [B] corresponding toU is adjacent to at least one vertex in A, since T coversU. Finally, we143

observe that |C| = |T |, so α(GIJ ) = |A| = |C| = |T |. By Proposition 1.1 and Lemma 2.1, a polynomial-time144

algorithm for deciding whether χ(G) = α(G) for every monopolar graph G allows one to determine whether145

χ(GIJ ) = |T | and, as a consequence, whether J has a feasible cover. This proves the result.146

Stability Number of Monopolar Graphs. We give a reduction of the 3-Colorability problem on general147

graphs to the stable set problem on monopolar graphs. In the 3-Colorability problem we have to decide148

whether a given input graph admits a proper coloring with at most three colors. The 3-Colorability149

problem is NP-complete, see [12, p. 191].150

For our purposes, we consider the gadget shown in Figure 2.1a. Its vertices of degree one will be called151

extreme. Let G = (V, E) be a graph. We construct a graph HG = (VG, EG) from G by replacing each vertex152

v ∈ V by three vertices v1, v2 and v3 linked to form a K3 and by joining the two cliques corresponding to153

v and w as in Figure 2.1b whenever {v,w} ∈ E. More precisely, for every pair {vi,wi} where i = 1, 2, 3154

and {v,w} is an edge of G, we add a gadget having vi and wi as extreme vertices.155

(a) Gadget used in HG.

v1

w1

v2

w2

v3

w3

(b) Transformation of an edge {v,w} of G into a monopolar subgraph of HG.
Square vertices are a stable set, round vertices induce a cluster.

Figure 2.1

Computing α(HG) is enough to solve the 3-Colorability problem on G, as we prove in next lemma.156

Lemma 2.4. Let G = (V, E) be a graph and HG = (VG, EG) be the associated monopolar graph defined157

above. Then G is 3-colorable if and only if α(HG) = |V | + 9|E|.158

Proof. Let I = {1, 2, 3}, C = {vi ∈ VG : v ∈ V, i ∈ I} and D = VG \ C. The graph HG[C] is a cluster159

consisting of |V | vertex-disjoint K3 graphs, hence α(HG[C]) = |V |. The graph HG[D] is the union of160
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3|E| vertex-disjoint cycles of length six, thus α(HG[D]) = 9|E|. Since C and D partition VG, we get that161

α(HG) ≤ |V | + 9|E|. The same argument also proves that the right-hand-side value is reached only by162

the cardinality of stable sets including exactly one vertex for each K3 corresponding to a vertex of V and163

exactly three vertices per cycle being part of the gadgets corresponding to the edges of G.164

So, if S is a maximum stable set of HG of cardinality |V | + 9|E|, we get that vi ∈ S implies wi < S165

whenever {v,w} ∈ E. Otherwise, S would contain at most two vertices in the cycle of the gadget having vi166

and wi as extreme vertices. It follows that, whenever {v,w} ∈ E, if vi ∈ S for some i ∈ I then w j ∈ S for167

some j ∈ I \ {i}, as S contains one vertex for each K3 corresponding to a vertex of V . As a consequence,168

assigning color i ∈ I to vertex v such that vi ∈ S yields a proper coloring of G using at most three colors.169

Conversely, let G be 3-colorable with colors in I. We define the stable set S 1 = {vi ∈ VG : v ∈170

V has color i ∈ I}. Let us consider the graph H′G obtained from HG by removing all vertices in S 1 and their171

neighbors. Since every vertex v ∈ V is assigned a color this implies that all K3 graphs corresponding to172

the vertices of G are removed. Moreover, at most one vertex per gadget is removed since for every edge173

{v,w} ∈ E vertices v and w are assigned distinct colors. It follows that H′G has 3|E| connected components174

each being either a path on five vertices or a cycle on six vertices. All these connected components admit175

a stable set of size three, hence a maximum stable set S 2 of H′G has size 9|E|. Now, S = S 1 ∪ S 2 is a stable176

set of HG of cardinality |V | + 9|E|, hence it is a maximum stable set of HG.177

Proposition 2.5. Computing the stability number on the class of monopolar graphs is NP-hard.178

Proof. The size of HG = (VG, EG) is polynomial in the size of G. By Lemma 2.4 it is enough to prove179

that HG is monopolar for every graph G. Let us consider the partition (A, B) of VG where A contains all180

vertices of degree three of the gadgets corresponding to the edges of G, while B contains all other vertices181

of VG. (Figure 2.1b illustrates this partition on the graph HK2 .) By construction of HG the vertices of182

distinct gadgets corresponding to the edges of G are not adjacent except for their extreme vertices, thus A is183

a stable set. The same argument shows that a P3 in HG[B] can only be induced by three extreme vertices of184

the gadgets used in the construction of HG. However, every connected subgraph containing three extreme185

vertices is a K3. Hence HG[B] is a cluster and (A, B) a monopolar partition of VG.186

Chromatic Number of Monopolar Graphs. We conclude the section by proving that the 3-Colorability187

problem on monopolar graphs is NP-complete. This immediately proves that computing the chromatic188

number of monopolar graphs is NP-hard in general. We adapt a well-known reduction of the 3-SAT prob-189

lem to 3-Colorability problem on general graphs [13, Thm. 2.1].190

An instance of the 3-SAT problem is a set of disjunctive clauses each consisting of three literals from191

a given set of positive and negated variables. The goal is to determine the existence of a truth assignment192

for the instance, i.e., an assignment of boolean values to the variables making all clauses true. The 3-SAT193

problem is NP-complete [12, p. 259].194

Our reduction relies on two gadgets. The first gadget is constructed by first taking a diamond obtained195

from K4 by removing an edge. We call p and q the two vertices of the diamond of degree two and f and t196

the other two vertices. For every variable x of the given instance, we add a cycle of length five having p as197

a vertex. The neighbors of p in the cycle of variable x will be referred to as x and x̄. Finally, we link the198

remaining two vertices of the cycle to vertex q. In Figure 2.2a we illustrate this gadget for two variables x199

and y.200

The second gadget is depicted in Figure 2.2b and it is the same that is used in [13]. We call it clause201

gadget. A vertex of a clause gadget is a literal vertex if it has degree one and truth vertex if it has degree202

two.203

Given an instance I of the 3-SAT problem, we construct a graph GI as follows. We start with a gadget204

of the first type as above. Subsequently, for every clause C = (`1, `2, `3) of I we create a clause gadget205

whose literal vertices are identified with the vertices of the first gadget corresponding to the same literals.206

Finally, we link the truth vertex of each clause gadget to vertices p and f .207

Lemma 2.6. The graph GI is monopolar for every instance I of the 3-SAT problem.208

Proof. The vertex set of the gadget of first type admits a monopolar partition (A, B) with f , p ∈ B and209

x, x̄ ∈ A for every variable x, see Figure 2.2a. The vertex set of a clause gadget has a monopolar partition210
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tf

p

y

y

x

x

(a) First monopolar gadget. Square vertices are in A, round ver-
tices in B.

`1

`2

`3

(b) Clause gadget. It is monopolar: Square ver-
tices are in A, round vertices in B.

Figure 2.2

(A, B) in which all literal vertices and the truth vertex belong to A, see Figure 2.2b. Hence identifying the211

literal vertices across gadgets of different type and linking all truth vertices to p and f does not break the212

monopolarity.213

We just sketch the proof of next lemma, as the argument is the same as in classical reductions of the214

3-SAT problem to the 3-Colorability problem given in [13, Thm. 2.1].215

Lemma 2.7. Given an instance I of the 3-SAT problem, the graph GI is 3-colorable if and only if there is216

a truth assignment for I.217

Proof. The gadget of first type is 3-colorable. Let F and T be the colors respectively assigned to f and t218

and let N be the third color in such a 3-coloring (note that p and q are colored N). A literal is assigned219

boolean value true if the corresponding vertex in the first gadget is colored T , otherwise it is assigned220

false. It is easy to see that, for every variable x of I, vertices x and x̄ cannot be colored N and must have221

distinct colors, so the above is a consistent assignment of boolean values to the variables. As observed222

in [13], under the above 3-coloring, the truth vertex of a clause gadget can be colored T if and only if at223

least one literal vertex in the same clause is. Since the truth vertices are all linked to f and p, the graph GI224

is 3-colorable if and only if I admits a truth assignment.225

The proof of the following proposition is now immediate.226

Proposition 2.8. The 3-Colorability problem on monopolar graphs is NP-complete. Computing the chro-227

matic number on monopolar graphs is NP-hard.228

In Section 2.2 we show that the largest clique of a monopolar graph can be found in polynomial time.229

In view of this fact, the result of Proposition 2.8 is quite surprising after observing that ω(G) ≤ χ(G) ≤230

ω(G) + 1 for every monopolar graph G = (V, E). It is well-known that the lower bound holds for every231

graph. For the upper bound note that if (A, B) is a monopolar partition of V , then the maximal cliques of232

G[B] can be colored with at most ω(G) colors. Then we can assign an additional color to all vertices in A233

to obtain a proper coloring of G.234

2.2. Polynomial-Time Algorithms for Clique Problems on Monopolar Graphs235

We follow to a large extent the definitions given in [21]. A clique is maximal if it is not contained in236

another clique. A graph class is hereditary if it is closed under taking induced subgraphs. A hereditary237

graph class has few cliques if there exists a polynomial p(n) such that every G = (V, E) in the class has no238

more than p(|V |) maximal cliques. The octahedral graph Om is obtained from K2m by removing a perfect239

matching.240

For every m ∈ Z+ the octahedral graph Om is a complete m-partite graph with every part of the partition241

containing exactly two vertices. Moreover, taking one vertex in each part induces a maximal clique of242
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size m in Om and this easily shows that the class of graphs containing all octahedral graphs has not few243

cliques. However, octahedral graphs are the only forbidden graphs in hereditary classes having few cliques,244

as stated in the following result.1245

Theorem 2.9 (see [20]). A hereditary graph class G has few cliques if and only if Om < G for some246

constant m ∈ Z+.247

We now prove a corollary of Theorem 2.9.248

Corollary 2.10. Let m ≥ 1 be a fixed integer. The class of (Km-free, P3-free)-graphs has few cliques.249

Proof. The class of (Km-free, P3-free)-graphs is hereditary. Thus by Theorem 2.9 it suffices to show that250

Om+1 is not a (Km-free, P3-free)-graph. Assume it is. Let A and B denote a vertex partition of Om+1 such251

that Om+1[A] is Km-free and Om+1[B] is P3-free. We recall that Om+1 is a complete (m + 1)-partite graph. If252

there are m parts in the (m+1)-partition of Om+1 each having at least one vertex in A, then Om+1[A] contains253

a Km. As a consequence, there are at least two parts contained in B but this contradicts the hypothesis that254

Om+1[B] is P3-free.255

Corollary 2.11. Let G = (V, E) be a monopolar graph and c : V → R be a weight function on V. Then the256

Max-Weight Clique problem max{c(K) : K is a clique of G} can be solved in polynomial time. In particu-257

lar, ω(G) can be determined in polynomial time.258

Proof. The result holds for all graph classes having few cliques, as shown in [21]. By Corollary 2.10 this259

is the case for monopolar graphs which are exactly the (K2-free, P3-free)-graphs.260

We conclude with a few observations.261

Remark 2.12. Let G = (V, E) be a monopolar graph on n vertices and m edges and let us assume to know a262

monopolar partition (A, B) of V . Then, representing G by an adjacency list, the maximal cliques of G[B] can263

be constructed in O(|B|) time. There are O(|B|) such cliques. Every v ∈ A together with its neighborhood264

in a maximal clique H of G[B] induces a maximal clique of G, whenever the neighborhood of v in H is265

nonempty. Moreover, an edge incident to v ∈ A belongs to exactly one such a clique. It follows that there266

are O(m) maximal cliques of G with a vertex in A and a vertex in B and all of them can be constructed in267

O(m) when the maximal cliques of G[B] are known. Every other maximal clique of G is either maximal in268

G[B] or an isolated vertex of A. Since |A| + |B| = n constructing all maximal cliques of G takes O(n + m)269

time if (A, B) is known. The above discussion shows that G has O(n + m) maximal cliques. Consequently,270

the Max-Weight Clique problem can be solved in O(n + m) time on G if (A, B) is known. In general, the271

h maximal cliques of a graph with n vertices and m edges can be listed in O(hnm) time [23]. Thus the272

maximal cliques of a monopolar graph can be listed in O(n2m + nm2) time if no monopolar partition is273

explicitly known and this gives a more direct proof of Corollary 2.11.274

Remark 2.13. Corollary 2.11 and the results shown in [21] imply that the problem of partitioning the275

vertices of a monopolar graph into at most k cliques is polynomially solvable whenever k is constant (i.e.,276

it is not part of the input). We sketch the overall idea of a polynomial algorithm, referring the reader to [21,277

p. 133] for a more detailed treatment. One first shows that only maximal cliques are needed in a k-covering278

of the vertices into cliques; next, since k is constant and the number of maximal cliques is polynomially279

bounded, enumerating all subsets of maximal cliques of cardinality k can be done in polynomial time;280

finally, evaluating whether a set of cliques covers all vertices can be done in quadratic time and this yields281

the result.282
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