
Mathematical Programming for Simultaneous Feature Selection and Outlier
Detection under l1 Norm

Michele Barbatoa,∗, Alberto Cesellia

aDepartment of Computer Science, Università degli Studi di Milano
18, via Celoria, 20133, Milano, Italy

Abstract

The goal of the simultaneous feature selection and outlier detection problem is to determine a

sparse linear regression vector by fitting a dataset possibly affected by the presence of outliers. The

problem is well-known in the literature, given its wide range of applications in data analysis, but

has been tackled using mathematical programming only recently.

Existing methods have mostly focused on using the traditional least-squares criterion as an ob-

jective to determine optimal regression vectors. In this paper, instead, we study models optimizing

the least absolute deviation criterion. This change of paradigm allows us to propose two mixed-

integer linear programs, one adapted from existing studies on the least-squares setting, and the

other one obtained from a disjunctive programming argument. We show theoretically and com-

putationally that the disjunctive-based formulation exhibits better performances in terms of both

continuous relaxation quality and integer optimality convergence. Furthermore, we show that both

mixed-integer linear programs considered in our paper outperform alternative models based on in-

dicator and special ordered set constraints offered in state-of-the-art mathematical programming

solvers.

Finally, we experimentally benchmark these mathematical programming approaches against ex-

isting regression methodologies from the literature. We identify a contamination pattern in which

mathematical programming is better than state-of-the-art algorithms in combining prediction qual-

ity, sparsity and robustness against outliers. Among mathematical programming approaches, those

based on least absolute deviations perform best.

Keywords: Data science; Robust sparse regression; Least absolute deviation; Mathematical

programming

1. Introduction

In the last two decades huge advances in data collection and digitization techniques have led

high-dimensional problems becoming relevant in several fields, such as chemometrics (Bertsimas

∗Corresponding author
Email addresses: michele.barbato@unimi.it (Michele Barbato), alberto.ceselli@unimi.it (Alberto Ceselli)

Preprint submitted to European Journal of Operational Research March 20, 2023

et al., 2020), biomedical research (Insolia et al., 2021), genomics and pattern recognition. Classical

references from the literature like Greenshtein (2006) (and references therein) cover this domain.

A key application is linear regression. Given is a dataset of points in a (d+1)-dimension space:

d dimensions represent features, and the last one represents a response.

Intuitively, each point in the dataset is assumed to represent a linearly related input-response

pair for a certain phenomenon, whose measurement is affected by noise. With a geometric analogy,

this linear relation can be modeled by a hyperplane in a (d + 1)-dimension space: the regression

problem consists in finding the slope and intercept which optimize a predefined notion of proximity

between the hyperplane and the points. That is, searching for an optimal linear fitting of points.

Such a fitting hyperplane provides an approximation of the phenomenon measured by the

dataset, and can therefore be used either as a descriptive model for it, or more commonly to

perform predictions of the same phenomenon on new observations.

Linear regression has been studied for decades in statistical data analysis. However, the increase

in the dimensionality and size of datasets has recently led to important methodological consequences.

First, applications require an accurate feature selection. Such a need is not only computational.

For instance, the interpretability of a model produced by fitting is preserved only if a restricted set

of relevant explanatory variables are included in it. In the extreme case of underdetermined regimes

(having more features than points) classical solution methods for linear regression problems do not

even apply directly (Filzmoser and Nordhausen, 2021).

Second, dataset contamination chances are greater, yielding (possibly large) errors in either

explanatory variables or responses for a few points. These, when errors are large, become outliers:

their presence in the dataset may affect the fitting quality.

While outlier detection and feature selection have traditionally been treated separately, there is

a very recent research trend, attempting to handle them together (Bottmer et al., 2022). At the

same time, seminal papers like Bertsimas et al. (2016) opened up new perspectives, not only in

the Operations Research community, showing mathematical programming to be a potential break-

through in these applications. In fact, mixed-integer programming (MIP) formalizations of the

regression with simultaneous feature selection and outlier detection (SFSOD) problem have been

considered independently in a few studies (Insolia et al., 2021; Jammal, 2020; Jammal et al., 2020,

2021; Thompson, 2022). All these works focus on a common assumption: using the least-squares

(LS) criterion to measure the proximity of a point to the hyperplane. This is not a coincidence:

until recently, having differentiable proximity measures was seen as a necessary feature to operate

state of the art regression algorithms.

In this paper we instead focus on the option of solving the SFSOD using a least absolute deviation

(LAD) optimization criterion.

Motivations and Contributions. Two observations and one conjecture motivate a research interest

on the LAD criterion. The first observation is straightforward: LAD regression models are easy to

linearize and solve by means of optimization packages supporting the resolution of mixed-integer

2

linear programs. The second observation comes from the literature: LAD models tend to produce

better solutions in terms of robustness, see e.g., Arslan (2012); Dodge (1997); Wang and Zhu (2017).

Our conjecture is instead the following: since the 1-norm upper bounds the 2-norm, the measurement

of errors is amplified. Since outliers are those points having highest error, we expect their detection

to be easier when minimizing the LAD, as they produce greater impact in the objective functions.

This opens, among others, research questions concerning how different types of outliers affect the

behaviour of the regression methods considered in our paper.

Despite the good properties of the LAD criterion, the SFSOD has been surprisingly treated only

in the LS setting.

As first contribution we propose two MIP modelings of the SFSOD using the LAD optimization

criterion. One modeling is the natural adaptation to the LAD setting of the model used in (Insolia

et al., 2021; Jammal et al., 2020, 2021; Thompson, 2022) for the LS setting; it exploits auxiliary

variables to cancel the residuals of the fitting hyperplane over the selected outliers. The other

one elaborates over a canonical disjunctive linearization of the bilinear terms used to eliminate the

residuals directly in the objective function. We provide a theoretical analysis of this latter approach,

which proves to grant structural advantages with respect to linearization based on the well-known

McCormick’s envelopes (McCormick, 1976) and to yield stronger LP bounds with respect to the

method adapted from the literature. All these modelings involve the use of big-M values bounding

the residuals of the fitting hyperplane. We therefore analyze theoretically and computationally the

relationships between their magnitude and the quality of their dual bounds.

Our second contribution is application-oriented. We conduct an extensive experimental analysis

on synthetic datasets, comparing the MIP-based models, considering also benchmarks from the

literature. Our study takes into account (a) computational efficiency of the fitting optimization

process (b) quality of the results, when the corresponding regression solutions are used for prediction.

Our paper is organized as follows. In Section 2 we introduce our notation and revise relevant

concepts and related approaches from the literature, in Section 3 we detail the MIP models for the

SFSOD with LAD objective, in Section 4 we present our computational analysis, and in Section 5

we collect a few conclusions.

2. Notation and background

The problem of linear regression can be formalized as follows. Let

P = {pi = (ai, ri) ∈ Rd+1, i = 1 . . . k}

be a set of k points satisfying conditions ri = ωai + ζ + εi for every i = 1, 2, . . . , k: ω ∈ Rd is a

vector of weights, ζ ∈ R is a fixed scalar and ε = (ε1, ε2, . . . , εk) is a vector of random errors. The

vector ω and the scalar ζ represent the slope and the intercept, respectively, of a hyperplane linking

linearly a d-dimension space of features with scalar responses.

The goal of a regression problem is to find an estimate (ŵ, ẑ) of (ω, ζ) which optimizes a distance

3

measure between the hyperplane H = {(x, y) ∈ Rd+1 : y = ŵx + ẑ} and the points p1, p2, . . . , pk.

Fitting is therefore the process of searching for an optimal (ŵ, ẑ) given a dataset as input.

As discussed in the introduction, two improvements of traditional linear regression propose to

combine it with (a) feature selection, that is, drop dimensions which are irrelevant and (b) outlier

detection, that is, drop points which represent measurements strongly affected by errors.

Elaborating on the most general form provided in Insolia et al. (2021), we consider a loss function

ℓ : R → R≥0 and express the SFSOD problem as the following MIP:

min
k∑

i=1

1

k
siℓ(ri − aiw − z) (1)

||w||0 ≤ d0 (2)

||s||0 ≥ k − k0 (3)

w ∈ Rd, z ∈ R (4)

s ∈ {0, 1}k (5)

where || · ||0 is the 0-norm (counting the nonzero entries of its argument) and d0 and k0 are given

“budget” values respectively for the number of features that can be selected in the final solution

and for the number of points that can be marked as outliers. Constraints (2) and (3) are put as

inequalities for flexibility and consistency with the literature. In fact, optimal solutions always exist

in which constraint (3) is tight, and constraint (2) is likely to be tight due to numerical reasons. For

the sake of generality, function ℓ(·) is not given explicitly. A typical choice in the literature is to take

ℓ(x) = x2, under which (1) corresponds to optimize the least-squares criterion; another common

criterion is the least absolute deviation, corresponding to take ℓ(x) = |x|. Variables s1, s2, . . . , sk

are called switches hereafter: given a solution (ŵ, ẑ, ŝ) to (1)–(5) point pi = (ai, ri) is selected as an

authentic point (a non-outlier) if and only if si = 1.

Sparse and robust regression. Sparsity in regression problems consists in determining faithful predic-

tors relying on small sets of features. The prototype of sparse regression problems is the best subset

selection (BSS), obtained from (1)–(5) by taking ℓ(x) = x2 and k0 = 0. BSS isNP-hard (Natarajan,

1995) and it has been considered computationally intractable for decades: an effective MIP-based

resolution algorithm for the BSS has only been proposed in the recent work Bertsimas et al. (2016).

Previously, sparse regression has been performed through relaxations of BSS. An efficiently solv-

able convex relaxation of the BSS is the lasso (Tibshirani, 1996), obtained by replacing the 0-norm

constraint with its 1-norm counter-part, that is, ||w||1 ≤ d0. For a suitably chosen λ ≥ 0, the lasso

can be expressed in the equivalent “penalized ℓ1” form

min{||r −Aw − z||22 + λ||w||1 : w ∈ Rd, z ∈ R},

highlighting that sparsity is enforced through the penalization of the term ||w||1. A similar penal-

ization approach is used in the Dantzig estimator of Candes and Tao (2007) and in the non-convex

4

SCAD and MC+ estimators of Fan and Li (2001) and Zhang (2010); variations of the standard

lasso method are also obtained by using multiple or adaptive penalization coefficients, see e.g., Mein-

shausen (2007); Zou (2006); Zou and Hastie (2005).

The above-mentioned BSS and lasso-like methods are suitable for sparse regression in both the

underdetermined (d < k) and the overdetermined (d ≥ k) regimes but they are sensitive to outliers.

An approach to robustify these methods against outliers is to consider the loss function ℓ(x) = |x|,
leading to the so-called LAD methods. Several types of LAD-lasso methods are proposed e.g.,

in Arslan (2012); Wang and Leng (2007); Wang et al. (2007); Xu and Ying (2010) and surveyed

in Filzmoser and Nordhausen (2021). Similar alternatives involve robust convex loss functions

such as the Huber’s loss function and the Tukey’s biweight loss function, see the literature survey

of Thompson (2022) for these and additional robust loss functions. Standard regression methods

can be also robustified by combining them with least-trimmed squares (LTS) paradigm (Rousseeuw,

1984), obtained from (1)–(5) by setting ℓ(x) = x2 and d0 = k. The LTS is satisfactorily solv-

able through fast heuristic algorithms, see e.g., the R Studio package fastLTS implementing the

approach of Rousseeuw and Van Driessen (2006). The sparseLTS method of Alfons et al. (2013)

(available from R Studio package robustHD Alfons (2021)) is an embedding of the LTS within the

lasso framework and amounts to problem

min{
k∑

i=1

(1− si)ℓ(ri − aiw − z) + k0λ||w||1 : ||s||0 ≤ k0, s ∈ {0, 1}k, w ∈ Rd, z ∈ R, }

for a suitably chosen λ ≥ 0. A similar LTS embedding in the elastic net lasso of Zou and

Hastie (2005) has been studied in Kurnaz et al. (2018a) and is available in the R Studio pack-

age enetLTS (Kurnaz et al., 2018b). Alternative approaches from the literature to get sparsity and

robustness against outliers often work in a 2-stage fashion. For example, the leverage least-trimmed

absolute deviation (LLTA) method of Sudermann-Merx and Rebennack (2021) imitates the LTS

idea in the LAD setting but additionally removes potential bad leverage points from the dataset

in a pre-processing step. Similarly, robust principal components regression and robust partial least-

squares regression methods described in (Filzmoser and Nordhausen, 2021, Sect. 3.2-3.3) combine a

robust dimension reduction with a subsequent robust regression on the set of selected explanatory

variables. All above-mentioned robust sparse estimators lack direct control on either the selection of

the features (e.g., lasso-based methods) or the selection of the outliers (e.g., BSS-derived methods).

In the present paper we elaborate on the SFSOD defined by (1)–(5), which can be seen as a

fully robustified BSS method. Formalizations of the SFSOD as the optimization problem (1)–(5)

are present in the literature, see e.g., Chen et al. (2013), but only very recently some works have

appeared in which the SFSOD problem has been formalized and solved as a MIP. To our knowledge,

such an approach to tackle the SFSOD in the LS setting has been first proposed in Jammal et al.

(2020, 2021). In Jammal et al. (2020) a lasso version is considered, that is, an ℓ1-penalization term

is included in the objective function. Instead, in Jammal et al. (2021) the SFSOD (1)–(5) in the

LS setting is tackled by solving exactly a mixed-integer quadratic program (MIQP); to improve

5

convergence, the latter is supplied with a warm-start heuristic solution obtained through a proximal

alternating minimization (PALM) algorithm. The results of Jammal et al. (2020, 2021), together

with similar approaches in the domain of support vector machine, are also reported in Jammal

(2020). The MIQP used in Jammal et al. (2020, 2021) is independently found and used in two

subsequent works (Insolia et al., 2021; Thompson, 2022). Both those studies provide an analysis

of the breakdown point of the proposed SFSOD models; moreover, Thompson (2022) provides a

primal heuristic algorithm alternative to the above-mentioned PALM algorithm, which is based on

a gradient descent technique.

The computational outcome of these works is consistent: when compared to classical methods

in sparse or robust regression, the resolution of the SFSOD via MIP resolution provides solutions

of high quality in terms of sparsity and robustness, at the price of a greater computational effort.

We also stress that all the works on the SFSOD mentioned above consider the LS setting for

their experimental evaluation. There is therefore a clear uncovered research ground on the LAD

setting, which in turn is the subject of investigation in our paper.

On handling bilinear terms in MIPs. When considering the SFSOD, a key role is taken by the

handling of the product of terms in the objective function (1). In the LAD setting, in fact, they

become bilinear terms: linearization techniques are known in the literature to work well in this

context. One of them relies on McCormick’s envelopes (McCormick, 1976). It replaces each single

quadratic term z = xy by a set of linear inequalities allowing the resolution of the initial MIP

through standard mixed-integer linear programming (MILP) solvers. Such approach typically needs

bounds on the variables appearing in the product hence it introduces big-M values in the resulting

MILP. The spatial branch-and-bound paradigm tightens the McCormick’s envelopes locally to each

branch-and-bound node, by exploiting bounds implied by the branching steps. In the context of

generic bilinear MIPs Fischetti and Monaci (2020) improves the spatial branch-and-bound scheme

by means of non-standard branching rules and by separating valid intersection cuts. State-of-the-art

solvers typically offer built-in functionalities to solve optimization problems with specific bilinear

terms without relying on explicit linearizations of such terms. For example, Gurobi 9.5.2 Gurobi

Optimization (2021) has native support for bilinear terms in the objective function. Moreover,

bilinear terms with one binary and one generic bounded variable can be reformulated in Gurobi as

well as CPLEX IBM ILOG (2020) through the so-called Special Ordered Sets of type 1 (SOS-1),

that is, expressions of the type (x, y) ∈ SOS-1 imposing that at most one of variables x and y

can have a nonzero value in the solution (Bertsimas and Weismantel, 2005). Indeed the identity

z = xy with x ∈ {0, 1} and y ∈ R is equivalent to the pair of SOS-1 constraints (x, z − y) ∈ SOS-1

and (1 − x, z) ∈ SOS-1. Such constraints are managed by the supporting solvers through specific

branching rules thus avoiding big-M terms. We also recall that SOS-1 constraints can be used to

model 0-norm constraints as (2) and (3), see e.g., Bertsimas et al. (2016). In particular the LAD

version of MIP (1)–(5) can be modeled in both CPLEX and Gurobi using SOS-1 constraints without

using big-M values.

In the same setting of products between one binary and one generic bounded variable another

6

reformulation approach is through the so-called indicator constraints: these latter enforce conditions

linked to the value of the binary variable in an “on/off” fashion, so that the relation z = xy with

x ∈ {0, 1} amounts to specify the two indicator constraints (x = 0 ⇒ z = 0) and (x = 1 ⇒ z =

y). When, as in this case, the conditions amount to satisfy linear constraints, solvers internally

reformulate indicator constraints in an extended space and linearize them following McCormick’s

technique, and the involved variable bounds are automatically tightened during branch-and-bound

algorithms, see the study in Belotti et al. (2016).

Finally, we report that the use of disjunctive programming Balas (1998) to linearize specific indi-

cator constraints in the space of natural variables, also when the underlying condition is nonlinear,

showed great potential in the literature (Bonami et al., 2015; Hijazi et al., 2012).

3. Formulations and properties

Formally, the SFSOD problem in the LAD setting is obtained by taking ℓ(x) = |x| in (1) and

thus it amounts to solve

min

{
1

k

k∑
i=1

si|ri − aiw − z| : s, w, z satisfy (2)–(5)

}
(LAD-SFSOD)

Given points p1 = (a1, r1), p
2 = (a2, r2), . . . , p

k = (ak, rk) as in Sect. 2, we define A as the so-called

design matrix (whose rows are a1, a2, . . . , ak), and r = (r1, r2, . . . , rk) in Rk as the (column) response

vector.

Let (ŝ, ŵ, ẑ) be a feasible solution to (LAD-SFSOD) and let Â and r̂ be obtained from A and

r by removing all k0 rows indexed by h ∈ {1, 2, . . . , k} such that ŝh = 0. Then the value of (ŝ, ŵ, ẑ)

in (LAD-SFSOD) corresponds to ||r̂−Âw−ẑ1||1 where ||·||1 is the 1-norm and 1 is the all 1’s column

vector of the conforming dimension. For every i ∈ {1, 2, . . . , k}, a point pi = (ai, ri) is labelled as an

outlier when si = 0 while it is labelled as authentic if si = 1. With this nomenclature we conclude

that an optimal solution to (LAD-SFSOD) amounts to select, among all possible combinations, at

most k0 outliers such that the hyperplane Ĥ = {(x, y) ∈ Rd+1 : y = ŵx+ ẑ} provides the minimum

least absolute deviation from the set of authentic points. Moreover, the hyperplane Ĥ must be

sparse in the sense that ŵ must contain at most d0 nonzero entries, corresponding to features which

are retained. The remaining features are discarded.

In order to solve (LAD-SFSOD) with commercial MILP solvers like CPLEX it is convenient to

linearize its objective function and the 0-norm constraints (2) and (3). We proceed in two steps. We

first linearize the 0-norm constraints and the absolute value terms in the objective function using

the same approach considered in Insolia et al. (2021); Jammal et al. (2021); Thompson (2022);

next, we focus on the linearization of the products in the objective function. To perform the

first step we assume to know upper- and lower-bound vectors WU = (WU
1 ,WU

2 , . . . ,WU
d) and

WL = (WL
1 ,W

L
2 , . . . ,W

L
d) such that WL

j ≤ ŵj ≤ WU
j for every j = 1, 2, . . . , d and for every optimal

solution (ŝ, ŵ, ẑ) to (LAD-SFSOD).

7

Then, we introduce binary variables f ∈ {0, 1}d, each fj taking value 1 if feature j is retained,

0 if it is discarded, and the continuous variables p ≥ 0, each pi upper-bounding the value of the

residual on point pi. Consider the following MIP:

(F) min
1

k

k∑
i=1

sipi (6)

pi ≥ ri − aiw − z ∀i = 1, 2, . . . , k (7)

pi ≥ z + aiw − ri ∀i = 1, 2, . . . , k (8)

wj ≥ WL
j fj ∀j = 1, 2, . . . , d (9)

wj ≤ WU
j fj ∀j = 1, 2, . . . , d (10)

d∑
j=1

fj ≤ d0 (11)

k∑
i=1

si ≥ k − k0 (12)

s ∈ {0, 1}k (13)

f ∈ {0, 1}d (14)

p ≥ 0, w ∈ Rd, z ∈ R (15)

Proposition 1. The MIP (F) is equivalent to (LAD-SFSOD).

Indeed, let (p⋆, f⋆, s⋆, w⋆, z⋆) be a solution to (6)–(15). Since it is a minimization problem,

constraints (7)–(8) imply that p⋆i = |ri − w⋆ai − z⋆| for every i = 1, 2, . . . , k such that s⋆i = 1;

moreover, by (9)–(10) we get that w⋆
j ̸= 0 only if f⋆

j = 1, hence (11) guarantees that w⋆ has

at most d0 nonzero entries, that is, ||w⋆||0 ≤ d0. Since s⋆ ∈ {0, 1}k we also immediately get

||s⋆||0 ≥ k − k0 from (12). Therefore (s⋆, w⋆, z⋆) is a feasible solution to (LAD-SFSOD) of value∑k
i=1 s

⋆
i |ri−w⋆ai−z⋆|; analogously, if (ŝ, ŵ, ẑ) is a solution to (LAD-SFSOD) we can define f̂j = 0

if and only if ŵj = 0 for every j = 1, 2, . . . , d and p̂i = |ri − ŵai − ẑ| for every i = 1, 2, . . . , k. Since

WL and WU provide valid lower- and upper-bounds on the entries of ŵ we get that (p̂, f̂ , ŝ, ŵ, ẑ)

satisfies (9)–(15), showing the equivalence.

3.1. Objective Function Linearizations and Theoretical Analysis

All constraints of the MIP (F) are linear. However, its objective function is bilinear and,

in general, non-convex. Therefore in this section we consider two linearizations for the bilinear

terms in (1). Both linearizations involve the use of big-M values. For notational convenience,

we define resi(w, z) = |ri − wai − z| for every i = 1, 2, . . . , k; that is, resi(w, z) is the residual of

hyperplane H = {(x, y) ∈ Rd+1 : y = wz+ z} with respect to point pi. We assume to know a vector

RU = (RU
1 , R

U
2 , . . . , R

U
k) of valid upper bounds on the residuals of an optimal solution (s⋆, w⋆, z⋆)

to (LAD-SFSOD), that is, resi(w
⋆, z⋆) ≤ RU

i for every i = 1, 2, . . . , k.

8

The first linearization of (6) we consider is a refinement of a standard technique based on

disjunctive programming. Let us fix i ∈ {1, 2, . . . , k} and consider an auxiliary variable xi ≥ 0

defined by xi = sipi; since si ∈ {0, 1} we may restrict to consider the solutions (x̂, p̂, f̂ , ŝ, ŵ, ẑ)

such that one of the two cases holds: either ŝi = 1 and hence 0 ≤ x̂i = p̂i ≤ RU
i ; or ŝi = 0

and hence x̂i = 0 and p̂i = RU
i . The latter holds because when ŝi = x̂i = 0 defining p̂i = RU

i

necessarily satisfies all constraints (7)–(15) and does not have any impact on the objective function.

Equivalently, this disjunction is expressed by (x̂i, p̂i, ŝi) ∈ P i
0 ∪ P i

1 where P i
0 = {(0, RU

i , 0)} and

P i
1 = {(π, π, 1) : 0 ≤ π ≤ RU

i } for every i = 1, 2, . . . , k; since P i
0 is a single point in R3, while P i

1 is a

segment, the convex hull of their union is easily determined as:

conv(P i
0 ∪ P i

1) = {(xi, pi, si) : xi = pi −RU
i (1− si), 0 ≤ xi ≤ pi ≤ RU

i , 0 ≤ si ≤ 1}.

Projecting out the x variables we get the following disjunctive-based linearization of (LAD-SFSOD):

(D) min
1

k

k∑
i=1

(pi − (1− si)R
U
i) (16)

pi ≥ RU
i (1− si) ∀i = 1, 2, . . . , k (17)

pi ≤ RU
i ∀i = 1, 2, . . . , k (18)

(p, f, s, w, z) satisfy (7)–(15). (19)

Observation 1. Since (D) is a minimization problem, an optimal solution will automatically satisfy

constraints (18). Therefore these latter may be omitted from (D) without affecting the correctness

of the model. We include them since they appear explicitly in the description of conv(P i
0 ∪P i

1) given

above.

We point out the following relation to exist between the disjunctive-based formulation (D) and

the linearization of (6) via McCormick’s envelopes.

Proposition 2. The polyhedron corresponding to the continuous relaxation of (D) is a face of that

corresponding to the continuous relaxation of McCormick’s reformulation of (F).

For the sake of conciseness, here we do not report the McCormick’s reformulation of (F) nor the

formal derivation of the latter statement. They can be found in Appendix A. Another important

result, is the following.

Observation 2. The optimal continuous relaxation value of (D) and that of McCormick’s refor-

mulation coincide,

even if the set of feasible solutions does not. The proof is reported in Appendix A; it exploits

the fact that the variables appearing in McCormick’s reformulation are binding in constraints where

they appear.

At the same time, the disjunctive-based formulation has two advantages. First, it is of smaller

size than McCormick’s reformulation. The second advantage is the following.

9

Observation 3. By fixing to 0 a switch variable si for some i ∈ {1, 2 . . . , k} formulation (D)

automatically implies the constraint pi = RU
i ,

which does not hold for McCormick’s reformulation (for which, in general 0 ≤ p ≤ RU inde-

pendently of the value of the s variables). Since such a fixing is a typical operation in several MIP

resolution techniques (e.g., branching in branch-and-bound methods), this property offers compu-

tational advantage to the disjunctive-based formulation. In fact, as reported in (Vielma, 2015,

Sect. 2.2), effective MIP formulations combine small size with strong LP bounds and with good

behaviour under branching. In this regard the disjunctive-based reformulation of LAD-SFSOD is

superior to McCormick’s one in all these aspects, hence we will focus on (D) from now on.

We now move to the second linearization of the objective function of (F). It arises from an adap-

tation to the LAD setting of the SFSOD with LS objective (LS-SFSOD), considered independently

in Insolia et al. (2021); Jammal et al. (2021); Thompson (2022). All these three works introduce

variables which cancel the residuals in correspondence of outliers. We are not aware of alternative

exact modelling of the LS-SFSOD in the literature. For the sake of structural comparison with the

literature, we consider the corresponding LAD version, which can be obtained by using the loss

function ℓ(x) = |x| instead of ℓ(x) = x2 in the model of Insolia et al. (2021); Jammal et al. (2021);

Thompson (2022). This leads to the following linearization of (LAD-SFSOD):

(L) min
1

k

k∑
i=1

qi (20)

qi + ri − wai − z − ti ≥ 0 ∀i = 1, 2, . . . , k (21)

ri − wai − z − ti − qi ≤ 0 ∀i = 1, 2, . . . , k (22)

ti ≥ −(1− si)R
U
i ∀i = 1, 2, . . . , k (23)

ti ≤ (1− si)R
U
i ∀i = 1, 2, . . . , k (24)

(f, s, w, z) satisfy (9)–(15) (25)

q ≥ 0, t ∈ Rk. (26)

Variables t, appearing in (20)–(26), are used to cancel the residual in correspondence of outliers,

which in turn are selected by the switch variables s, while in (D) this is done directly with the

binary switch variables.

Our finding is that the disjunctive-based linearization is inherently different from the lineariza-

tion (L) proposed in the literature. Namely, we are able to theoretically prove that the continuous

relaxation value of the disjunctive-based formulation is at least as strong as the continuous relax-

ation value of the literature MILP; next, we derive sufficient conditions on the bound vector RU for

the two continuous relaxation values to coincide; finally we experimentally show that by violating

such a condition we can construct instances on which the continuous relaxation of the disjunctive-

based formulation is strictly stronger. To fix notation let D̄RU and L̄RU be the polytopes arising

from the continuous relaxations of (D) and (L) respectively and let v(D̄RU) and v(L̄RU) indicate

10

the corresponding continuous relaxation values. The following result holds for every big-M vector

RU used in the above formulations (also non-valid ones).

Proposition 3. v(D̄RU) ≥ v(L̄RU) for every RU ≥ 0.

Proof. Let (p̃, f̃ , s̃, w̃, z̃) ∈ D̄RU ; we determine q̃, t̃ such that (q̃, t̃, f̃ , s̃, w̃, z̃) ∈ L̄RU and
∑k

i=1(p̃i −
(1− s̃i)R

U
i) =

∑k
i=1 q̃i, which therefore proves the claim.

To this end, we define q̃i = p̃i − (1 − s̃i)R
U
i . Then the equivalence of the objective functions

is immediate. Moreover, from (17) it follows that q̃i ≥ 0. Finally, let Ii = [ri − w̃ai − z̃ − q̃i, ri −
w̃ai − z̃ + q̃i] ∩ [−(1− s̃i)R

U
i , (1− s̃i)R

U
i] for every i = 1, 2, . . . , k. Note that I ̸= ∅: from (7) we get

ri − w̃ai − z̃− q̃i ≤ (1− s̃i)R
U
i while (8) implies ri − w̃ai − z̃+ q̃i ≥ −(1− s̃i)R

U
i . Let us pick t̃i ∈ Ii

for every i = 1, 2, . . . , k. Then (q̃, t̃, f̃ , s̃, w̃, z̃) ∈ L̄RU .

We now present a sufficient condition for v(D̄RU) = v(L̄RU).

Proposition 4. If RU
i ≥ max{|ri−wai−z| : (q, t, f, s, w, z) attains v(L̄RU)} for i = 1, 2, . . . , k then

v(D̄RU) = v(L̄RU).

Proof. In view of Prop. 3 we only need to prove that v(D̄RU) ≤ v(L̄RU) when RU is as in statement

of Prop. 4. Let (q̄, t̄, f̄ , s̄, w̄, z̄) ∈ L̄RU attaining value v(L̄RU). Then q̄j ≤ s̄jR
U
j for every j =

1, 2, . . . , k. Indeed, suppose by contradiction that q̄i > s̄iR
U
i for some i ∈ {1, 2, . . . , k}. Since

(q̄, t̄, f̄ , s̄, w̄, z̄) attains the minimum of (20) on L̄RU , constraints (21) and (22) imply q̄i = |ri−w̄ai−
z̄−t̄i|; then |ri−w̄ai−z̄−t̄i| > siR

U
i . Let first ri−w̄ai−z̄−t̄i ≥ 0. Then RU

i ≥ ri−w̄ai−z̄ > siR
U
i +t̄i

since RU
i is a valid upper bound on |ri − w̄ai − z̄| by the hypothesis. Then t̄i < (1 − s̄i)R

U
i . Let

ε = min{(1− s̄i)R
U
i − t̄i, q̄i− s̄iR

U
i }. We define q′i := q̄i− ε, t′i := t̄i+ ε and q′j = q̄j , t

′
j = t̄j for every

j ̸= i. By the definitions, q̄i > q′i ≥ 0 and ri − w̄ai − z̄ − t′i = q′i. Hence (q′, t′, f̄ , s̄, w̄, z̄) ∈ L̄RU and

its value is strictly less than v(L̄RU), a contradiction. The case ri − w̄ai − z̄ − t̄i < 0 is analogous.

To conclude we define p̄j = q̄j + (1 − s̄j)R
U
j for every j = 1, 2, . . . , k. The fact that q̄j ≤ s̄jR

U
j for

every j = 1, 2, . . . , k implies that p̄j ≤ RU
i . All other constraints of (17)–(19) are easily seen to be

satisfied by (p̄, s̄, w̄, z̄) and the latter obviously has value v(L̄RU). Thus v(D̄RU) ≤ v(L̄RU).

We recall the following.

Observation 4. When RU is a vector of valid upper bounds on the residuals of an optimal solution

of (LAD-SFSOD), MILPs (D) and (L) are both valid reformulations of (LAD-SFSOD).

In fact, if for some i ∈ {1, 2, . . . , k} the value RU
i does not satisfy the assumption in Prop. 4,

inequality qi ≤ siR
U
i is not implied by the constraints defining L̄RU . Therefore using them may

lead to v(L̄RU) < v(D̄RU). In particular, this is the case of the bounds vectors RU as those con-

sidered in Obs. 4. We have actually observed experimentally this phenomenon to occur frequently,

see Sect. 4.1.

11

3.2. Big-MComputation

As reported in Thompson (2022) it “remains an open research question how to estimate provably

correct parameters in the absence of any assumptions on” the design matrix. In fact, for the SFSOD

problem, it is nontrivial to determine big-M values (even loose ones) which do not cut off optimal

solutions.

As a consequence, the works on the SFSOD resort to the following heuristic method: first

a primal solution (ω⋆, ζ⋆) and the corresponding residuals res⋆1, res
⋆
2, . . . , res

⋆
k are computed; then

(arbitrary) multipliers m1,m2 ≥ 1 are selected, allowing to set WL
j = −m1|ω⋆

j | and WU
j = m1|ω⋆

j |
for every j = 1, 2, . . . , d and RU

i = m2res
⋆
i for every i = 1, 2, . . . , k. A refinement of this technique

exploiting multiple primal solutions is given in Insolia et al. (2021).

The approach just described is not exact since it could cut off the global minimum of (LAD-SFSOD)

(or its LS counter-part), although it maximally improves the starting primal solutions without

worsening its residuals nor changing its sparsity: if w⋆
j = 0 for some j = 1, 2, . . . , d then also

WL
j = WU

j = 0. More flexibility on the sparsity of the resulting vector is obtained in Jammal et al.

(2021); Thompson (2022) by setting WL
j = −m1||w⋆||∞ and WU

j = m1||w⋆||∞, but in this case all

entries of WL, as well as those of WU , coincide.

Building on alternative ideas from the literature, and in particular on the heuristic approach

presented in Bertsimas et al. (2016) to calculate WL,WU for the BSS in the overdetermined regime

(k > d with at least d points in general position), we proceed as follows. Let (w⋆, z⋆) be hyperplane

coefficients of a feasible solution to (LAD-SFSOD) and let v⋆ = ||r − Aw⋆ − z⋆||22; for every

j = 1, 2, . . . , d we get WU
j and WL

j by solving the following pair of convex optimization programs:

WL
j =minwj WU

j =maxwj

||r −Aw − z||22 ≤ v⋆ ||r −Aw − z||22 ≤ v⋆

w ∈ Rd, z ∈ R, w ∈ Rd, z ∈ R.

Since the domain of the above problems is a compact set of Rd+1, they both admit finite optimal

values. These latter can be computed analytically exploiting the convexity of the problem domain,

see the formulas in the supplementary material of Bertsimas et al. (2016).

We remark that while the approach of Bertsimas et al. (2016) to the BSS allows an exact

computation of valid big-M values, our adaptation to the LAD-SFSOD turns out to be heuristic:

the 2-norm of the total residual of an optimal solution to the (LAD-SFSOD) could be larger

than the one of a sub-optimal solution. We point out that, with this approach, w⋆
j = 0 does not

necessarily implies WU
j = 0 nor WL

j = 0 for any j ∈ {1, 2, . . . , d} and the bounds are not necessarily

coinciding.

We heuristically compute a bound vector RU on the residuals in a similar manner. Namely, by

12

first solving the following convex optimization programs for every i = 1, 2, . . . , k:

SL
i =min aiw SU

i =max aiw

||r −Aw − z||22 ≤ v⋆ ||r −Aw − z||22 ≤ v⋆

w ∈ Rd, z ∈ R, w ∈ Rd, z ∈ R.

and then using |ri− aiw− z| ≤ |ri|+ |z|+max{|SL
i |, |SU

i |} =: RU
i ; in this case the convex programs

defining SL
i and SU

i admit analytical solutions in both the underdetermined and overdetermined

regimes (see the supplementary material of Bertsimas et al. (2016)).

4. Computational Results

In this section we evaluate branch-and-bound algorithms based on the formulations presented

in Sect. 3. The comparison is performed from two standpoints. On one hand we consider the

computational performance of the formulations, measured as continuous relaxation quality, CPU

time needed to reach integer optimality and optimality gap for unsolved instances. We also compare

the performance of the models based on big-M values with models based on indicator and SOS-1

constraints supported by CPLEX and Gurobi. On the other hand we consider the prediction quality

of the regression hyperplanes found as solutions to (LAD-SFSOD) by means of the formulations

of Sect. 3.

Instances. In order to analyse the dependency of both computational and quality performances of

the considered MILPs on the type of outliers, we define synthetic instances, so to have full control on

their structure. Let d and k be fixed. Each instance in our experiments is composed by 5 replications

of two datasets, each containing k points in Rd+1. In each replication the first dataset is for training,

the other is for testing. Moreover, each instance depends on a feature vector ω ∈ Rd, on a signal-to-

noise ratio (SNR) value α, on an outlier ratio 0 < π < 1/2 and on response and design error means

µr and µA. The design matrices of both datasets are initially constructed row-wise, drawing each

row from a multi-variate normal distribution N (0, I) with I being the identity matrix. We observe

that this specific generation criterion yields normalized data. Therefore no further standardization

techniques to increase numerical stability and improve bounds computation is needed. Given also

σ2 = ||ω||22/α the response vector is defined by ri = ωai + ζ + εi for every i = 1, 2, . . . , k with ζ

extracted from a N (0, 1) distribution and εi extracted from a N (0, σ2) distribution. In a subsequent

step we consider one of the two corruption schemes, only for the training dataset:

1. corruption only in the responses (vertical outliers);

2. corruption in both design matrix and responses (bad leverage points).

In both schemes, each point is independently chosen as outlier with a given probability π. For

outlier points, the corresponding response entry is corrupted, changing it by a value extracted from

a N (µr, 1) distribution. Only in scheme 2, also the design matrix is corrupted by changing the

entries in the rows corresponding to outliers by a value extracted from a N (µA, 1) distribution.

13

Only entries corresponding to nonzero coefficients in the feature vector are corrupted in this way.

For both corruption schemes, we consider the following parameters:

• d = 50;

• k = 100, 150, 200;

• ω ∈ Rd with its first 5 entries equal to 1, and all others equal to 0;

• α = 5;

• µr = −10 and µA = 10;

• π = 0.1.

The parameters above are essentially those used in Insolia et al. (2021) for the tests on synthetic

instances. The only differences are in the definition of ω, whose first 5 entries are set to 2 in Insolia

et al. (2021), and in the fact that here we focus on the overdetermined regime (having k > d). As

reported in Dodge (1997), the LAD fitting is automatically unaffected by vertical outliers, when the

corruption noise on the response has the same sign of the measurement noise. However, our models

do not rely on this assumption, allowing us to handle arbitrary adversarial corruptions as well. Our

training instances, in fact, cover also this general case (including, in particular, cases where µr and

the εi’s have opposite sign).

Computation of WL, WU and RU . Vectors WL and WU are computed via the resolution of convex

optimization programs reported in Sect. 3.2. The feasible solution needed for the computation of

WL and WU is obtained by the PALM algorithm of Jammal et al. (2020). The PALM algorithm

was designed to produce a primal solution for the SFSOD problem in the LS setting but such a

solution is obviously also feasible for (LAD-SFSOD). Pseudo-code and convergence guarantees of

such an algorithm can be found in Jammal et al. (2020). The convex programming-based approach

for getting RU turned out to produce very large bounds, resulting in numerical instability and poor

performance of the branch-and-bound algorithms used in this section. Since we are interested in

studying the strength of the formulations of Sect. 3 depending on the magnitude of the bounds in

RU , we proceed differently as follows. For each instance replication we define Ei = |ri − ωai − ζ|
for every i = 1, 2, . . . , k, where ri and ai are the response and design row of the i-th point in the

instance after applying the corruption step. Vector E = (E1, E2, . . . , Ek) represents the smallest

bounds on the residuals. In our experiments we will set RU = ϕE with ϕ ≥ 1 being a parameter

allowing us to control the tightness of the big-M used in the MIP formulations of Sect. 3. We point

out that using such big-M values could cut off the global optimum of (LAD-SFSOD).

Implementation details. The instance generation script is implemented in R. The MIP formulations

presented in Sect. 3 are implemented using the C++ API of CPLEX 20.10 and solved with the branch-

and-bound framework offered by the same optimization suite. Unlike formulations (D) and (L) given
above, in our implementation we omit the term 1/k in the objective function, since in preliminary

14

tests we observed that it did not improve the computational performance. The corresponding

stability effect is probably already given by the rescaling of CPLEX. The redundant constraints (18)

discussed in Obs. 1 are implemented as upper bounds of variables pi’s so that CPLEX manages them

automatically. Each run is performed in sequential mode (1 thread per run) on a Linux machine

(Ubuntu 20.04.4) equipped with 32 GB of RAM and with a 4.10 GHz CPU (model Intel(R) Xeon(R)

W-1250P). The whole test session is performed in parallel using the parallel package of R. We use

the default setting of CPLEX except for the parameters LocalImplied and Implied that are set to

their maximum value (3 and 2 respectively). These values enforce local and global implied bound

constraints in the most aggressive way allowed by CPLEX. Such cuts may substantially speed-up the

convergence of branch-and-bound algorithms, especially when big-M values are involved (Belotti

et al., 2016). The primal solution produced by the PALM algorithm in the computation of the

bound vectors WL and WU is also used as warm start of CPLEX branch-and-bound procedure.

4.1. Comparison of continuous relaxations

In this section we experimentally compare the continuous relaxation of formulations (D) and

(L). Prop. 3 states the former to never be weaker than the latter. Our main finding is the following.

Experimental Observation 1. The continuous relaxation of the disjunctive-based formulation

(D) is, in general, strictly stronger than the continuous relaxation of (L).

We recall that according to Prop. 4 a necessary condition to guarantee such a result is that the

value ofRU
i is small enough for at least one i ∈ {1, 2, . . . , k}. Experimentally, we compare the relative

increase of the LP bound obtained by the disjunctive-based approach with respect to the literature

approach, by considering sequences of vectors RU having increasing entries. Let v(DRU) and v(LRU)

be the LP bound values of (D) and (L) respectively. The relative increase of the LP bound is

computed as 100 · v(D
RU)−v(L

RU)

v(L
RU) . In this experiment we use RU = ϕE with ϕ = 1, 1.2, 1.5; that is,

we consider the vector with the smallest bounds and two additional bound vectors whose entries

are respectively increased by 20% and 50% with respect to the smallest ones. We consider datasets

polluted with bad leverage points, that is, following scheme 2. For each instance replication we solve

with CPLEX the continuous relaxations of both formulations (D) and (L), where we consider all

combinations of d0 = 5, 6, . . . , 10 and k0 = ⌈0.1k⌉ , ⌈0.13k⌉ , ⌈0.17k⌉ , ⌈0.2k⌉ (corresponding to 10%,

13%, 17% and 20% of points selectable as outliers). This gives a grid of 24 parameter combinations

for each considered formulation; since each instance consists of 5 replications we get a total of 120

runs for each dataset size. Averaging over all the runs executed in this section, the continuous

relaxation of each formulation is computed in less than 0.06 CPU seconds.

Detailed computational results are provided in Table 1. Interestingly, the continuous relaxation

values do not depend on d0 for any formulation. Therefore in Table 1 we report results according

to the dataset size (column “k”) and to the percentage of points selectable as outliers (column “k0

(%)”). The remaining three columns give the LP bound values and the relative increase depending

on the value of ϕ. An additional line (“Avg.”) reports the average of the relative increases for each

dataset size. We immediately observe that the continuous relaxation values of the disjunctive-based

15

Figure 1: Performance profiles of the LP-bound increase of (D) over (L).

formulation are strictly larger than those of the literature formulation and that larger relative in-

creases correspond to smaller values of ϕ. This is consistent with the theoretical findings of Sect. 3.1.

The table also clearly shows that the relative increase improves when k0 is larger. In general, the av-

erage relative increase worsens by increasing the dataset size, although some exceptions are present

(k = 200 with ϕ = 1 and k = 150 with ϕ = 1.5).

To better display how the strength of the disjunctive-based formulation depends on the big-M

magnitude, in Figure 1 we provide an aggregated overview of the same experiment. The pictures

in Figure 1 are constructed according to the principle of cumulative distribution functions as fol-

lows. For each dataset size and each value of ϕ, we take the maximum relative increase I in the

corresponding column of Table 1; then for every value λ on the x-axis we report the proportion of

runs (y-axis) yielding a given LP bound relative increase of at least I − λ. In other words, a value

on the x-axis of Figure 1 represents the distance from the best relative increase registered in our

experiments. For a given curve of the figure, the corresponding value on the y-axis is the proportion

of runs within such a distance. In particular, upper curves correspond to better performance than

lower curves. In each picture of Figure 1 we have three curves, corresponding to the three values

of ϕ. With this interpretation, the three pictures clearly show that, for every dataset size, vectors

RU with smaller bounds (i.e., smaller values of ϕ) correspond to larger relative increases.

4.2. Comparison of MIP Performances

In this section we analyse the computational performance of the branch-and-bound algorithms

relying on formulations (D) and (L) of Sect. 3 (for short, we will indicate the algorithms by (D)

and (L) as well). We use the same grid of combinations for k0 and d0 employed in Sect. 4.1. That

is, for each corruption scheme, each algorithm is executed over a total of 360 runs (120 for each

dataset size). Each run has a CPU time limit of 3600 seconds. We define RU = 2E for both MILPs.

This corresponds to increase by 100% the smallest residuals computed at instance generation.

Results are presented in terms of CPU time to reach optimality and relative optimality gap upon

termination; this latter is obtained by using the formula (UB−LB)/UB where UB and LB are the

best upper- and lower-bound obtained when the optimization process ends (either by optimality or

because of time limit). A broad computational campaign is provided in the companion technical

16

Table 1: LP bound values of formulations of Sect. 3 and relative increase of v(D) over v(L). We consider LAD-SFSOD
on instances corrupted with bad leverage points.

k k0 (%) ϕ = 1 ϕ = 1.2 ϕ = 1.5
v(L) v(D) Incr.(%) v(L) v(D) Incr.(%) v(L) v(D) Incr.(%)

100 10 37.45 38.09 1.69 30.58 31.04 1.49 23.81 23.86 0.19
13 26.78 27.73 3.56 20.73 21.11 1.84 13.09 13.17 0.60
17 20.91 21.75 4.03 14.34 14.74 2.78 7.83 7.90 0.84
20 15.55 16.33 5.06 9.61 9.96 3.67 3.33 3.40 1.98
Avg. 3.58 2.45 0.90

150 10 130.78 131.18 0.30 80.13 80.54 0.50 65.79 66.04 0.39
13 76.29 77.44 1.51 63.59 64.26 1.05 49.16 49.51 0.70
17 61.22 62.96 2.85 47.92 48.72 1.66 31.24 31.58 1.07
20 52.39 54.24 3.54 38.32 39.12 2.07 23.01 23.41 1.72
Avg. 2.05 1.32 0.97

200 10 119.55 121.46 1.60 105.27 105.97 0.67 90.91 90.92 0.01
13 99.77 102.78 3.02 87.00 87.76 0.87 69.91 69.92 0.02
17 85.34 88.36 3.53 70.20 70.96 1.08 49.24 49.26 0.05
20 73.34 76.36 4.11 55.80 56.57 1.38 36.97 37.09 0.32
Avg. 3.06 1.00 0.10

Table 2: Average CPU time on tests solved within the time limit by both formulations of Sect. 3 and average relative
optimality gap on tests unsolved by both formulation upon reaching the time limit.

k Total Avg. CPU Time(s) Avg. Gap(%)
(D) (L) (D) (L)

100 54 488.11 565.93 -
Solved by both 150 39 623.90 726.79 -

Vertical 200 16 628.34 739.63 -
outliers 100 57 - 26.16 23.80

Unsolved by both 150 79 - 21.37 21.52
200 102 - 22.58 23.57

100 67 396.08 438.04 -
Solved by both 150 36 326.06 484.22 -

Bad leverage 200 34 405.55 526.04 -
points 100 48 - 24.59 24.95

Unsolved by both 150 81 - 19.80 20.97
200 85 - 22.30 22.84

report (Barbato and Ceselli, 2022b). In the following we give a synthetic report of the obtained

results.

In Table 2 we present a quantitative overview of the CPU time and of the relative optimality gap

obtained by (D) and (L). The table contains two horizontal blocks; each refers to the corruption

scheme indicated in the first column. Each block is split in two parts: one containing the average

CPU time on the runs in which both algorithms proved optimality within the time limit, the other

containing the average optimality gap on the runs in which neither algorithm terminates before the

time limit. There remain just 22 runs over 720, in which only one algorithm terminates; roughly

half of them is solved by each algorithm.

First, from Table 2 we observe that, independently of the corruption scheme, the instances

become more difficult to solve to optimality when the size of the dataset increases. This is not

17

Figure 2: Performance profiles of MILPs (D) and (L): fraction of solved instances within a given CPU time. (LAD-
SFSOD tests with vertical outliers.)

Figure 3: Performance profiles of MILPs (D) and (L): fraction of solved instances within a given CPU time. (LAD-
SFSOD tests with bad leverage points.)

surprising because k0 depends proportionally on k, thus larger instances correspond to more points

selectable as outliers, that is, to more combinatorial decisions to be determined. We mention that

instances tend to get harder also for a fixed k, when k0 increases.

A more important outcome is summarized in the following

Experimental Observation 2. Independently of the corruption scheme, algorithm (D) is more

effective than algorithm (L).

The latter observation is clear from the comparison of the average CPU times obtained by (D)

and (L) on the affordable instances, which are those solved by both algorithms. It actually corre-

sponds to structurally better performances of (D).

To better display such computational advantage of (D) over (L), in Figure 2 (resp. Figure 3) we

present performance profiles for the case of vertical outliers (resp. bad leverage points). These are

constructed as follows: for a given value t̄ on the x-axis we consider the fraction of runs solved by the

corresponding algorithm within t̄ seconds, so that higher profiles correspond to better performance

(more precisely, to more runs solved within a given time limit). We see that, while for 100 points

datasets the dominance of (D) is marginal, such a dominance becomes more clear as the number of

points increases to 150 and 200.

Another interesting conclusion that stems from our experiments is the following:

Experimental Observation 3. Instances with vertical outliers appear harder to solve to optimality

than instances with bad leverage points, for both algorithms.

18

In detail, affordable instances are less in the vertical outliers case than in the bad leverage points

case. Moreover, they are more time-consuming, independently of the algorithm. We explain this

behaviour by noting that the objective of (LAD-SFSOD) penalizes the residuals, which are higher

in the case of corrupted explanatory variables and response values. This in turn makes each binary

decision choosing a specific point as outlier to have a stronger impact in the definition of an optimal

solution, ultimately helping MIP solvers to perform better.

To better understand this phenomenon, we performed a similar experiment using the 2-norm

in the objective (LS-SFSOD setting). Detailed results can be found in the companion technical

report (Barbato and Ceselli, 2022b). Our main finding is the following.

Experimental Observation 4. Within the LS-SFSOD setting, instances affected by bad leverage

points are more difficult than those with vertical outliers.

That is, a reverse phenomenon is observed. Our explanation is the following. Due to the

Cauchy-Schwarz inequality, the 2-norm leads to smaller penalization of residuals than the 1-norm

of the LAD setting. Therefore, the effect for binary decisions concerning outliers does not happen

at the same scale when the 2-norm is used, leaving to the MIP solver a higher computational burden

for exploring potentially good solutions. Summarizing, this corroborates our hypothesis that the

1-norm in the objective tends to detect bad leverage points more easily than vertical outliers, thanks

to higher penalization of the residuals.

4.3. Comparison with built-in functionalities of MIP solvers

In this section we compare algorithm (D) with two algorithms for the LAD-SFSOD based on

the built-in functionalities of CPLEX 20.1 and Gurobi 9.5.2. More precisely we have exploited:

• indicator and SOS-1 constraints of CPLEX 20.1 to model respectively the bilinear objective

function and the 0-norm constraints of the LAD-SFSOD;

• native support for 0-norm constraints and bilinear objective functions of the LAD-SFSOD.

This allows us to avoid the usage of big-M values in implementing LAD-SFSOD with those solvers.

The comparison is conducted on the testing datasets with k = 100 and affected by vertical outliers,

using all combinations of d0 ∈ {5, 6, . . . , 10} and k0 ∈ {10%, 13%, 17%, 20%}.
Results are provided in Table 3: there we report for each tested algorithm the relative optimality

gap in percentage and the CPU time needed to reach optimality. Results are averaged over the 5

replications of each testing dataset. Boldface indicates the best values of relative optimality gap

and CPU time for each tested combination of d0 and k0. We see that Gurobi 9.5.2 does not solve

any instance to optimality. Moreover, while it is able to find incumbents for each instance it always

reports a primal bound of 0.0, thus explaining the 100% of gap obtained at each run. The algorithm

based on the SOS-1 and the indicator constraints of CPLEX is more effective than Gurobi 9.5.2 but

it is outperformed by (D), as it is apparent by looking at the boldface values: the disjunctive-based

formulation always gets smaller CPU times and reaches optimality in runs corresponding to d0 = 6

19

and k0 = 20%, to d0 = 7 and k0 = 17%, to d0 = 8, 9 and k0 = 13% and to k0 = 10 and d0 = 10%

which are always unsolved by CPLEX 20.1.0; moreover, it obtains smaller relative optimality gaps

with only one exception (d0 = 8 and k0 = 10%). The last line of Table 3 reports the total number

of runs (out of 120) in which each algorithm reached optimality; algorithm (D) reaches optimality

in 58 runs, while the CPLEX-based version in 42 runs.

Table 3: Comparison of (D) with CPLEX and Gurobi built-in functionalities. Instances with k = 100 and vertical
outliers. Results averaged over 5 replications.

(D) CPLEX 20.1 Gurobi 9.5.2
d0 k0 Gap (%) CPU Time (sec.) Gap (%) CPU Time (sec.) Gap (%) CPU Time (sec.)

5 0.10 0.00 4.65 0.00 22.06 100 3600.00
0.13 0.01 99.35 0.01 155.70 100 3600.00
0.17 0.01 879.43 0.28 1026.65 100 3600.00
0.20 1.90 1936.30 13.37 2165.98 100 3600.00

6 0.10 0.00 29.29 0.01 47.76 100 3600.00
0.13 0.01 1104.33 5.20 2057.02 100 3600.00
0.17 3.87 2391.91 12.47 2644.80 100 3600.00
0.20 10.18 3161.23 16.33 3600.00 100 3600.00

7 0.10 0.01 155.95 0.01 539.82 100 3600.00
0.13 2.08 1724.14 10.12 2577.00 100 3600.00
0.17 14.08 3069.84 24.04 3600.00 100 3600.00
0.20 22.69 3600.00 51.30 3600.00 100 3600.00

8 0.10 0.59 838.06 0.01 2361.68 100 3600.00
0.13 6.67 2579.57 20.54 3600.00 100 3600.00
0.17 19.25 3600.00 35.81 3600.00 100 3600.00
0.20 35.82 3600.00 46.75 3600.00 100 3600.00

9 0.10 1.32 1012.75 5.28 2279.11 100 3600.00
0.13 12.16 3188.53 24.44 3600.00 100 3600.00
0.17 30.57 3600.00 40.29 3600.00 100 3600.00
0.20 42.38 3600.00 49.35 3600.00 100 3600.00

10 0.10 1.85 1403.76 17.19 3600.00 100 3600.00
0.13 19.20 3600.00 28.19 3600.00 100 3600.00
0.17 34.62 3600.00 43.06 3600.00 100 3600.00
0.20 47.17 3600.00 55.78 3600.00 100 3600.00

Solved/
Tot.
Runs

58/120 42/120 0/120

In summary algorithm (D) consistently outperforms the versions based on built-in functionalities

of both CPLEX and Gurobi. This latter reports the worse performance with no instance solved to

optimality and an optimality gap of 100%, due to its inability of obtaining positive lower bounds;

CPLEX-based algorithm seldom obtains optimal solutions within the time limit of 3600 seconds,

and always for small values of d0 and k0. Finally, (D) reports smaller optimality gaps on runs not

reaching optimality.

4.4. Comparison of Prediction Quality

In this section we study the quality of the solutions produced by solving (LAD-SFSOD) (and

the LS-SFSOD) in previous sections. We follow to a large extent the evaluation setting proposed

in Insolia et al. (2021). We compare the solutions obtained from formulations of Sect. 3 with those

produced by the R packages enetLTS (v. 1.1.0) and sparseLTS (v. 0.7.2) mentioned in Sect. 2 (the

complete parameter specification of these methods is provided in Appendix B). Both are much

20

faster than MIP approaches (see Appendix B for details). In the comparison we denote by (D)2

and (L)2 the methods respectively based on formulations (D) and (L) adapted for the LS setting.

The comparison is made evaluating the prediction of the solutions over the testing dataset which,

we recall, is not corrupted. Let p1 = (a1, r1), p
2 = (a2, r2), . . . , p

k = (ak, rk) be the points in a

testing dataset and let (ω̂, ζ̂) be a solution obtained from one of the above-mentioned methods. The

first measures we define are:

• rooted mean squared prediction error (RMSPE) defined by RMSPE =
(∑k

i=1(ri−ω̂ai−ζ̂)2

k

)1/2

• mean absolute error (MAE) defined by MAE =
∑k

i=1 |ri−ω̂ai−ζ̂|
k

• false positive (FP) and false negative (FN) ratios for the feature selection defined by FP =
|{j=1,2,...,d : ω̂ ̸=0 and ω=0}|

|{j=1,2,...,d : ω=0}| and FN = |{j=1,2,...,d : ω̂=0 and ω ̸=0}|
|{j=1,2,...,d : ω ̸=0}| where ω is the authentic vector of

hyperplane coefficients.

• F1-score for the feature selection: F1 = (1− FN)/(1− FN + (FP + FN)/2)

In the tables the measures above are reported for each instance after averaging their values over

the corresponding 5 replications. Let also (ω̂1, ζ̂1), . . . , (ω̂5, ζ̂5) the solutions obtained on the 5

replications of the same instance. Their average is defined by (ω̄, ζ̄) =
∑5

h=1(ω̂
h, ζ̂h)/5. Given

the authentic hyperplane ω, in the tables we additionally report the mean squared error (MSE)

subdivided in MSE bias defined by
∑d

j=1(ωj−ω̄j)
2

d and MSE variance defined by
∑d

j=1

∑5
h=1(ω̂

h
j −ω̄j)

2

5d .

Before presenting the results, we recall that our branch-and-bound algorithms for the SFSOD

is run on each instance by varying d0 and k0 over a grid of parameters, thus producing a grid of

solutions; however, we need to select only one of them which is subsequently used to perform the

prediction on the testing dataset. We use the same method based on the Bayesian Information

Criterion (BIC) presented in Insolia et al. (2021) to select a single solution out of the solution grid

generated for each instance.

In Table 4 we present the results in the setting involving vertical outliers. For each quality

measure and each dataset size we highlight in boldface the best corresponding result.

Experimental Observation 5. In presence of vertical outliers, sparseLTS is best in combining

prediction quality and sparsity.

In detail, we measure prediction quality by the values of “RMSPE” and “MAE”; the performance

gap between LTS methods and MIP approaches tends to decrease as the size of the dataset increases:

on the largest datasets (k = 200 points) all methods report similar prediction errors. Algorithm

enetLTS reports the best prediction errors as highlighted by the boldface values of Table 4, followed

by sparseLTS method. On the other hand enetLTS yields high false positive ratios on all three

types of datasets (28% for k = 100, 33% for k = 150 and 37% for k = 150) while sparseLTS

and the LAD-SFSOD solutions yield the lowest false positive ratios (always between 4% and 9%).

Essentially, the enetLTS method does not produce sparse solutions (remember that the authentic

vector of hyperplane coefficients has 45 zero entries). This is due to the presence of vertical outliers.

21

We also point out that the false positive ratio of the enetLTS method increases by increasing k

(and hence the number of outliers) while it is more stable for LAD- and LS-SFSOD methods and

for sparseLTS.

An analogous analysis is made in Table 5 for datasets corrupted with bad leverage points.

Experimental Observation 6. In presence of bad leverage points, LAD-SFSOD is the best method

in combining prediction quality and feature selection performance.

The LAD-SFSOD solutions produced by the formulations of Sect. 3 yield essentially identical

results for all quality measures. The best prediction error of LTS methods is at least 1.57 times

worse than the best prediction error of the LAD-SFSOD method. The false positive ratio of enetLTS

method is 6 up to more than 10 times worse than the best LAD-SFOSD method in each instance

group; the false positive ratio of sparseLTS is comparable to that of LAD- and LS-SFSOD methods

but its false negative ratio is larger, thus leading to a worse F1-score, interpretable as a less accurate

feature selection. Instead, the false negative ratio of SFSOD methods is always null. Also, the lowest

MSE bias and variance is always obtained by LAD- and LS-SFSOD methods.

The comparison between LAD-SFSOD methods and LS-SFSOD methods highlights that in

terms of prediction error, the former yield the best solutions, but the latter stay in comparable

ranges; however, LS-SFSOD solutions tend to be less sparse with FP being slightly higher than the

LAD-SFSOD solutions for all three types of datasets. Finally, we remark that, according to the

results reported in companion technical report Barbato and Ceselli (2022b), LAD-SFSOD models

yield also faster computations.

Table 4: Prediction quality of the formulations of Sect. 3 in the LAD and LS setting, and comparison with methods
from the literature. (Instances with vertical outliers.)

k Method RMSPE MAE FP FN F1 MSE
bias

MSE
vari-
ance

100 LAD-SFSOD (D) 1.25 1.00 0.09 0.00 0.96 0.00 0.01
LAD-SFSOD (L) 1.28 1.01 0.10 0.00 0.95 0.00 0.02
LS-SFSOD (D)2 1.26 1.00 0.11 0.00 0.95 0.00 0.01
LS-SFSOD (L)2 1.34 1.06 0.11 0.00 0.95 0.00 0.02
enetLTS 1.18 0.95 0.28 0.00 0.88 0.00 0.01
sparseLTS 1.21 0.97 0.09 0.00 0.96 0.00 0.01

150 LAD-SFSOD (D) 1.11 0.89 0.05 0.00 0.98 0.00 0.02
LAD-SFSOD (L) 1.15 0.92 0.04 0.00 0.98 0.00 0.02
LS-SFSOD (D)2 1.16 0.93 0.09 0.00 0.96 0.00 0.02
LS-SFSOD (L)2 1.18 0.95 0.10 0.00 0.95 0.00 0.02
enetLTS 1.07 0.85 0.33 0.00 0.86 0.00 0.02
sparseLTS 1.09 0.88 0.05 0.00 0.98 0.00 0.02

200 LAD-SFSOD (D) 1.06 0.85 0.06 0.00 0.97 0.00 0.01
LAD-SFSOD (L) 1.08 0.86 0.08 0.00 0.96 0.00 0.01
LS-SFSOD (D)2 1.07 0.86 0.10 0.00 0.95 0.00 0.01
LS-SFSOD (L)2 1.08 0.86 0.09 0.00 0.96 0.00 0.01
enetLTS 1.05 0.85 0.37 0.00 0.85 0.00 0.00
sparseLTS 1.07 0.86 0.06 0.00 0.97 0.00 0.00

22

Table 5: Prediction quality of the formulations of Sect. 3 in the LAD and LS setting, and comparison with methods
from the literature. (Instances with bad leverage points.)

k Method RMSPE MAE FP FN F1 MSE
bias

MSE
vari-
ance

100 LAD-SFSOD (D) 1.21 0.97 0.09 0.00 0.96 0.00 0.04
LAD-SFSOD (L) 1.20 0.96 0.09 0.00 0.96 0.00 0.05
LS-SFSOD (D)2 1.22 0.98 0.11 0.00 0.95 0.00 0.04
LS-SFSOD (L)2 1.24 1.00 0.11 0.00 0.95 0.00 0.04
enetLTS 2.38 1.92 0.53 0.13 0.72 0.06 0.08
sparseLTS 2.26 1.82 0.08 0.23 0.81 0.07 0.07

150 LAD-SFSOD (D) 1.15 0.92 0.05 0.00 0.97 0.00 0.01
LAD-SFSOD (L) 1.14 0.92 0.05 0.00 0.97 0.00 0.01
LS-SFSOD (D)2 1.17 0.94 0.07 0.00 0.97 0.00 0.01
LS-SFSOD (L)2 1.17 0.94 0.06 0.00 0.97 0.00 0.01
enetLTS 1.83 1.49 0.33 0.03 0.85 0.03 0.04
sparseLTS 1.81 1.48 0.07 0.07 0.93 0.04 0.03

200 LAD-SFSOD (D) 1.09 0.86 0.06 0.00 0.97 0.00 0.02
LAD-SFSOD (L) 1.10 0.87 0.05 0.00 0.98 0.00 0.02
LS-SFSOD (D)2 1.11 0.88 0.09 0.00 0.96 0.00 0.02
LS-SFSOD (L)2 1.12 0.88 0.09 0.00 0.96 0.00 0.02
enetLTS 1.84 1.48 0.51 0.03 0.78 0.03 0.05
sparseLTS 1.81 1.45 0.08 0.27 0.77 0.04 0.03

5. Conclusions

Our paper revolves around the idea of using a least absolute deviation (LAD) criterion for the

SFSOD, instead of the least-squares (LS) criterion which is more commonly used in the literature.

We rely on a mathematical programming approach: we model and solve the LAD-SFSOD by

means of two MILP formulations, one adapted from the literature dealing with the LS-SFSOD and

the other one based on a disjunctive argument. Our theoretical analysis proves the disjunctive-

based formulation to offer, in terms of polyhedral structure, advantages with respect to MILP

adapted from the literature. These yield computational advantages. For instance, the quality of

the continuous relaxation of the disjunctive-based formulation is never worse than those of models

adapted from the literature, and it becomes strictly better when a proper choice of model parameters

can be made.

For what concerns the specific application to the SFSOD, we are able to obtain several insights.

First, the performance of LAD and LS methods are strongly affected by the type of outliers in

the dataset. When vertical outliers are involved LTS methods provide the best combination of

prediction error, sparsity and computational efficiency. However, when bad leverage points pollute

the dataset, our experiments show that the mathematical programming approaches using LAD-

SFSOD models perform best (and especially the disjunctive-based formulation). In particular, in

this case, LTS methods are not able to combine sparsity and robustness satisfactorily.

This leads to another interesting insight: mathematical programming models using least squares

appear to be dominated for the SFSOD, being inferior to dedicated LTS methods in presence of

23

vertical outliers, and inferior to LAD-SFSOD models in presence of bad leverage points.

Finally, we found it interesting to note that our results were obtained by changing the classical

approach in computational statistics, in favor of one which is mathematical programming oriented.

This highlights the potential impact that Operations Research techniques can still bring in com-

putational statistics. In this spirit, we foresee two directions for future investigation. One is the

design of dedicated algorithms for optimizing the LAD-SFSOD MILPs of this paper. To this end

decomposition approaches are promising to improve computational performances, as shown in re-

lated applications of MILPs to computational statistics (see e.g., Warwicker and Rebennack (2022)

for a Benders’ decomposition algorithm for the resolution of robust piecewise linear regression based

on a previous work of Rebennack and Krasko (2020)). Another direction is to investigate if the

application of kernels to the dual of stronger formulations (as the disjunctive-based one) would

improve the performance of classic methods.

Data and Code Availability

The instances generated for this study are publicly available at the online repository of Barbato

and Ceselli (2022a). The code implemented for this study are available from the corresponding

author upon request.

Declarations

Funding. The work was partially funded by Università degli Studi di Milano, Piano Sostegno alla

Ricerca (PSR).

Conflict of interest. The authors declare that they have no conflict of interest.

References

Alfons, A. (2021). robustHD v. 0.7.2: Robust methods for high-dimensional data. https://cran.

r-project.org/web/packages/robustHD/robustHD.pdf. Accessed: 2022-31-03.

Alfons, A., Croux, C., and Gelper, S. (2013). Sparse least trimmed squares regression for analyzing

high-dimensional large data sets. The Annals of Applied Statistics, pages 226–248.

Arslan, O. (2012). Weighted LAD-LASSO method for robust parameter estimation and variable

selection in regression. Computational Statistics & Data Analysis, 56(6):1952–1965.

Balas, E. (1998). Disjunctive programming: Properties of the convex hull of feasible points. Discrete

Applied Mathematics, 89(1-3):3–44.

Barbato, M. and Ceselli, A. (2022a). Replication Data for: “Mathematical Programming for Simul-

taneous Feature Selection and Outlier Detection under l1 Norm”. https://doi.org/10.13130/

RD_UNIMI/1MZNNS.

24

https://cran.r-project.org/web/packages/robustHD/robustHD.pdf
https://cran.r-project.org/web/packages/robustHD/robustHD.pdf
https://doi.org/10.13130/RD_UNIMI/1MZNNS
https://doi.org/10.13130/RD_UNIMI/1MZNNS

Barbato, M. and Ceselli, A. (2022b). Technical Report of “Mathematical Programming for Simul-

taneous Feature Selection and Outlier Detection under l1 Norm”. https://doi.org/10.13130/

RD_UNIMI/UA8PFI.

Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gómez, A., and Salvagnin,

D. (2016). On handling indicator constraints in mixed integer programming. Computational

Optimization and Applications, 65(3):545–566.

Bertsimas, D., King, A., and Mazumder, R. (2016). Best subset selection via a modern optimization

lens. The Annals of Statistics, 44(2):813–852.

Bertsimas, D., Kitane, D. L., Azami, N., and Doucet, F. (2020). Novel mixed integer optimization

sparse regression approach in chemometrics. Analytica Chimica Acta, 1137:115–124.

Bertsimas, D. and Weismantel, R. (2005). Optimization over integers, volume 13. Dynamic Ideas,

Belmont.

Bonami, P., Lodi, A., Tramontani, A., and Wiese, S. (2015). On mathematical programming with

indicator constraints. Mathematical Programming, 151(1):191–223.

Bottmer, L., Croux, C., and Wilms, I. (2022). Sparse regression for large data sets with outliers.

European Journal of Operational Research, 297(2):782–794.

Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger

than n. The Annals of Statistics, 35(6):2313–2351.

Chen, Y., Caramanis, C., and Mannor, S. (2013). Robust sparse regression under adversarial

corruption. In International conference on machine learning, pages 774–782. PMLR.

Dodge, Y. (1997). Lad regression for detecting outliers in response and explanatory variables.

Journal of Multivariate Analysis, 61(1):144–158.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American Statistical Association, 96(456):1348–1360.

Filzmoser, P. and Nordhausen, K. (2021). Robust linear regression for high-dimensional data: An

overview. Wiley Interdisciplinary Reviews: Computational Statistics, 13(4):e1524.

Fischetti, M. and Monaci, M. (2020). A branch-and-cut algorithm for mixed-integer bilinear pro-

gramming. European Journal of Operational Research, 282(2):506–514.

Greenshtein, E. (2006). Best subset selection, persistence in high-dimensional statistical learning

and optimization under l1 constraint. The Annals of Statistics, 34(5):2367–2386.

Gurobi Optimization (2021). Gurobi 9.5 optimizer reference manual. https://www.gurobi.com/

documentation/9.5/refman/index.html. Accessed September 28, 2022.

25

https://doi.org/10.13130/RD_UNIMI/UA8PFI
https://doi.org/10.13130/RD_UNIMI/UA8PFI
https://www.gurobi.com/documentation/9.5/refman/index.html
https://www.gurobi.com/documentation/9.5/refman/index.html

Hijazi, H., Bonami, P., Cornuéjols, G., and Ouorou, A. (2012). Mixed-integer nonlinear programs

featuring “on/off” constraints. Computational Optimization and Applications, 52(2):537–558.

IBM ILOG (2020). CPLEX Optimization Studio Version 20 Re-

lease 1.0. https://www.ibm.com/docs/en/icos/20.1.0?topic=

documentation-introducing-ilog-cplex-optimization-studio-2010. Accessed August 26,

2022.

Insolia, L., Kenney, A., Chiaromonte, F., and Felici, G. (2021). Simultaneous feature selection and

outlier detection with optimality guarantees. Biometrics.

Jammal, M. (2020). Variable selection and outlier detection via mixed integer programming. PhD

thesis, Normandie Université; Université Libanaise.

Jammal, M., Canu, S., and Abdallah, M. (2020). ℓ1 Regularized Robust and Sparse Linear Modeling

Using Discrete Optimization. In International Conference on Machine Learning, Optimization,

and Data Science, pages 645–661. Springer.

Jammal, M., Canu, S., and Abdallah, M. (2021). Joint outlier detection and variable selection using

discrete optimization. SORT-Statistics and Operations Research Transactions, pages 47–66.

Kurnaz, F. S., Hoffmann, I., and Filzmoser, P. (2018a). Robust and sparse estimation methods for

high-dimensional linear and logistic regression. Chemometrics and Intelligent Laboratory Systems,

172:211–222.

Kurnaz, F. S., Hoffmann, I., and Filzmoser, P. (2018b). enetLTS v. 0.1.1: Robust and sparse

methods for high dimensional linear and logistic regression. https://cran.r-project.org/

web/packages/enetLTS/enetLTS.pdf. Accessed: 2022-31-03.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs:

Part I – Convex underestimating problems. Mathematical Programming, 10(1):147–175.

Meinshausen, N. (2007). Relaxed lasso. Computational Statistics & Data Analysis, 52(1):374–393.

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Com-

puting, 24(2):227–234.

Rebennack, S. and Krasko, V. (2020). Piecewise linear function fitting via mixed-integer linear

programming. INFORMS Journal on Computing, 32(2):507–530.

Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical

Association, 79(388):871–880.

Rousseeuw, P. J. and Van Driessen, K. (2006). Computing LTS regression for large data sets. Data

Mining and Knowledge Discovery, 12(1):29–45.

26

https://www.ibm.com/docs/en/icos/20.1.0?topic=documentation-introducing-ilog-cplex-optimization-studio-2010
https://www.ibm.com/docs/en/icos/20.1.0?topic=documentation-introducing-ilog-cplex-optimization-studio-2010
https://cran.r-project.org/web/packages/enetLTS/enetLTS.pdf
https://cran.r-project.org/web/packages/enetLTS/enetLTS.pdf

Sudermann-Merx, N. and Rebennack, S. (2021). Leveraged least trimmed absolute deviations. OR

Spectrum, 43(3):809–834.

Thompson, R. (2022). Robust subset selection. Computational Statistics & Data Analysis,

169:107415.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288.

Vielma, J. P. (2015). Mixed integer linear programming formulation techniques. Siam Review,

57(1):3–57.

Wang, H. and Leng, C. (2007). Unified LASSO estimation by least squares approximation. Journal

of the American Statistical Association, 102(479):1039–1048.

Wang, H., Li, G., and Jiang, G. (2007). Robust regression shrinkage and consistent variable selection

through the LAD-Lasso. Journal of Business & Economic Statistics, 25(3):347–355.

Wang, Y. and Zhu, L. (2017). Variable selection and parameter estimation via wlad–scad with a

diverging number of parameters. Journal of the Korean Statistical Society, 46(3):390–403.

Warwicker, J. A. and Rebennack, S. (2022). Generating optimal robust continuous piecewise linear

regression with outliers through combinatorial benders decomposition. IISE Transactions, pages

1–13.

Xu, J. and Ying, Z. (2010). Simultaneous estimation and variable selection in median regression

using lasso-type penalty. Annals of the Institute of Statistical Mathematics, 62(3):487–514.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals

of Statistics, 38(2):894–942.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical

Association, 101(476):1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320.

Appendix A. Relation between the Disjunctive-Based and McCormick’s Lineariza-

tions

In this section we prove the results of Prop. 2 and Obs. 2 in the main paper. The objective

function of (LAD-SFSOD) is
∑k

i=1 sipi where s ∈ {0, 1}k is the set of switch variables and 0 ≤
p ≤ RU is the set of variables upper bounding the residuals of an optimal solution. The objective

can be linearized by describing conv({(xi, pi, si) : xi = pisi, si ∈ {0, 1}, 0 ≤ pi ≤ RU
i }) for every

27

i = 1, 2, . . . , k through the linear inequalities provided by McCormick’s envelope McCormick (1976).

Applying such linearization technique yields the following valid reformulation of (LAD-SFSOD):

min
k∑

i=1

xi (A.1)

xi ≥ pi +RU
i si −RU

i ∀i = 1, 2, . . . , k (A.2)

xi ≤ pi ∀i = 1, 2, . . . , k (A.3)

xi ≤ RU
i si ∀i = 1, 2, . . . , k (A.4)

pi ≥ ri − aiw − z ∀i = 1, 2, . . . , k (A.5)

pi ≤ z + aiw − ri ∀i = 1, 2, . . . , k (A.6)

wj ≥ WL
j fj ∀j = 1, 2, . . . , d (A.7)

wj ≤ WU
j fj ∀j = 1, 2, . . . , d (A.8)

d∑
j=1

fj ≤ d0 (A.9)

k∑
i=1

si ≥ k − k0 (A.10)

s ∈ {0, 1}k (A.11)

f ∈ {0, 1}d (A.12)

p ≥ 0, w ∈ Rd, z ∈ R (A.13)

x ≥ 0. (A.14)

For every vector RU ≥ 0 (also not valid) we denote by MRU and DRU the polytopes describing

the domain of the linear relaxations of (A.1)–(A.14) and of the disjunctive-based formulation,

respectively; then DRU corresponds to a face of MRU , as stated in Prop. 2. Indeed, it is immediate

that DRU is obtained from the linear relaxation of (A.1)–(A.14) by setting all constraints (A.2) to

equality. In order to prove Obs. 2 we first observe that every optimal solution (p⋆, f⋆, s⋆, w⋆, z⋆)

to the linear relaxation of the disjunctive-based formulation admits a solution (x⋆, p⋆, f⋆, s⋆, w⋆, z⋆)

of (A.1)–(A.14) of the same value, just by defining x⋆i := p⋆i−(1−s⋆i)R
U
i . Then, denoting by v(MRU)

and v(DRU) the optimal values of the linear relaxations of (D) and of (A.1)–(A.14) we obtain that

v(DRU) ≥ v(MRU). Conversely, let (x⋆, p⋆, f⋆, s⋆, w⋆, z⋆) a point in MRU of value v(MRU). We

observe that the point (x⋆, p̄, f⋆, s⋆, w⋆, z⋆), defined by p̄i = RU
i (1− s⋆i) if p

⋆
i +RU

i s
⋆
i −RU

i < 0 and

p̄i = p⋆i otherwise, is also an optimal solution. Moreover, this latter solution satisfies (A.2) with

equality, so that (p̄, f⋆, s⋆, w⋆, z⋆) belongs to DRU , thus proving v(DRU) ≤ v(MRU).

Appendix B. Details for LTS methods

We provide a list of non-default values for the parameters of algorithms enetLTS and sparseLTS

used in Sect. 4.4.

28

Algorithm enetLTS.

• hsize (proportion of points labelled as authentic in the final solution; default 0.75): 1 − p0

where p0 ∈ {0.1, 0.13, 0.17, 0.2}. Note that these choices of p0 correspond to the values of k0

used to test the MI(L)P approach;

• nsamp (number of initial subsamples on which C-steps are performed; default 500, see Kurnaz

et al. (2018b,a) for details on the C-steps of enetLTS): 1000;

• nfold (fold number for k-cross validation; default 5): 10.

Except for hsize, the other non-default values above were also used in Insolia et al. (2021). More-

over, we specify that we evaluate the enetLTS solution obtained from the reweighted fit (see Kurnaz

et al. (2018a) for details).

Algorithm sparseLTS..

• mode (types of penalty term; default [“lambda”, “fractional”], see Alfons (2021); Alfons et al.

(2013) for details): “fractional”;

• lambda (penalty term; default 0.05): 0.15 for evaluation on datasets affected by vertical

outliers and 0.5 for evaluation on datasets affected by bad leverage points;

• alpha (proportion of authentic points in the final solution; default 0.75): 1 − p0 where p0 ∈
{0.1, 0.13, 0.17, 0.2}. Note that these choices of p0 correspond to the values of k0 used to test

the MI(L)P approach;

• nsamp (subsamples to use at the beginning and to keep after the C-steps; default [500, 10]):

[1000, 20];

• crit (criterion to select the solution; default [“BIC”, “PE”]): “BIC”, i.e., a Bayesian Infor-

mation Criterion.

As for enetLTS, we evaluate the solution obtained from the reweighted fit of sparseLTS. We point

out that the value lambda of the penalty term is relevant to obtain solutions of good quality.

The values listed above have been found after searching for a good tradeoff between sparsity and

robustness. As reported in Sect. 4.4, those choices yield very good results when vertical outliers

are involved, but poor results (in terms of both prediction error and F1 score when compared to

the LAD-SFSOD solutions) when bad leverage points are present in the dataset. In our experience,

lowering the value of lambda in the evaluation of sparseLTS on datasets affected by bad leverage

points may improve the prediction quality but produces much denser hyperplanes (thus worsening

the F1 score), while increasing its value has the opposite effect.

29

Computational times. As explained in Sect. 4.4, the MI(L)P solutions used to evaluate the predic-

tion quality have been generated by solving the corresponding models with CPLEX, by imposing

a time limit of 3600 CPU seconds in the LAD setting and of 5400 CPU seconds in the LS setting.

We have used the machine indicated at paragraph “Implementation details” of Sect. 4 which is

equipped with a 4.10 GHz processor. Although in several cases the corresponding MI(L)Ps are

solved in a shorter time, a considerable amount of tests reached the time limit without having

proved optimality of the best incumbent. As a consequence, the MI(L)P approach turned out to be

very time consuming: even running tests in parallel at least 3 days of computation were needed to

complete an entire test session.

On the contrary, enetLTS and sparseLTS algorithms are much faster: they have been run over

a desktop machine running under Ubuntu 18.04 and equipped with 4 GB of RAM and with a

1.70 GHz CPU (model Intel(R) Core(TM) i5-3317U) and have completed always within 1 hour

(enetLTS) or within seconds (sparseLTS) the entire test session.

30

	Introduction
	Notation and background
	Formulations and properties
	Objective Function Linearizations and Theoretical Analysis
	Big- Computation

	Computational Results
	Comparison of continuous relaxations
	Comparison of MIP Performances
	Comparison with built-in functionalities of MIP solvers
	Comparison of Prediction Quality

	Conclusions
	Relation between the Disjunctive-Based and McCormick's Linearizations
	Details for LTS methods

