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Abstract

Given a graph G = (V,E) and an integer k ≥ 1, the graph H = (V, F ),
where F is a family of elements of E, is a k-edge-connected spanning
subgraph of G if H cannot be disconnected by deleting any k−1 elements
of F . The convex hull of the k-edge-connected subgraphs of a graph G
forms the k-edge-connected subgraph polyhedron of G. We prove that this
polyhedron is box-totally dual integral if and only if G is series-parallel.
In this case, we also provide an integer box-totally dual integral system
describing this polyhedron.

Totally dual integral systems, introduced in the late 70’s, are strongly con-
nected to min-max relations in combinatorial optimization [34]. A rational
system of linear inequalities Ax ≥ b is totally dual integral (TDI) if the maxi-
mization problem in the linear programming duality:

min{c>x : Ax ≥ b} = max{b>y : A>y = c, y ≥ 0}

admits an integer optimal solution for each integer vector c such that the op-
timum is finite. Every rational polyhedron can be described by a TDI system
[28]. For instance, the polyhedron {x : Ax ≥ b} can be described by TDI sys-
tems of the form 1

qAx ≥
1
q b for certain positive q. However, a polyhedron is

integer if and only if it can be described by a TDI system with only integer
coefficients [23] [28]. Integer TDI systems yield min-max results that may have
combinatorial interpretation.

A stronger property is the box-total dual integrality: a system Ax ≥ b is
box-totally dual integral (box-TDI) if Ax ≥ b, ` ≤ x ≤ u is TDI for all rational
vectors ` and u (possibly with infinite components). General properties of such
systems can be found in Cook [12] and Chapter 22.4 of Schrijver [34]. Note that,
although every rational polyhedron can be described by a TDI system, not every
polyhedron can be described by a box-TDI system. A polyhedron which can be
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described by a box-TDI system is called a box-TDI polyhedron. As proved by
Cook [12], every TDI system describing such a polyhedron is actually box-TDI.

Recently, several new box-TDI systems have been exhibited. Chen, Ding,
and Zang [6] characterized box-Mengerian matroid ports. Ding, Tan, and
Zang [19] characterized the graphs for which the TDI system of Cunningam
and Marsh [17] describing the matching polytope is actually box-TDI. Ding,
Zang, and Zhao [20] exhibited new subclasses of box-perfect graphs. Cornaz,
Grappe, and Lacroix [14] provided several box-TDI systems in series-parallel
graphs. Barbato, Grappe, Lacroix, Lancini, and Wolfler Calvo [3] gave the min-
imal box-TDI system with integer coefficients for the flow cone for series-parallel
graphs. For these graphs, Chen, Ding, and Zang [7] provided a box-TDI system
describing the 2-edge-connected spanning subgraph polyhedron.

In this paper, we are interested in integrality properties of systems related
to k-edge-connected spanning subgraphs. A k-edge-connected spanning subgraph
of a graph G = (V,E) is a graph H = (V, F ), with F a family of elements of E,
that remains connected after the removal of any k − 1 edges.

These objects model a kind of failure resistance of telecommunication net-
works. More precisely, they represent networks which remain connected when
k− 1 links fail. The underlying network design problem is the k-edge-connected
spanning subgraph problem (k-ECSSP): given a graph G and positive edge costs,
find a k-edge-connected spanning subgraph of G of minimum cost. Special cases
of this problem are related to classical combinatorial optimization problems.
The 2-ECSSP is a well-studied relaxation of the traveling salesman problem [24]
and the 1-ECSSP is nothing but the well-known minimum spanning tree prob-
lem. While this latter is polynomial-time solvable, the k-ECSSP is NP-hard for
every fixed k ≥ 2 [27].

Different algorithms have been devised in order to deal with the k-ECSSP,
such as branch-and-cut procedures [4][15], approximation algorithms [8][26], cut-
ting plane algorithms [30], and heuristics [11]. In [36], Winter introduced a
linear-time algorithm solving the 2-ECSSP on series-parallel graphs. Most of
these algorithms rely on polyhedral considerations.

Given a graph G = (V,E), the convex hull of all the families of E induc-
ing a k-edge-connected spanning subgraph of G forms a polyhedron, hereafter
called the k-edge-connected spanning subgraph polyhedron of G and denoted by
Pk(G). Cornujols, Fonlupt, and Naddef [16] gave a system describing P2(G)
when G is series-parallel. Vandenbussche and Nemhauser [35] characterized in
terms of forbidden minors the graphs for which this system describes P2(G).
Chopra [10] described Pk(G) for outerplanar graphs when k is odd. Didi Biha
and Mahjoub [18] extended these results to series-parallel graphs for all k ≥ 2.
By a result of Bäıou, Barahona, and Mahjoub [1], the inequalities in these de-
scriptions can be separated polynomial time, which implies that the k-ECSSP
is solvable in polynomial time for series-parallel graphs.

When studying the k-edge-connected spanning subgraphs of a graph G, we
can add the constraint that each edge of G can be taken at most once. We
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denote the corresponding polyhedron by Qk(G). Barahona and Mahjoub [2]
described Q2(G) for Halin graphs. Further polyhedral results for the case k = 2
have been obtained by Boyd and Hao [5] and Mahjoub [32][33]. Grötschel and
Monma [29] described several classes of facets of Qk(G). Moreover, Fonlupt and
Mahjoub [25] extensively studied the extremal points of Qk(G) and character-
ized the class of graphs for which this polytope is described by cut inequalities
and 0 ≤ x ≤ 1.

The polyhedron P1(G) is known to be box-TDI for all graphs [31]. For
series-parallel graphs, the system given in [16] describing P2(G) is not TDI.
Chen, Ding, and Zang [7] showed that dividing by 2 yields a TDI system for
such graphs. Actually, they proved that this system is box-TDI if and only if
the graph is series-parallel.

Contributions. Our starting point is the result of Chen, Ding, and Zang [7].
First, their result implies that P2(G) is a box-TDI polyhedron for series-parallel
graphs. However, this leaves open the question of the box-TDIness of P2(G) for
non series-parallel graphs. More generally, for which integers k and graphs G is
Pk(G) a box-TDI polyhedron?

We answer this question by proving that, for k ≥ 2, Pk(G) is a box-TDI
polyhedron if and only if G is series-parallel. Note that this work is one of the
first that proves the box-TDIness of a polyhedron without giving a box-TDI
system describing it. Instead, our proof is based on the recent matricial char-
acterization of box-TDI polyhedra given by Chervet, Grappe, and Robert [9].

By [34, Theorem 22.6], there exists a TDI system with integer coefficients
describing Pk(G). For series-parallel graphs, the system provided by Chen,
Ding, and Zang [7] has noninteger coefficients. Moreover, the system given by
Didi Biha and Mahjoub [18] describing Pk(G) when k is even is not TDI. When
k ≥ 2 and G is series-parallel, which combinatorial objects yield an integer TDI
system describing Pk(G)?

We answer this question by exhibiting integer TDI systems based on multi-
cuts. When k is even, we use multicuts to provide an integer TDI system for
Pk(G) when G is series-parallel. Our proof relies on the standard constructive
characterization of series-parallel graphs. When k is odd, we prove that the
description of Pk(G) given by Didi Biha and Mahjoub [18] based on multicuts
is TDI if and only if the graph is series-parallel. For this case, our proof relies
on new properties of the set of degree 2 vertices in simple series-parallel graphs
stated in Proposition 3.

The box-totally dual integral characterization of Pk(G) implies that these
systems are actually box-TDI if and only if G is series-parallel. By definition of
box-TDIness, adding x ≤ 1 to these systems yields box-TDI systems for Qk(G)
for series-parallel graphs.

Outline. In Section 1, we give the definitions and preliminary results used
throughout the paper. In Section 2, we prove that, for k ≥ 2, Pk(G) is a box-
TDI polyhedron if and only if G is series-parallel. In Section 3, we provide a
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TDI system with integer coefficients describing Pk(G) when G is series-parallel
and k ≥ 2 is even. In Section 4, we show the TDIness of the system given by
Didi Biha and Mahjoub [18] that describes Pk(G) for G series-parallel and k ≥ 3
odd.

1 Definitions and Preliminary Results

This section is devoted to the definitions, notation, and preliminary results used
throughout the paper.

1.1 Graphs and Combinatorial Objects

Given a set E, a family of E is a collection of elements of E where each element
can appear multiple times. The incidence vector of a family F of E is the vector
χF of ZE+ such that e’s coordinate is the multiplicity of e in F for all e in E.
Since there is a bijection between families and their incidence vectors, we will
often use the same terminology for both.

Given a graph G = (V,E) and the incidence vector z ∈ ZE+ of a family F of
E, G[z] denotes the graph (V, F ).

Let G = (V,E) be a loopless undirected graph. Two edges of G are parallel
if they share the same endpoints, and G is simple if it does not have parallel
edges. A graph is 2-connected if it cannot be disconnected by removing a vertex.
The graph obtained from two disjoint graphs by identifying two vertices, one of
each graph, is called a 1-sum. A 2-connected graph is trivial if it is composed
of a single edge. We denote by Kn the complete graph on n vertices, that is
the simple graph with n vertices and one edge between each pair of vertices.
Given an edge e of G, we denote by G\ e (respectively G/e) the graph obtained
by removing (respectively contracting) the edge e, where contracting an edge
uv consists in removing it and identifying u and v. Similarly, we denote by
G \ v the graph obtained form G by removing the vertex v and by G[W ] the
graph obtained by removing all vertices not in the vertex subset W . Given a
vector x ∈ RE and a subgraph H of G, we denote by x|H the vector obtained
by restricting x to the components associated with the edges of H.

A subset of edges of G is called a circuit if it induces a connected graph in
which every vertex has degree 2. Given a subset U of V , the cut δ(U) is the
set of edges having exactly one endpoint in U . A bond is a minimal nonempty
cut. Given a partition {V1, . . . , Vn} of V , the set of edges having endpoints in
two distinct Vi’s is called a multicut and is denoted by δ(V1, . . . , Vn). We denote
respectively byMG and BG the set of multicuts and the set of bonds of G. For
every multicut M , there exists a unique partition {V1, . . . , VdM } of vertices of V
such that M = δ(V1, . . . , VdM ), and G[Vi] is connected for all i = 1, . . . , dM . We
say that dM is the order of M and V1, . . . , VdM are the classes of M . Multicuts
are characterized in terms of circuits, as stated in the following.

Lemma 1 ([13]). A set of edges M is a multicut if and only if |M ∩C| 6= 1 for
all circuits C of G.
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We denote the symmetric difference of two sets S and T by S∆T . It is
well-known that the symmetric difference of two cuts is a cut. Moreover, the
following result holds.

Observation 2. Let G be a graph, v be a degree 2 vertex of G, and M be a
multicut such that |M ∩ δ(v)| = 1. Then, M ∪ δ(v) and M∆δ(v) are multicuts.
Moreover, dM∪δ(v) = dM + 1, and dM∆δ(v) = dM .

A graph is series-parallel if its nontrivial 2-connected components can be
constructed from a circuit of length 2 by repeatedly adding edges parallel to an
existing one, and subdividing edges, that is, replacing an edge by a path of length
two. Equivalently, series-parallel graphs are those having no K4-minor [21].

By construction, simple nontrivial 2-connected series-parallel graphs have at
least one degree 2 vertex. Moreover, these vertices satisfy the following.

Proposition 3. For a simple nontrivial 2-connected series-parallel graph, at
least one of the following holds:

(i) two degree 2 vertices are adjacent,

(ii) a degree 2 vertex belongs to a circuit of length 3,

(iii) two degree 2 vertices belong to a same circuit of length 4.

Proof. We proceed by induction, the base case is K3 for which (i) holds.
Let G be a simple 2-connected series-parallel graph. Since G is simple, it

can be built from a series-parallel graph H by subdividing an edge e into a path
f, g. Let v be the degree 2 vertex added with this operation. By the induction
hypothesis, either H is not simple, or one among (i), (ii), and (iii) holds for H.
Hence, there are four cases.
Case 1: H is not simple. By G being simple, e is parallel to exactly one edge
h. Hence, f, g, h is a circuit of G length 3 containing v, thus (ii) holds for G.
Case 2: (i) holds for H. Then, it holds for G.
Case 3: (ii) holds for H. Let C be a circuit of H of length 3 containing a degree
2 vertex, say w. If e /∈ C, then (ii) holds for G. Otherwise, by subdividing e,
we obtain a circuit of length 4 containing v and w, and hence (iii) holds for G.
Case 4: (iii) holds for H. Let C be a circuit of H of length 4 containing two
degree 2 vertices. If e /∈ C, then (iii) holds for G. Otherwise, by subdividing e,
we obtain a circuit of length 5 containing three degree 2 vertices. Then, at least
two of them are adjacent, and so (i) holds for G.

1.2 Box-Total Dual Integrality

Let A ∈ Rm×n be a full-row rank matrix. This matrix is equimodular if all its
m ×m non-zero determinants have the same absolute value. The matrix A is
face-defining for a face F of a polyhedron P ⊆ Rn if aff(F ) = {x ∈ Rn : Ax = b}
for some b ∈ Rm. Such matrices are the face-defining matrices of P .
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Theorem 4 ([9, Theorem 1.4]). Let P be a polyhedron, then the following
statements are equivalent:

(i) P is box-TDI.

(ii) Every face-defining matrix of P is equimodular.

(iii) Each face of P has an equimodular face-defining matrix.

In Theorem 4, the equivalence of conditions (ii) and (iii) stems from the
following observation.

Observation 5 ([9, Observation 4.10]). Let F be a face of a polyhedron. If
a face-defining matrix for F is equimodular, then so are all the face-defining
matrices for F .

We will also use the following.

Observation 6. Let A ∈ RI×J be a full row rank matrix, j ∈ J , c be a column
of A, and v ∈ RI . If A is equimodular, then so are:

(i)

[
A
±χj

]
if it is full row-rank and (ii)

[
A 0
±χj ±1

]
.

Observation 7 ([9, Observation 4.11]). Let P ⊆ Rn be a polyhedron and let
F = {x ∈ P : Bx = b} be a face of P . If B has full-row rank and n − dim(F )
rows, then B is face-defining for F .

1.3 k-edge-connected Spanning Subgraph Polyhedron

Note that Pk(G) is the dominant of the convex hull of all the families of E con-
taining at most k copies of each edge and inducing a k-edge-connected spanning
subgraph of G. Since the dominant of a polyhedron is a polyhedron, Pk(G) is
a full-dimensional polyhedron even though it is the convex hull of an infinite
number of points.

From now on, k ≥ 2. Didi Biha and Mahjoub [18] gave a complete description
of Pk(G) for all k, when G is series-parallel.

Theorem 8 ([18]). Let G be a series-parallel graph and h be a positive integer.
Then P2h(G) is described by:

(1)

{
x(D) ≥ 2h for all cuts D of G,

x ≥ 0,

(1a)

(1b)

and P2h+1(G) is described by:

(2)

{
x(M) ≥ (h+ 1)dM − 1 for all multicuts M of G,

x ≥ 0.

(2a)

(2b)

Since the incidence vector of a multicut δ(V1, . . . , V`) of order ` is the half-
sum of the incidence vectors of the bonds δ(V1), . . . , δ(V`), we can deduce an-
other description of P2h(G).
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Corollary 1. Let G be a series-parallel graph and h be a positive integer. Then
P2h(G) is described by:

(3)

{
x(M) ≥ hdM for all multicuts M of G,

x ≥ 0.

(3a)

(3b)

We call constraints (2a) and (3a) partition constraints. A multicut M is
tight for a point of Pk(G) if this point satisfies with equality the partition con-
straint (2a) (respectively (3a)) associated with M when k is odd (respectively
even). Moreover, M is tight for a face F of Pk(G) if it is tight for all the points
of F .

The following results give some insights on the structure of tight multicuts.

Theorem 9 ([18, Theorem 2.3 and Lemma 3.1]). Let x be a point of P2h+1(G),
and let M = δ(V1, . . . , VdM ) be a multicut tight for x. Then, the following hold:

(i) if dM ≥ 3, then x (δ(Vi) ∩ δ(Vj)) ≤ h+ 1 for all i 6= j ∈ {1, . . . , dM}.

(ii) G \ Vi is connected for all i = 1, . . . , dM .

Observation 10. Let v be a degree 2 vertex of G and M be a multicut of G
strictly containing δ(v) = {uv, vw}. If M is tight for a point of Pk(G), then
both M \ f and M \ g are multicuts of G of order dM − 1.

Proof. It suffices to show that u and w belong to different classes of M =
δ(v, V2, . . . , VdM ). Suppose that u,w ∈ V2. Then M is the union of the two
multicuts δ(v) and M ′ = δ(v ∪ V2, . . . , VdM ). Since dδ(v) + dM ′ = dM + 1, the
sum of the two the partition inequalities associated with δ(v) and M ′ implies
that the partition inequality associated with M is tight for no point of Pk(G)
for every k ≥ 2.

Chopra [10] gave sufficient conditions for an inequality to be facet defining
for Pk(G). The following proposition is a direct consequence of Theorems 2.4
and 2.6 of [10].

Proposition 11. Let G be a connected graph having K4 as a minor and let
h ≥ 1. Then, there exist two disjoint nonempty subsets of edges of G, E′ and
E′′, and a rational b such that

χE
′
+ 2χE

′′
≥ b, (4)

is a facet-defining inequality of P2h+1(G).

Chen, Ding, and Zang [7] provided a box-TDI system for P2(G) for series-
parallel graphs.

Theorem 12 ([7, Theorem 1.1]). The system:{
1
2x(D) ≥ 1 for all cuts D of G,
x ≥ 0

(5)

is box-TDI if and only if G is a series-parallel graph.
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This result proves that the polyhedron P2(G) is box-TDI for all series-parallel
graphs, and gives a TDI system describing this polyhedron in this case. However,
Theorem 12 is not sufficient to state that P2(G) is a box-TDI polyhedron if and
only if G is series-parallel.

2 Box-TDIness of Pk(G)

In this section we show that, for k ≥ 2, Pk(G) is a box-TDI polyhedron for a
connected graph G if and only if G is series-parallel. Since Pk(G) = ∅ when G
is not connected, we assume from now on that G is connected.

When k ≥ 2, Pk(G) is not always box-TDI, as stated by the following lemma.

Lemma 13. For k ≥ 2, if G = (V,E) contains a K4-minor, then Pk(G) is not
box-TDI.

Proof. When k = 2h+ 1 is odd, Proposition 11 shows that there exists a facet-
defining inequality that is described by a non equimodular matrix as Pk(G) is
full-dimensional. Thus, Pk(G) is not box-TDI by Statement (ii) of Theorem 4.

We now prove the case when k is even. Since G has a K4-minor, there exists
a partition {V1, . . . , V4} of V such that G[Vi] is connected and δ(Vi, Vj) 6= ∅ for
all i < j ∈ {1, . . . , 4}. We now prove that the matrix A whose three rows are
χδ(Vi) for i = 1, 2, 3 is a face-defining matrix of Pk(G) which is not equimodular.
This will end the proof by Statement (ii) of Theorem 4.

Let eij be an edge in δ(Vi, Vj) for all i < j ∈ {1, . . . , 4}. The submatrix of
A formed by the columns associated with edges eij is the following:

e12 e13 e23 e14 e24 e34

χδ(V1)

χδ(V2)

χδ(V3)

 1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1


The matrix A is not equimodular as the first three columns form a matrix of
determinant -2 whereas the last three ones give a matrix of determinant 1.

By Observation 7, to show that A is face-defining, it is enough to exhibit
|E|−2 affinely independent points of Pk(G) satisfying x(δ(Vi)) = k for i = 1, 2, 3.

LetD1 = {e12, e14, e23, e34}, D2 = {e12, e13, e24, e34}, D3 = {e13, e14, e23, e24}
and D4 = {e14, e24, e34}. First, we define the points Sj =

∑4
i=1 kχ

E[Vi] + k
2χ

Dj ,

for j = 1, 2, 3, and S4 =
∑4
i=1 kχ

E[Vi] + kχD4 . Note that they are affinely
independent.

Now, for each edge e /∈ {e12, e13, e14, e23, e24, e34}, we construct the point
Se as follows. When e ∈ E[Vi] for some i = 1, . . . , 4, we define Se = S4 + χe.
Adding the point Se maintains affine independence as Se is the only point not
satisfying xe = k. When e ∈ δ(Vi, Vj) for some i, j, we define Se = S`−χeij +χe,
where S` is S1 if e ∈ δ(V1, V4)∪δ(V2, V3) and S2 otherwise. Affine independence
comes because Se is the only point involving e.

In total, we built 4 + |E| − 6 = |E| − 2 affinely independent points.
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The following theorem characterizes the class of graphs for which Pk(G) is
box-TDI. The case k even is obtained using the box-TDIness for k = 2 and the
fact that integer dilations maintain box-TDIness. For the case k odd, on the
contrary to what is generally done, the proof does not exhibit a box-TDI system
describing Pk(G). For this case, the proof is by induction on the number of edges
of G. We prove that series-parallel operations preserve the box-TDIness of the
polyhedron. The most technical part of the proof is the subdivision of an edge
uw into two edges uv and vw. We proceed by contradiction: by Theorem 4,
we suppose that there exists a face F of Pk(G) defined by a nonequimodular
matrix. We study the structure of the inequalities corresponding to this matrix.
In particular, we show that they are all associated with multicuts, and that these
multicuts contain either both uv and vw, or none of them—see Claims 2.1, 2.2,
and 2.3. These last results allow us to build a nonequimodular face-defining
matrix for the smaller graph, which contradicts the induction hypothesis.

Theorem 14. For k ≥ 2, Pk(G) is a box-TDI polyhedron if and only if G is
series-parallel.

Proof. Necessity stems from Lemma 13. Let us now prove sufficiency. When
k = 2, the box-TDIness of System (5) has been shown by Chen, Ding, and
Zang [7]. This implies box-TDIness for all even k: multiplying the right-hand
side of a box-TDI system by a positive rational preserves its box-TDIness [34,
Section 22.5]. The system obtained by multiplying by k the right-hand side of
System (5) describes Pk(G) when k is even. Hence, the latter is a box-TDI
polyhedron.

The rest of the proof is dedicated to the case where k = 2h + 1 for some
h ≥ 1. To this end, we prove that for every face of P2h+1(G) there exists an
equimodular face-defining matrix. The characterization of box-TDIness given
in Theorem 4 concludes. We proceed by induction on the number of edges of
G.

If G is trivial, then P2h+1(G) = {x ∈ R+ : x ≥ 2h + 1} is box-TDI. If G is
the circuit {e, f}, then P2h+1(G) = {xe, xf ∈ R+ : xe + xf ≥ 2h + 1} is also
box-TDI.

(1-sum) Let G be the 1-sum of two series-parallel graphs G′ = (W ′, E′)
and G′′ = (W ′′, E′′). By induction, there exist two box-TDI systems A′y ≥ b′

and A′′z ≥ b′′ describing respectively P2h+1(G′) and P2h+1(G′′). If v is the
vertex of G obtained by the identification, G \ v is not connected, hence, by
Statement (ii) of Theorem 9, a multicut M of G is tight for a face of P2h+1(G)
only if M ⊆ Ei for some i = 1, 2. It follows that for every face F of P2h+1(G)
there exist two faces F ′ and F ′′ of P2h+1(G′) and P2h+1(G′′) respectively, such
that F = F ′×F ′′. Then P2h+1(G) = {(y, z) ∈ RE′+ ×RE′′+ : A′y ≥ b′, A′′z ≥ b′′}
and so it is box-TDI.

(Parallelization) Let G = (V,E) be obtained from a series-parallel graph G′

by adding an edge g parallel to an edge f of G′ and suppose that P2h+1(G′)
is box-TDI. Let A′x ≥ b be a box-TDI system describing P2h+1(G′). Note
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that P2h+1(G) is described by Ax ≥ b, xf ≥ 0, xg ≥ 0, where A is the matrix
obtained by duplicating f ’s column. By Theorem 22.10 of [34], the system
Ax ≥ b is box-TDI, hence so is Ax ≥ b, xf ≥ 0, xg ≥ 0. Thus, P2h+1(G) is a
box-TDI polyhedron.

(Subdivision) Let G = (V,E) be obtained by subdividing an edge uw of a
series-parallel graph G′ = (V ′, E′) into a path of length two uv, vw. By contra-
diction, suppose there exists a non-empty face F = {x ∈ P2h+1(G) : AFx = bF }
such that AF is a face-defining matrix for F which is not equimodular. Take
such a face with maximum dimension. Then, every submatrix of AF which is
face-defining for a face of P2h+1(G) is equimodular. We may assume that AF
is defined by the partition constraints (2a) associated with the set of multicuts
MF and the nonnegativity constraints associated with the set of edges EF .

Claim 2.1. EF = ∅.

Proof. Suppose there exists an edge e ∈ EF . Let H = G \ e and let AFH
x =

bFH
be the system obtained from AFx = bF by removing the column and the

nonnegativity constraint associated with e. The matrix AF being of full row
rank, so is AFH

. Since e ∈ EF , for all multicut M tight for F not containing
e, M ∪ e is not a multicut. Hence M \ e is a multicut of H of order dM , for
all M in MF . Hence, the set FH = {x ∈ P2h+1(H) : AFH

x = bFH
} is a

face of P2h+1(H). Moreover, deleting e’s coordinate of aff(F ) gives aff(FH) so
AFH

is face-defining for FH . By the induction hypothesis, AFH
is equimodular.

Since maximal invertible square submatrices of AF are in bijection with those
of AFH

and have the same determinant in absolute value, AF is equimodular, a
contradiction.

Claim 2.2. For e ∈ {uv, vw}, at least one multicut of MF different from δ(v)
contains e.

Proof. By contradiction, suppose that uv belongs to no multicut ofMF different
from δ(v).

First, suppose that δ(v) does not belong to MF . Then, the column of AF
associated with uv is zero. Let A′F be the matrix obtained from AF by removing
this column. Every multicut of G not containing uv is a multicut of G′ (rela-
belling vw by uw), so the rows of A′F are associated with multicuts of G′. Thus,
F ′ = {x ∈ Pk(G′) : A′Fx = bF } is a face of P2h+1(G′). Removing uv’s coordi-
nate from the points of F gives a set of points of F ′ of affine dimension at least
dim(F )− 1. Since A′F has the same rank of AF and one column less than AF ,
then A′F is face-defining for F ′ by Observation 7. By the induction hypothesis,
A′F is equimodular. Since adding a column of zeros preserves equimodularity,
so is AF .

Suppose now that δ(v) belongs to MF . Then, the column of AF associated
with uv has zeros in each row but χδ(v). Let A?Fx = b?F be the system obtained
from AFx = bF by removing the equation associated with δ(v). Then F ? =
{x ∈ Pk(G) : A?Fx = b?F } is a face of Pk(G) of dimension dim(F ) + 1. Indeed, it
contains F and z + αχuv /∈ F for every point z of F and α > 0. Hence, A?F is
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face-defining for F ?. This matrix is equimodular by the maximality assumption
on F , and so is AF by Statement (ii) of Observation 6.

Claim 2.3. |M ∩ δ(v)| 6= 1 for every multicut M ∈MF .

Proof. Suppose there exists a multicut M tight for F such that |M ∩ δ(v)| = 1.
Without loss of generality, suppose that M contains uv and not vw. Then, F ⊆
{x ∈ P2h+1(G) : xvw ≥ xuv} because of the partition inequality (2a) associated
with the multicut M∆δ(v). Moreover, the partition inequality associated with
δ(v) and the integrality of P2h+1(G) imply F ⊆ {x ∈ P2h+1(G) : xvw ≥ h+ 1}.
The proof is divided into two cases.

Case 1: F ⊆ {x ∈ P2h+1(G) : xvw = h+ 1}. We prove this case by exhibiting
an equimodular face-defining matrix for F . By Observation 5, this implies that
AF equimodular, which contradicts the assumption on F .

Equality xvw = h+1 can be expressed as a linear combination of equations of
AFx = bF . Let A′Fx = b′F denote the system obtained by replacing an equation
of AFx = bF by xvw = h + 1 in such a way that the underlying affine space
remains unchanged. Denote by N the set of multicuts ofMF containing vw but
not uv. If N 6= ∅, then let N be in N . We now modify the system A′Fx = b′F
by performing the following operations.

1. Replace every equation associated with a multicut M strictly containing
δ(v) by the partition constraint (2a) associated with M \vw set to equality.

2. If δ(v) ∈ MF , then replace the equation associated with δ(v) by the box
constraint xuv = h.

3. Replace every equation associated with M ∈ N \ N by the partition
constraint (2a) associated with M∆δ(v) set to equality.

4. If N 6= ∅, then replace the equation associated with N by the box con-
straint xuv = h+ 1.

These operations do not modify the underlying affine space. Indeed, in Opera-
tion 1, M \vw is tight for F because of Observation 10 and F ⊆ {x ∈ P2h+1(G) :
xvw = h + 1}. Operation 2 is applied only if F ⊆ {x ∈ P2h+1(G) : xuv = h}.
Operations 3 and 4 are applied only if N 6= ∅, which implies that F ⊆ {x ∈
P2h+1(G) : xuv = h+ 1} because of the constraint (2a) associated with N∆δ(v)
and F ⊆ {x ∈ P2h+1(G) : xvw ≥ xuv}. Note that Operations 2 and 4 cannot be
applied both, hence the rank of the matrix remains unchanged.

Let A′′Fx = b′′F be the system obtained by removing the equation xvw = h+1
from A′Fx = b′F . By construction, A′′Fx = b′′F is composed of constraints (2a)
set to equality and possibly xuv = h or xuv = h + 1. Moreover, the column of
A′′F associated with vw is zero. Let F ′′ = {x ∈ P2h+1(G) : A′′Fx = b′′F }. For
every point z of F and α ≥ 0, z + αχvw belongs to F ′′ because the column of
A′′F associated with vw is zero, and z + αχvw ∈ P2h+1(G). This implies that
dim(F ′′) ≥ dim(F ) + 1.
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If F ′′ is a face of P2h+1(G), then A′′F is face-defining for F ′′ by Observation 7
and by A′F being face-defining for F . By the maximality assumption on F , A′′F
is equimodular, and hence so is A′F by Statement (i) of Observation 6.

Otherwise, by construction, F ′′ = F ?∩{x ∈ RE : xuv = t} where F ? is a face
of P2h+1(G) strictly containing F and t ∈ {h, h + 1}. Therefore, there exists
a face-defining matrix for F ′′ given by a face-defining matrix for F ? and the
row χuv. Such a matrix is equimodular by the maximality assumption of F and
Statement (i) of Observation 6. Hence, A′′F is equimodular by Observation 5,
and so is A′F by Statement (i) of Observation 6.

Case 2: F 6⊆ {x ∈ P2h+1(G) : xvw = h + 1}. Thus, there exists z ∈ F such
that zvw > h + 1. By Claim 2.2, there exists a multicut N 6= δ(v) containing
vw which is tight for F . By Statement (i) of Theorem 9, the existence of z
implies that N is a bond, hence it does not contain uv. The set L = N∆δ(v)
is a bond of G. The partition inequality (2a) associated with L implies that
F ⊆ {x ∈ P2h+1(G) : xvw = xuv} and L is tight for F . Moreover, N is the
unique multicut tight for F containing vw. Suppose indeed that there exists a
multicut B containing vw tight for F . Then, B is a bond by Statement (i) of
Theorem 9 and the existence of z. Moreover, B∆N is a multicut not containing
vw. This implies that no point x of F satisfies the partition constraint associated
with B∆N because x(B∆N) = x(B) +x(N)−2x(B∩N) = 2(2h+ 1)−2x(B∩
N) ≤ 4h+ 2− 2xvw ≤ 2h, a contradiction.

Consider the matrix A?F obtained from AF by removing the row associated
with N . Matrix A?F is a face-defining matrix for a face F ? ⊇ F of P2h+1(G)
because F ? contains F and z + αχuv for every point z of F and α > 0. By
the maximality assumption, the matrix A?F is equimodular. Let BF be the
matrix obtained from AF by replacing the row χN by the row χN − χL. Then,
BF is face-defining for F . Moreover, BF is equimodular by Statement (ii)
of Observation 6—a contradiction.

Let A′Fx = b′F be the system obtained from AFx = bF by removing uv’s
column from AF and subtracting h+ 1 times this column to bF . We now show
that {x ∈ P2h+1(G′) : A′Fx = b′F } is a face of P2h+1(G′) if δ(v) /∈ MF , and
P2h+1(G′)∩{x : xuw = h} otherwise. Indeed, consider a multicut M inMF . If
M = δ(v), then the equation of A′Fx = b′F induced by M is nothing but xuw = h.
Otherwise, by Observation 10 and Claim 2.3, the set M \ uv is a multicut of G′

(relabelling vw by uw) of order dM if uv /∈M and dM − 1 otherwise. Thus, the
equation of A′Fx = b′F induced by M is the partition constraint (2a) associated
with M \ uv set to equality.

By construction and Claim 2.3, A′F has full row rank and one column less
than AF . We prove that A′F is face-defining by exhibiting dim(F ) affinely
independent points of P2h+1(G′) satisfying A′Fx = b′F . Because of the integrality
of P2h+1(G), there exist n = dim(F ) + 1 affinely independent integer points
z1, . . . , zn of F . By Claims 2.2 and 2.3, there exists a multicut strictly containing
δ(v). Then, Statement (i) of Theorem 9 implies that F ⊆ {x ∈ RE : xuv ≤
h+ 1, xvw ≤ h+ 1}. Combined with the partition inequality xuv +xvw ≥ 2h+ 1
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associated with δ(v), this implies that at least one of ziuv and zivw is equal to
h+ 1 for i = 1, . . . , n. Since exchanging the uv and vw coordinates of any point
of F gives a point of F by Claim 2.3, the hypotheses on z1, . . . , zn are preserved
under the assumption that ziuv = h+ 1 for i = 1, . . . , n− 1. Let y1, . . . , yn−1 be
the points obtained from z1, . . . , zn−1 by removing uv’s coordinate. Since every
multicut of G′ is a multicut of G with the same order, y1, . . . , yn−1 belong to
P2h+1(G′). By construction, they satisfy A′Fx = b′F so they belong to a face of
P2h+1(G′) or P2h+1(G′)∩{x : xuw = h}. This implies that A′F is a face-defining
matrix of P2h+1(G′) if δ(v) /∈MF , and P2h+1(G′) ∩ {x : xuw = h} otherwise.

By induction, P2h+1(G′) is a box-TDI polyhedron and hence so is P2h+1(G′)∩
{x : xuw = h}. Hence, A′F is equimodular by Theorem 4. Since AF is ob-
tained from A′F by copying a column, then also AF is equimodular—a contra-
diction.

By definition of box-TDIness and Qk(G), Theorem 14 implies that Qk(G)
is box-TDI when G is series-parallel. The converse does not hold. Indeed,
for instance, when G = (V,E) is a minimal k-edge-connected graph, Qk(G) is
nothing but the single point χE so it is a box-TDI polyhedron.

3 An Integer TDI System for P2h(G)

Let G be a series-parallel graph. In this section we provide an integer TDI
system for P2h(G) with h positive and integer.

The proof of the main result of the section is based on the characterization
of TDIness by means of Hilbert bases. A set of vectors {v1, . . . , vk} is a Hilbert
basis if each integer vector that is a nonnegative combination of v1, . . . , vk can
be expressed as a nonnegative integer combination of them. The link between
Hilbert basis and TDIness is stated in the following theorem.

Theorem 15 (Theorem 22.5 of [34]). A system Ax ≥ b is TDI if and only
if for every face F of P = {x : Ax ≥ b}, the rows of A associated with tight
constraints for F form a Hilbert basis.

In the previous theorem, we could restrict to minimal faces: indeed, the cone
generated by the constraints tight for a face F is a face of the cone generated
by the constraints active for a face F ′ ⊆ F [34].

Remark 1. A system Ax ≥ b is TDI if and only if, for each minimal face F
of P = {x : Ax ≥ b}, the rows of A associated with constraints tight for F form
a Hilbert basis.

The rest of the section is devoted to prove that the system given by the
partition constraints and the nonnegativity constraints, which describes Pk(G)
when k is even, is TDI when G is series-parallel.

The proof is based on the TDIness of System (5) and the structure of in-
equalities (3a). Their right-hand sides are proportional to k, hence it is enough
to prove the case k = 2. This allows us to use Theorem 12 to obtain a TDI
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system for P2(G). In terms of Hilbert bases, the TDIness of this system implies
that, given a face F of P2(G), the integer points of the associated cone are the
half sum of the cuts tight for F . The technical part of the proof is to show
that each integer point of this cone is also the sum of incident vectors of the
multicuts tight for F .

Theorem 16. For a series-parallel graph G and a positive integer h, System (3)
is TDI.

Proof. We only prove the case h = 1 since multiplying the right hand side of a
system by a positive constant preserves its TDIness [34, Section 22.5].

The proof is done by induction on the number of edges of the graph G =
(V,E). When G consists of two vertices connected by a single edge `, System (3)
is x` ≥ 2, x` ≥ 0 and is TDI. If G is the circuit {e, f}, System (3) is xe + xf ≥
2, x ≥ 0 and is TDI.

(Parallelization) Let now G be obtained from a series-parallel graph H by
adding an edge g parallel to an edge f of H. System (3) associated with G
is obtained from that associated with H by duplicating f ’s column in con-
straints (3a) and adding the nonnegativity constraint xg ≥ 0. By Lemma 3.1
of [7], System (3) is TDI.

For the other cases, we prove the TDIness of System (3) associated with G
using Remark 1. More precisely, we prove that for any vertex z of P2(G), the
set of vectors {χM : M ∈Mz} ∪ {χe : e ∈ E, ze = 0} is a Hilbert basis.

(1-sum) Let G be the 1-sum of two series-parallel graphs G1 = (W 1, E1) and
G2 = (W 2, E2) and let z be a vertex of P2(G). By construction, we have z =
(z1, z2) where zi ∈ P2(Gi) for i = 1, 2. Moreover, for each multicut M ∈ Mz,
the graph obtained from G[z] by contracting the edges of E \M is a circuit.
Indeed, it is 2-edge-connected since G[z] is, and it has z(M) = dM edges and
dM vertices. Therefore M is either a multicut of G1 tight for z1 or one of G2

tight for z2.
By induction, Systems (3) associated with G1 and G2 are TDI. Thus, {χM :

M ∈ Mz ∩M(Gi)} ∪ {χe : e ∈ Ei, ze = 0} is a Hilbert basis for i = 1, 2 by
Theorem 15. Since they belong to disjoint spaces, their union is a Hilbert basis.
By Theorem 15, System (3) is TDI.

(Subdivision) Let G = (V,E) be obtained by subdividing an edge uw of a
series-parallel graph G′ = (V ′, E′) into a path of length two uv, vw, and let z
be a vertex of P2(G).

Without loss of generality, suppose zuv ≥ zvw. Define z′ ∈ ZE′ by z′uw = zvw
and z′e = ze for all edges e in E′ \ uw. Remark that z′ belongs to P2(G′)
since G′[z′] is obtained by contracting the edge uv in G[z], and this contraction
preserves 2-edge-connectivity.

Remark that for all e ∈ E, ze ∈ {0, 1, 2}. Indeed, since z is a vertex of P2(G)
which is also described by System (1), if ze > 0, then e belongs to a cut D tight
for z. Moreover, as zuv ≥ zvw, the partition constraint (3a) associated with δ(v)
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implies that zuv ∈ {1, 2}. We now consider two different cases depending on the
value of zuv.

Case 1: zuv = 2.
We first show that every multicut of Mz containing uv is a bond. Indeed,

remark that every multicut M with dM = 2 is a bond. If a multicut M =
δ(V1, . . . , VdM ) ∈ Mz satisfies dM ≥ 3 and uv ∈ δ(V1, V2), then M ′ = δ(V1 ∪
V2, V3, . . . , VdM ) is a multicut and satisfies

z(M ′) ≤ z(M)− 2 < dM − 1 = dM ′ .

Hence, the partition constraint (3a) associated with M ′ is violated, a contradic-
tion.

Moreover, there exists at most one bond of Mz, say N , containing uv.
As otherwise suppose there exist two bonds B1 and B2 in Mz containing uv.
Then, z(B1∆B2) ≤ z(B1) + z(B2)− 2zuv = 0, which contradicts the constraint
(3a) associated with the multicut B1∆B2. For a multicut M not containing
uv, M ∈ Mz if and only if M ∈ Mz′ . This implies that Mz = Mz′ ∪ N . By
induction and Theorem 15,Mz′∪Ez′ is a Hilbert basis. As Ez = Ez′ (identifying
uv and vw) and N is the only member of Mz ∪ Ez containing uv, Mz ∪ Ez is
also a Hilbert basis.

Case 2: zuv = 1.
Let v be an integer point of the cone generated by Mz ∪ Ez. We prove

that v can be expressed as an integer nonnegative combination of the vectors
of Mz ∪ Ez. This implies that Mz ∪ Ez is a Hilbert basis.

Let Bz be the set of bonds of Mz. Since System (5) is a TDI system
describing P2(G) in series-parallel graphs, the set of vectors { 1

2χ
B : B ∈ Bz}∪Ez

forms a Hilbert basis by Theorem 15. Then, there exist λB ∈ 1
2Z+ for all B ∈ Bz

and µe ∈ Z+ for all e ∈ Ez such that v =
∑
B∈Bz

λBχ
B +

∑
e∈Ez µeχ

e.
Since zuv ≥ zvw, the partition inequality (3a) associated with δ(v) implies

that zvw = 1 and δ(v) ∈Mz. In particular, vw /∈ Ez. The vector v is an integer
combination of vectors ofMz ∪Ez if and only if v−bλδ(v)cχδ(v) is, thus we may

assume that λδ(v) ∈ {0, 1
2}. Define w ∈ ZE′ by:

we =

{
vuv + vvw − 2λδ(v) if e = uw,
ve otherwise.

Remark that (B \ uw) ∪ uv and (B \ uw) ∪ vw are bonds of Mz whenever B is
a bond of Mz′ containing uw because z′uw = zuv = zvw = 1. Moreover, a bond
B ofMz′ which does not contain uw is a bond ofMz. Since δ(v) is the unique
bond of G containing both uv and vw and Ez = Ez′ , we have:

w =
∑

B∈Bz′ :uw∈B
(λ(B\uw)∪uv + λ(B\uw)∪vw)χB +

∑
B∈Bz′ :uw 6∈B

λBχ
B +

∑
e∈Ez′

µeχ
e.
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Thus, w belongs to the cone generated byMz′ ∪Ez′ . By the induction hypoth-
esis, Mz′ ∪ Ez′ is a Hilbert basis, hence there exist λ′M ∈ Z+ for all M ∈ Mz′

and µ′e ∈ Z+ for all e ∈ Ez′ such that w =
∑
M∈Mz′

λ′Mχ
M +

∑
e∈Ez′

µ′eχ
e.

Consider the family N of multicuts of Mz′ where each multicut M of Mz′

appears λ′M times. Suppose first that λδ(v) = 0. Then, vuv + vvw multicuts
of N contain uw. Let P be a family of vuv multicuts of N containing uw and
Q = {F ∈ N : uw ∈ F} \ P. Then, we have

v =
∑

M∈N :uw/∈M

χM +
∑
M∈P

χ(M\uw)∪uv +
∑
M∈Q

χ(M\uw)∪vw +
∑
e∈Ez′

µ′eχ
e. (6)

Suppose now that λδ(v) = 1
2 . Then, wuw = vuv + vvw − 1 multicuts of N

contain uw. Let P be a family of vuv − 1 multicuts of N containing uw, let Q
be a family of vvw − 1 multicuts in {F ∈ N : uw ∈ F} \ P, and denote by N
the unique multicut of N containing uw which is not in P ∪Q. Then, we have

v =
∑

M∈N :uw/∈M

χM+
∑
M∈P

χ(M\uw)∪uv+
∑
M∈Q

χ(M\uw)∪vw+χ(N\uw)∪δ(v)+
∑
e∈Ez′

µ′eχ
e.

(7)
Every M ∈Mz′ not containing uw is inMz. For every M ∈Mz′ containing

uw, (M \uw)∪uv, (M \uw)∪vw and (M \uw)∪δ(v) belong toMz since z′uw =
zuv = zvw = 1. Since Ez = Ez′ , then v is a nonnegative integer combination of
vectors of Mz ∪ Ez in both (6) and (7). This proves that Mz ∪ Ez is a Hilbert
basis. Therefore by Remark 1, System (3) is TDI.

Theorem 16 and Lemma 13 characterize the box-TDIness of System (3) as
follows.

Corollary 2. System (3) is box-TDI if and only if G is series-parallel.

Theorem 16 leaves open the following problem:

Open Problem 17. Characterize the classes of graphs such that System (3) is
TDI.

4 An Integer TDI System for P2h+1(G)

In this section, we prove that System (2) is TDI if and only if G is a series-
parallel graph. Proving the TDIness for k odd is considerably more involved
than for k even. The first difference with the even case is the lack of a known
TDI system describing Pk(G) when k is odd, even a noninteger one. Thus, no
property of the Hilbert bases associated with Pk(G) is known, and the approach
used to prove Theorem 16 cannot be applied. Instead, following the definition of
TDIness, we prove the existence of an integer optimal solution to each feasible
dual problem.

Another difference with the case k even stems from the structure of the
partition inequalities (2a). In particular, the presence of the constant “−1” in
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the right-hand sides perturbs the structure of tight multicuts. Indeed, when k
is odd, the tightness of δ(V1, . . . , Vn) does not imply that of δ(V1), . . . , δ(Vn).
Consequently, it is not clear how the contraction of an edge impacts the tight-
ness of a multicut δ(V1, . . . , Vn): merging adjacent Vi’s is not sufficient to obtain
new tight multicuts. Due to the link between tight multicuts and positive dual
variables, the structure of the optimal solutions to the dual problem is com-
pletely modified when subdividing an edge. Proving directly that subdivision
preserves TDIness turned out to be challenging, and we overcome this difficulty
by deriving new properties of series-parallel graphs—see Proposition 3.

The proof starts with a minimal counterexample to the TDIness of the sys-
tem. We first study the interplay between multicuts associated with positive
values in dual optimal solutions and cuts of degree 2 vertices—see Claims 4.4-4.8.
Using these claims we prove that none of the three structures of Proposition 3
exists—see Claims 4.9, 4.10, and 4.11—contradicting the series-parallelness of
the graph.

Theorem 18. For h positive and integer, System (2) is TDI if and only if G
is series-parallel.

Proof. If G is not series-parallel, then System (2) is not TDI because every TDI
system with integer right-hand side describes an integer polyhedron [22], but
when G has a K4-minor, System (2) describes a noninteger polyhedron [10].

We now prove that, if G is series-parallel, then System (2) is TDI. We prove
the result by contradiction. Let G = (V,E) be a series-parallel graph such that
System (2) is not TDI. By definition of TDIness, there exists c ∈ ZE such that
D(G,c):

max
∑

M∈MG

bMyM

s.t.
∑

M∈MG:e∈M
yM ≤ ce for all e ∈ E,

yM ≥ 0 for all M ∈MG,

(8a)

(8b)

is feasible, bounded, but admits no integer optimal solution, where bM = (h +
1)dM − 1 for all M ∈MG. Without loss of generality, we assume that:

(i) G has a minimum number of edges,

(ii)
∑
e∈E ce is minimum with respect to (i).

By definition, D(G,c) is feasible if and only if c ≥ 0. Hence, by minimality
assumption (ii), D(G,c′) has an optimal integer solution for every integer c′ 6= c
such that 0 ≤ c′ ≤ c.

Let M be a multicut of G. We denote by ξM the vector of {0, 1}MG whose
only nonzero coordinate is the one associated with M . We say that M is active
for a solution y to D(G,c) if yM > 0. Note that, by complementary slackness,
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a multicut is active for an optimal solution to D(G,c) only if it is tight for an
optimal solution to the primal problem. In particular, if a multicut is tight for
no point of P2h+1(G), then it is active for no optimal solution to D(G,c). Thus,
we will use Observation 10 and Theorem 9 to deduce properties on the optimal
solutions to D(G,c).

Claim 4.1. G is simple, 2-connected, and nontrivial.

Proof. Suppose by contradiction that there exist two parallel edges e1 and e2

and ce1 ≤ ce2 . Since a multicut contains either both e1 and e2 or none of them,
the inequality (8a) associated with e2 is redundant because ce1 ≤ ce2 . This
contradicts minimality assumption (i), so G is simple.

Assume by contradiction that G is not 2-connected. Then G is the 1-sum
of two distinct graphs G1 = (V1, E1) and G2 = (V2, E2). By Statement (ii) of
Theorem 9, the multicuts of G that intersect both E1 and E2 are not tight for
the points of P2h+1(G), by complementary slackness, these multicuts are not
active for the optimal solutions to D(G,c). Hence, every optimal solution y to
D(G,c) is of the form:

yM =

 y1
M if M ∈MG1

,
y2
M if M ∈MG2

,
0 otherwise,

for all M ∈MG,

where yi is an optimal solution to D(Gi,c|Ei
) for i = 1, 2. By minimality assump-

tion (i), there exists an integer optimal solution ȳi to D(Gi,c|Ei
) for i = 1, 2,

implying that (ȳ1, ȳ2) is an integer optimal solution to D(G,c), a contradiction.
Finally, if G = K2,MG contains only one multicut, say {e}, and the optimal

solution to D(G,c) is y∗{e} = ce which is integer.

Claim 4.2. For all edges e ∈ E, ce ≥ 1.

Proof. By hypothesis, c ≥ 0 is integer and D(G,c) has an optimal solution, say
y∗. Suppose by contradiction that there exists an edge e ∈ E with ce = 0. Set
G′ = G/e and c′ = c|E\e. The active multicuts for y∗ do not contain the edge e
so they are multicuts of G′ since MG′ = {M ∈ MG|e /∈ M}. Hence, the point
y′ ∈ RMG′ defined by y′M = y∗M for all M ∈MG′ is a solution to D(G′,c′).

By minimality assumption (i), there exists an integer optimal solution ỹ to
D(G′,c′). Extending ỹ to a point of ZMG by setting to 0 the missing components

gives an integer solution to D(G,c) with cost b>ỹ ≥ b>y′ = b>y∗. This is an
integer optimal solution to D(G,c) since y∗ is optimal, a contradiction with the
hypothesis that D(G,c) has no integer optimal solution.

Claim 4.3. Every optimal solution y to D(G,c) satisfies 0 ≤ yM < 1 for all
M ∈MG.

Proof. By contradiction, suppose that y∗ is an optimal solution to D(G,c) such
that there exists a multicut M such that y∗M ≥ 1. Therefore, the point y′

defined by y′ = y∗ − ξM is a solution to D(G,c′) where c′ = c − χM . By
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minimality assumption (ii), D(G,c′) admits an integer optimal solution y′′. The
point ỹ defined by ỹ = y′′ + ξM is an integer solution to D(G,c) and we have:

b>ỹ = b>y′′ + bM ≥ b>y′ + bM = b>y∗.

Therefore ỹ is an integer optimal solution to D(G,c), a contradiction.

From the definition of series-parallel graphs, Claim 4.1 implies that G con-
tains at least one degree 2 vertex. Let V̂ be the set of degree 2 vertices of
G.

Claim 4.4. Let v ∈ V̂ , δ(v) = {e1, e2}, y be an optimal solution to D(G,c), and
M1 be an active multicut for y such that M1 ∩ δ(v) = e1. If δ(v) is active for y,
then no multicut whose intersection with δ(v) is e2 is active for y.

Proof. We prove the result by contradiction. Assume that M1 and δ(v) are
active for y and that there exists a M2 active for y with M2 ∩ δ(v) = e2. By
Observation 2, M ′i = Mi ∪ δ(v) is a multicut of G such that dM ′i = dMi + 1 for
i = 1, 2. Let 0 < ε ≤ min{yM1 , yM2 , yδ(v)}. Then, the point:

y′ = y − ε
(
χM1 + χM2 + χδ(v)

)
+ ε

(
χM

′
1 + χM

′
2

)
is a solution to D(G,c), and we have b>y′ = b>y + ε, implying that y is not
optimal, a contradiction.

Claim 4.5. For every optimal solution to D(G,c), the constraints (8a) associated
with the edges incident to a degree 2 vertex are tight.

Proof. We prove the result by contradiction. Suppose that there exist an op-
timal solution y∗ to D(G,c) and a vertex v with δ(v) = {e1, e2} such that the
inequality (8a) associated with e1 is not tight. For i = 1, 2, let si be the slack
of the constraint associated with ei, that is,

si = cei −
∑

M∈MG:ei∈M
y∗M .

Inequality (8a) associated with e2 is tight, as otherwise there exists 0 < η ≤
min{s1, s2}, such that y∗ + ηξδ(v) is a solution to D(G,c), a contradiction to the
optimality of y∗. Hence, Claims 4.2 and 4.3 imply that there are at least two
distinct multicuts M1 and M2 active for y∗ and containing e2. Let 0 < ε ≤
min{y∗M1

, y∗M2
, s1}. For i = 1, 2, e1 ∈Mi, as otherwise y′ = y∗+ε(ξMi∪e1−ξMi

)

is a solution to D(G,c). This solution is such that b>y′ = b>y∗+ε(h+1) > b>y∗,
a contradiction with the optimality of y∗. Thus, M1 and M2 contain δ(v). Since
they are distinct, at least one of them, say M1, strictly contains δ(v). Then,
y′′ = y∗+ε(−ξM1 +ξM1\e2 +ξδ(v)) is a solution to D(G,c) because M1\e2 belongs

toMG by Observation 10. Then, b>y′′ = b>y∗+ε(−bM1+bM1−(h+1)+2h+1) >
b>y∗, a contradiction.
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Given a solution y to D(G,c), we define for each vertex v ∈ V̂ the set Ayv as
the set of multicuts active for y that strictly contain δ(v). Moreover we define
the value αyv as:

αyv =
∑
M∈Ay

v

yM . (9)

Claim 4.6. Every optimal solution y to D(G,c) satisfies 0 < αyv < 1 for all

v ∈ V̂ .

Proof. Suppose by contradiction that there exist an optimal solution y∗ toD(G,c)

and a vertex v of V̂ such that either αy
∗

v ≥ 1 or αy
∗

v = 0. Denote the two edges
incident to v by e1 and e2 in such a way that ce1 ≤ ce2 .

Suppose first that αy
∗

v ≥ 1. By Claim 4.3, there exist at least two multicuts
in Ay∗v . Let Ay∗v = {M1, . . . ,Mn}. By Observation 10, for all i = 1, . . . , n,
M ′i = Mi \ e1 is a multicut of G with dM ′i = dMi

− 1. Let c′ = c − χe1 .

By αy
∗

v ≥ 1, there exist εi for all i = 1, . . . , n, such that 0 ≤ εi ≤ y∗Mi
and∑n

i=1 εi = 1. The point y1 defined by:

y1 = y∗ +

n∑
i=1

(
−εiξMi + εiξM ′i

)
is a solution to D(G,c′). By definition of b, we have:

b>y1 = b>y∗ − h− 1. (10)

By minimality assumption (ii), D(G,c′) admits an integer optimal solution, say
y2. This solution satisfies with equality the capacity constraint (8a) associated
with e2 as otherwise y2 + ξδ(v) would be a solution to D(G,c) with cost b>y2 +

bδ(v) ≥ b>y1 + 2h+ 1, contradicting the assumption that y∗ is optimal by (10)
and h ≥ 1. Hence, there exists a multicut M̄ active for y2 containing e2 but
not e1 since c′e1 + 1 ≤ c′e2 . By definition, M̄ ∪ e1 is a multicut of G of order
dM̄ + 1. Define y3 ∈ ZMG by:

y3
M = y2 − χM̄ + χM̄∪e1

By definition of c′ and y2, the point y3 is an integer solution toD(G,c). Therefore,
by (10), y2 being optimal in D(G,c′) and by definition of y3, we have:

b>y∗ = b>y1 + h+ 1 ≤ b>y2 + h+ 1 ≤ b>y3.

Thus, y3 is an integer optimal solution to D(G,c), a contradiction.

Suppose now that αy
∗

v = 0. First, note that δ(v) is not an active multicut for
y∗. Otherwise by Claims 4.2, 4.3 and 4.5, there would be a multicut containing
e1 and not e2, say N1, and a multicut containing e2 and not e1, say N2, which
are both active for y∗. This contradicts Claim 4.4. Hence, by definition of αy

∗

v ,
no active multicut contains δ(v).
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By Observation 2, if a multicut M contains e2 but not e1, then M∆δ(v) is
a multicut with the same order and bM = bM∆δ(v). Hence, we can define the
point y4 ∈ QMG :

y4
M =


0 if e1 ∈M ,
y∗M + y∗M∆δ(v) if e1 /∈M and e2 ∈M ,

y∗M otherwise,

for all M ∈MG,

which is a solution to D(G,ĉ), where ĉ is defined by:

ĉe =

 ce1 + ce2 if e = e2,
0 if e = e1,
ce otherwise,

for all e ∈ E.

By construction, we have:

b>y4 = b>y∗. (11)

Using the argument given in the proof of Claim 4.2, we deduce that D(G,ĉ)

admits an integer optimal solution, say y5. Let S be the family of active mul-
ticuts for y5 containing e2, where each multicut M appears y5

M times in S. We
have |S| > ce2 as otherwise y5 would be an integer optimal solution to D(G,c),
a contradiction.

We now construct from y5 an integer solution y6 to D(G,c) with the same
cost by replacing e2 by e1 in some active multicuts for y5. More formally, since
|S| ≥ ce1 , there exists S ′ ⊆ S with |S ′| = ce1 . By Observation 2, M∆δ(v) is a
multicut of G for all M ∈ S ′ and bM = bM∆δ(v). Let y6 ∈ ZMG be the point
defined by:

y6 = y5 +
∑
M∈S′

(
ξM∆δ(v) − ξM

)
(12)

By construction, we have:
b>y6 = b>y5. (13)

Remark that for each M ∈ S ′, adding ξM∆δ(v)−ξM to a point of RMG increases
(resp. decreases) by 1 the left-hand side of the inequality (8a) associated with e1

(resp. e2) while not changing the left-hand side of the inequalities (8a) associated
with the edges of E \ {e1, e2}. Therefore, by definition of ĉ, y6 is a solution to
D(G,c). By (13), y5 being optimal and (11), we have:

b>y6 = b>y5 ≥ b>y4 = b>y∗.

Therefore y6 is an integer optimal solution to D(G,c), a contradiction.

Claim 4.6 implies that for each optimal solution y and for each v ∈ V̂ there
exists at least one multicut strictly containing δ(v) that is active for y. For the
following claims we need to define a subset of optimal solutions to D(G,c): let
Dv be the set of optimal solutions to D(G,c) for which δ(v) is not active. Note
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that if Dv is not empty, then there exists a solution y in Dv maximizing αzv over
all z ∈ Dv.

The following claim presents the structure of a specific optimal solution to
D(G,c) for which δ(v) is not active.

Claim 4.7. Let v ∈ V̂ with δ(v) = {e1, e2} and let y∗ ∈ Dv maximize αzv over
all z ∈ Dv. Then, there are exactly 3 multicuts active for y∗ intersecting δ(v):
two bonds F ∪ e1 and F ∪ e2 and a multicut F ∪ {e1, e2} of order 3, for some
F ⊆ E.

Proof. By Claim 4.6, there exists at least one multicut strictly containing δ(v)
which is active for y∗, say M0. By definition of Dv, δ(v) is not active for y∗.
Hence, by Claim 4.5, there exists at least one multicut active for y∗ which
contains ei and not δ(v) \ ei, for i = 1, 2. Let Mi be such a multicut with
maximum order.

First, we prove that dM0 = 3. By definition, M0 = δ(v, V2, V3, . . . , VdM0
).

Moreover, by Observation 10 and complementary slackness, the two vertices
adjacent to v belong to two different classes, say V2 and V3. By contradiction,
suppose that dM0

≥ 4. Then, M ′0 = δ(v ∪ V2 ∪ V3, . . . , VdM0
) is a multicut of

order dM0
− 2. For i = 1, 2, M ′i = Mi ∪ δ(v) is a multicut of order dMi

+ 1. Let
0 < ε ≤ min{y∗M0

, y∗M1
, y∗M2

}. Then, let y′ ∈ RMG be the point defined by:

y′ = y∗ − εξM0
+ εξM ′0 + ε

∑
i=1,2

(
−ξMi

+ ξM ′i
)
.

By construction, y′ is a solution to D(G,c) with b>y∗ = b>y′. Hence y′ is an

optimal solution, but we have αy
′

v = αy
∗

v + ε because δ(v) ( M ′i for i = 1, 2.
This contradicts the maximality of αy

∗

v . Therefore dM0
= 3.

Now, we show that M1 is a bond. The result for M2 holds by symmetry. By
contradiction, suppose that M1 = δ(V1, . . . , VdM1

) with dM1
≥ 3. Without loss

of generality, we suppose that e ∈ δ(V1)∩δ(V2). Then, M ′1 = δ(V1∪V2, . . . , VdM1
)

is a multicut of order dM1 − 1. Moreover, M ′2 = M2 ∪ δ(v) is a multicut of order
dM2

+ 1. Let 0 < ε ≤ min{y∗M1
, y∗M2

} and y′ ∈ RMG be the point defined by:

y′ = y∗ − εξM1 + εξM ′1 − εξM2 + εξM ′2 .

By construction, y′ is a solution to D(G,c) with b>y∗ = b>y′. Hence y′ is an

optimal solution, but we have αy
′

v = αy
∗

v +ε because δ(v) (M ′2. This contradicts
the maximality of αy

∗

v . Therefore, dM1
= dM2

= 2.
We now prove that there exists a set F such that M0 = F ∪ δ(v), and

Mi = F ∪ ei for i = 1, 2. This implies that M0, M1, and M2 are the only
multicuts active for y∗ intersecting δ(v).

Remark that M1 ∪M2 is a multicut so y′′ = y∗ + ε(ξM1∪M2
− ξM1

− ξM2
)

is a solution to D(G,c). The optimality of y∗ implies dM1∪M2
≤ 3. Since M1

and M2 are distinct bonds, there exists F ⊆ E \ δ(v) such that Mi = F ∪ ei,
for i = 1, 2. Finally, let N0 = M0 \ e2 and N1 = M1 ∪ e2. Note that ỹ =
y∗ + ε(ξN0 − ξM0 + ξN1 − ξM1) is an optimal solution to D(G,c) for which δ(v)
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is not active. Moreover, N0 and M2 are bonds active for ỹ since dM0 = 3. This
implies that N0 = F ∪ e1, and hence M0 = F ∪ δ(v).

Claim 4.8. Let v ∈ V̂ and y be an optimal solution to D(G,c). Then,

(i) if yδ(v) = 0, then ce = 1 for all e ∈ δ(v),

(ii) if yδ(v) > 0, then αyv+yδ(v) = 1, and there exists e ∈ δ(v) such that ce = 1.

Proof. (i.) First suppose that yδ(v) = 0, then Dv 6= ∅. Let y′ ∈ Dv maximize αzv
over all z ∈ Dv. Then, by Claim 4.7, there exist exactly two active multicuts for
y′ containing ei for i = 1, 2. Combining Claims 4.3 and 4.5, and the integrality
of c, we obtain that cei = 1 for all i = 1, 2.

(ii.) Let now yδ(v) > 0. By Claim 4.4, there exists an edge e ∈ δ(v) such
that all multicuts containing e that are active for y contain δ(v). Hence, the
constraint (8a) associated with e is:

ce ≥
∑

M :e∈M
y∗M = y∗δ(v) +

∑
M∈Ay∗

v

y∗M = y∗δ(v) + αy
∗

v . (14)

By Claim 4.5, the constraint (8a) associated with e is tight. Thus, y∗δ(v) +αy
∗

v =
ce. By Claims 4.3 and 4.6 and ce being integer, we have that ce = 1.

The last three claims of the proof give some structural property of the graph
G. In particular we focus our attention on the vertices of V̂ .

Claim 4.9. Vertices of degree 2 are pairwise nonadjacent.

Proof. Assume by contradiction that there exist two adjacent vertices v1 and
v2 in V̂ , and denote δ(vi) = {e0, ei} for i = 1, 2.

We prove that δ(v1) is active for all optimal solutions to D(G,c), the result for
δ(v2) is obtained by symmetry. By contradiction, suppose that Dv1 6= ∅. Among
all the solutions y ∈ Dv1 , let y1 be one having αyv1 maximum. Then, by Claim
4.7, the three multicuts active for y1 intersecting δ(v1) are M0 = F ∪ δ(v1),
B0 = F ∪e0, and B1 = F ∪e1, where Bi are bonds for i = 0, 1, and F ⊆ E \δ(v)
contains no nonempty multicut. By Claim 4.6 on v2, there exists a multicut M
active for y1 strictly containing δ(v2). By δ(v1)∩δ(v2) = e0, M intersects δ(v1).
Since dM ≥ 3, Claim 4.7 for v1 implies M = M0, F = {e2}, and B0 = δ(v2).

As y1
δ(v1) = 0, by Statement (i) of Claim 4.8, ce0 = ce1 = 1. By Claim 4.5,

the constraints associated with e0 and e1 are tight. Since Ay1v1 = {M0} by Claim
4.7, we have:

cei = y1
M0

+ y1
Bi

= 1 for i = 0, 1. (15)

Let {M1, . . . ,Mn} be the set of active multicuts for y1 such thatMi∩{e0, e1, e2} =
e2, for i = 1, . . . , n. By Claim 4.5, the constraint (8a) associated with e2 is tight,
hence, using (15):

ce2 = y1
M0

+ y1
B0

+ y1
B1

+

n∑
i=1

y1
Mi

= 1 + y1
B0

+

n∑
i=1

y1
Mi
. (16)
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By Claim 4.3, B0 active for y1, and ce2 ∈ Z, we have {M1, . . . ,Mn} 6= ∅ and
ce2 ≥ 2. Thus, combining (15) and (16), we have:

n∑
i=1

y1
Mi

= ce2 − 1− y1
B0
≥ y1

M0
. (17)

Then, there exist ε1, . . . , εn such that 0 ≤ εi ≤ y1
Mi

for i = 1, . . . , n, and

n∑
i=1

εi = y1
M0
.

We have that, for i = 1, . . . , n, Mi ∪ e0 is a multicut with order dMi + 1, hence
we can consider the following solution to D(G,c):

y2 = y1 −

(
y1
M0
ξM0 +

n∑
i=1

εiξMi

)
+

(
y1
M0
ξM0\e0 +

n∑
i=1

εiξMi∪e0

)
. (18)

We have that b>y1 = b>y2, but αy
2

v1 = 0, a contradiction with Claim 4.6.
Therefore Dv 6= ∅, and by symmetry we deduce that both δ(v1) and δ(v2) are
active for all optimal solutions to D(G,c).

By Claim 4.4, for every optimal solution y to D(G,c) and every multicut M
of G, if M is active for y and contains ei for some i ∈ {1, 2}, then e0 ∈M .

Let y∗ be the optimal solution to D(G,c) maximizing αyv1 over all y solutions

to D(G,c). We have that Ay∗v2 ⊆ A
y∗

v1 and all the multicuts in Ay∗v2 have order at

most 3. Otherwise, let M ∈ Ay∗v2 \ A
y∗

v1 (resp. M ∈ Ay∗v2 such that dM ≥ 4), and
0 < ε ≤ min{y∗M , y∗δ(v1)}. The solution

y3 = y∗ − ε(ξM + ξδ(v1)) + ε(ξM\e2 + ξδ(v1)∪e2)

is optimal, but αy
3

v1 = αy
∗

v1 + ε by the choice of M , a contradiction to the

maximality of αy
∗

v1 . Thus, M̄ = {e0, e1, e2} is the only multicut in Ay∗v2 .
Let {N1, . . . , Nm} be the set of active multicuts for y∗ such that Ni ∩

{e0, e1, e2} = e0. The constraint associated with e0 is tight by Claim 4.5, hence,
by Ay∗v2 ⊆ A

y∗

v1 , we have:

ce0 = αy
∗

v1 + y∗δ(v1) + y∗δ(v2) +

m∑
i=1

y∗Ni
. (19)

By Statement (ii) of Claim 4.8 applied to v1, we have y∗δ(v1) + αy
∗

v1 = 1, and so:

ce0 = 1 + y∗δ(v2) +

m∑
i=1

y∗Ni
. (20)
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By Ay∗v2 = {M̄} and Statement (ii) of Claim 4.8 applied to v2, we have y∗δ(v2) +
y∗
M̄

= 1, hence:

ce0 = 2− y∗M̄ +

m∑
i=1

y∗Ni
. (21)

Since ce0 is integer and since y∗
M̄
< 1 by Claim 4.3, by (21), we have:

m∑
i=1

y∗Ni
≥ y∗M̄ . (22)

Hence, let λ1, . . . , λm be such that 0 ≤ λi ≤ y∗Ni
for i = 1, . . . ,m, and∑m

i=1 λi = y∗
M̄
. Remark that δ(v2) = M̄ \ e1. Then, the point

y5 = y∗ −

(
y∗M̄ξM̄ +

m∑
i=1

λiξNi

)
+

(
y∗M̄ξδ(v2) +

m∑
i=1

λiξNi∪e1

)

is a solution to D(G,c), and it is optimal by definition of b. Moreover,

y5
δ(v2) = y∗M̄ + y∗δ(v2) = 1,

a contradiction with Claim 4.3.

The following claim forbids a circuit of length 3 to contain a vertex of V̂ .

Claim 4.10. Circuits of length 3 contain no vertex of degree 2.

Proof. Assume by contradiction that in G there exist a vertex v ∈ V̂ and a
circuit {e1, e2, e3} such that δ(v) = {e1, e2}. By Lemma 1, a multicut contains
e3 only if it intersects δ(v). On the other hand, by Observation 10 and com-
plementary slackness, each multicut strictly containing δ(v) and active for an
optimal solution contains e3. Thus, for every optimal solution y to D(G,c), we
have: ∑

M :e3∈M
yM =

∑
M :e1∈M,M 6=δ(v)

yM +
∑

M :e2∈M,M 6=δ(v)

yM − αyv . (23)

Let y∗ be an optimal solution to D(G,c). By the constraint (8a) associated
with e3, (23), and Claim 4.5, we have:

ce3 ≥
∑

M :e3∈M
y∗M = ce1 + ce2 − 2y∗δ(v) − α

y∗

v . (24)

By Claim 4.6 and Statement (ii) of Claim 4.8, we have that 2y∗δ(v) + αy
∗

v < 2.

Thus, by (24) and ce3 ∈ Z, we have that ce3 ≥ ce1 + ce2 − 1.

Define G′ = G \ e3 and c′ = c|E\e3 . Note that for each multicut M ∈ MG,
M \ e3 is a multicut of G′ with order at least dM . Hence, y∗ induces a solution
to D(G′,c′) of cost at least b>y∗. By minimality assumption (i), there exists an

integer optimal solution y′ to D(G′,c′), and we have b>y′ ≥ b>y∗.
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LetM1 (resp. M2) be the set of multicuts M = δ(V1, . . . , VdM ) of G′ active
for y′ such that the endpoints of e3 belong (resp. do not belong) to a same Vi for
some i ∈ {1, . . . , dM}. For each M ∈ M1 (resp. M ∈ M2), M (resp. M ∪ e3)
is a multicut of G with the same order. Hence,

y′′ =
∑

M∈M1

y′MξM +
∑

M∈M2

y′MξM∪e3

is a point of ZMG
+ with b>y′′ = b>y′. Thus, b>y′′ ≥ b>y∗, and y′′ is not a

solution to D(G,c). By definition, y′′ respects every constraint of D(G,c) but the
constraint (8a) associated with e3.

By definition of y′′, we have:∑
M :e3∈M

y′′M =
∑

M :e1∈M,M 6=δ(v)

y′′M +
∑

M :e2∈M,M 6=δ(v)

y′′M − αy
′′

v . (25)

Therefore, by y′′ violating the constraint (8a) associated with e3, (25), State-
ment (ii) of Claim 4.8, and the inequalities (8a) associated with e1 and e2, we
have:

ce3 <
∑

M :e3∈M
y′′M =

∑
M :e1∈M

y′′M+
∑

M :e2∈M
y′′M−αy

′′

v −2y′′δ(v) ≤ ce1+ce2−αy
′′

v −2y′′δ(v).

(26)
Thus, by (24), we have αy

′′

v + 2y′′δ(v) < αy
∗

v + 2y∗δ(v) < 2. By ce3 ≥ ce2 + ce1 − 1,

the integrality of y′′, and (26), we have that αy
′′

v = y′′δ(v) = 0, and so ce3 =

ce1 + ce2 − 1. Hence, by the integrality of y′′ and equation (25):

ce3 + 1 =
∑

M :e3∈M
y′′M =

∑
M :e1∈M

y′′M +
∑

M :e2∈M
y′′M = ce1 + ce2 . (27)

For i = 1, 2, since cei ≥ 1, there exists a multicut Mi active for y′′ such that
Mi ∩ δ(v) = ei.

We claim that the constraint (8a) associated with e3 is not tight for y∗.
By ce3 = ce1 + ce2 − 1, (24), and Claim 4.6, δ(v) is active for y∗. Hence, by
Statement (ii) of Claim 4.8, we have:

αy
∗

v + y∗δ(v) = 1. (28)

Hence, by (23) and Claim 4.5, (28), (27), and δ(v) active for y∗, we have:∑
M :e3∈M

y∗M = ce1 + ce2 − 1− y∗δ(v) = ce3 − y∗δ(v) < ce3 . (29)

The point y′′ respects all the constraints of D(G,c) except the one associated
with e3, and this constraint is not tight for y∗. Therefore, there exists 0 < λ < 1
such that

ỹ = λy∗ + (1− λ)y′′
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is a solution to D(G,c). Moreover, ỹ is optimal because b>y∗ ≤ b>y′′.
All multicuts active for at least one between y∗ and y′′ are active for ỹ. Since

δ(v) is active for y∗ and M1,M2 are active for y′′, the three multicuts M1,M2,
and δ(v) are active for ỹ, a contradiction with Claim 4.4.

Claim 4.11. Each circuit of length 4 contains at most one vertex of degree 2.

Proof. Assume by contradiction that there exists a circuit C = {e1, . . . , e4} in G

covering two vertices of V̂ , say v1, v2. By Claim 4.9, v1 and v2 are not adjacent,
hence we assume that δ(v1) = {e1, e2} and δ(v2) = {e3, e4}. Let v3 and v4 be
the remaining vertices of C.

We prove that δ(v1) is active for all optimal solutions to D(G,c). Indeed, if
Dv1 6= ∅, then let y′ ∈ Dv1 maximize αzv1 over all z ∈ Dv1 . By Statement (ii) of

Theorem 9, for every multicut M in Ay′v2 , we have M = δ{v2, V2, . . . , VdM }, with
v3 and v4 belonging to different Vi’s, hence M ∩ δ(v1) 6= ∅. However, M \ δ(v1)
contains δ(v2), a contradiction to Claim 4.7 applied to v1. Exchanging the role
of v1 and v2, we deduce that δ(v2) is active for all optimal solutions to D(G,c).

Without loss of generality, there exists an optimal solution y such that αyv1 ≥
αyv2 . Then, we can build from y an optimal solution y∗ to D(G,c) such that

Ay∗v2 ⊆ A
y∗

v1 . Indeed, suppose Ayv2 \A
y
v1 = {M1, . . . ,Mn}. Then, since αyv1 ≥ α

y
v2 ,

there exist N1, . . . , Nm ∈ Ayv1 \ A
y
v2 such that:

n∑
i=1

yMi
≤

m∑
j=1

yNj
. (30)

Hence, there exist ε1, . . . , εm such that 0 ≤ εj ≤ yNj , for j = 1, . . . ,m, and

m∑
j=1

εj =

n∑
i=1

yMi
. (31)

By Statement (ii) of Theorem 9 and complementary slackness, v3 and v4 belong
to different classes of Nj for each j = 1, . . . ,m, implying that Nj ∩ δ(v2) 6= ∅.
Moreover, since Nj 6∈ Ayv2 , we have |Nj ∩ δ(v2)| = 1, for all j = 1, . . . ,m.
Furthermore, by δ(v2) being active for y and Claim 4.4, there exists an edge in
δ(v2), say e3, such that Nj ∩ δ(v2) = e3 for all j = 1, . . . ,m. Therefore, the
point

y∗ = y −

(
n∑
i=1

yMi
ξMi
−

n∑
i=1

yMi
ξMi\e4

)
+

 m∑
j=1

εjξNj∪e4 −
m∑
j=1

εjξNj

 (32)

is a solution toD(G,c) with b>y∗ = b>y andAy∗v2 ⊆ A
y∗

v1 . LetAy∗v2 = {M ′1 . . . ,M ′p}.
For i = 1, . . . , p, since M ′i ∈ Ay

∗

v1 , Statement (ii) of Theorem 9 implies M ′i =
δ(v1, v2, V

i
3 , V

i
4 , . . . , V

i
dM′

i

), where V i3 and V i4 contain respectively v3 and v4.
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Then, M ′′i = δ(v1, v2 ∪ V i3 ∪ V i4 , . . . , V idM′
i

) is a multicut of order dM ′i − 2 for

i = 1, . . . , p. Since δ(v2) is active for y∗, by Statement (ii) of Claim 4.8, we have
αy
∗

v2 + y∗δ(v2) = 1. Then, the point y1 ∈ QMG defined by:

y1 = y∗ −

(
y∗δ(v2)ξδ(v2) +

p∑
i=1

y∗M ′iξM
′
i

)
+

(
p∑
i=1

y∗M ′iξM
′′
i

)
,

is a solution to D(G,c′), where c′ = c− χδ(v2).

By dM ′′i = dM ′i − 2 for all i = 1, . . . , p, and αy
∗

v2 + y∗δ(v2) = 1, we have:

b>y1 = b>y∗ − αy
∗

v2 (2h+ 2)− y∗δ(v2)(2h+ 1) = b>y∗ − (2h+ 1)− αy
∗

v2 . (33)

By minimality assumption (ii), D(G,c′) admits an integer optimal solution, say
y2. The point y3 ∈ ZMG defined by y3 = y2 + ξδ(v2) is a solution to D(G,c) such
that:

b>y3 = b>y2 + 2h+ 1. (34)

Therefore, by (33), the optimality of y2, and (34), we have:

b>y∗ = b>y1 + 2h+ 1 + αy
∗

v2 ≤ b
>y2 + 2h+ 1 + αy

∗

v2 = b>y3 + αy
∗

v2 . (35)

By integrality of P2h+1(G) and duality, we have that b>y∗ ∈ Z. Furthermore,
y3 is integer by construction, so b>y3 ∈ Z. Then, by (35) and Claim 4.6, we
have that b>y∗ ≤ b>y3, and so y3 is an integer optimal solution to D(G,c), a
contradiction.

Claims 4.1, 4.9, 4.10, 4.11 and Proposition 3 imply that G is not series-
parallel, a contradiction.

The box-TDIness of Pk(G) and the TDIness of System (2) give the following
result.

Corollary 3. System (2) is box-TDI if and only if G is series-parallel.

Proof. By Theorem 18, when G is not series-parallel, System (2) is not TDI.
Whenever G is series-parallel, Pk(G) is box-TDI by Theorem 14 and System (2)
is TDI by Theorem 18.
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