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Abstract

Given a graph G = (V, E) and an integer k > 1, the graph H = (V, F),
where F' is a family of elements of F, is a k-edge-connected spanning
subgraph of G if H cannot be disconnected by deleting any k — 1 elements
of F'. The convex hull of the k-edge-connected subgraphs of a graph G
forms the k-edge-connected subgraph polyhedron of G. We prove that this
polyhedron is box-totally dual integral if and only if G is series-parallel.
In this case, we also provide an integer box-totally dual integral system
describing this polyhedron.

Totally dual integral systems, introduced in the late 70’s, are strongly con-
nected to min-max relations in combinatorial optimization [34]. A rational
system of linear inequalities Az > b is totally dual integral (TDI) if the maxi-
mization problem in the linear programming duality:

min{c'z: Az > b} = max{b y: A"y =c,y >0}

admits an integer optimal solution for each integer vector ¢ such that the op-
timum is finite. Every rational polyhedron can be described by a TDI system
[28]. For instance, the polyhedron {x : Az > b} can be described by TDI sys-
tems of the form %Am > %b for certain positive q. However, a polyhedron is
integer if and only if it can be described by a TDI system with only integer
coefficients [23] [28]. Integer TDI systems yield min-max results that may have
combinatorial interpretation.

A stronger property is the box-total dual integrality: a system Az > b is
boz-totally dual integral (box-TDI) if Ax > b,¢ < x < u is TDI for all rational
vectors ¢ and u (possibly with infinite components). General properties of such
systems can be found in Cook [12] and Chapter 22.4 of Schrijver [34]. Note that,
although every rational polyhedron can be described by a TDI system, not every
polyhedron can be described by a box-TDI system. A polyhedron which can be
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described by a box-TDI system is called a boz-TDI polyhedron. As proved by
Cook [12], every TDI system describing such a polyhedron is actually box-TDI.

Recently, several new box-TDI systems have been exhibited. Chen, Ding,
and Zang [6] characterized box-Mengerian matroid ports. Ding, Tan, and
Zang [19] characterized the graphs for which the TDI system of Cunningam
and Marsh [I7] describing the matching polytope is actually box-TDI. Ding,
Zang, and Zhao [20] exhibited new subclasses of box-perfect graphs. Cornaz,
Grappe, and Lacroix [I4] provided several box-TDI systems in series-parallel
graphs. Barbato, Grappe, Lacroix, Lancini, and Wolfler Calvo [3] gave the min-
imal box-TDI system with integer coefficients for the flow cone for series-parallel
graphs. For these graphs, Chen, Ding, and Zang [7] provided a box-TDI system
describing the 2-edge-connected spanning subgraph polyhedron.

In this paper, we are interested in integrality properties of systems related
to k-edge-connected spanning subgraphs. A k-edge-connected spanning subgraph
of a graph G = (V, E) is a graph H = (V, F'), with F' a family of elements of E,
that remains connected after the removal of any k& — 1 edges.

These objects model a kind of failure resistance of telecommunication net-
works. More precisely, they represent networks which remain connected when
k — 1 links fail. The underlying network design problem is the k-edge-connected
spanning subgraph problem (k-ECSSP): given a graph G and positive edge costs,
find a k-edge-connected spanning subgraph of G of minimum cost. Special cases
of this problem are related to classical combinatorial optimization problems.
The 2-ECSSP is a well-studied relaxation of the traveling salesman problem [24]
and the 1-ECSSP is nothing but the well-known minimum spanning tree prob-
lem. While this latter is polynomial-time solvable, the k-ECSSP is NP-hard for
every fixed k > 2 [27].

Different algorithms have been devised in order to deal with the k-ECSSP,
such as branch-and-cut procedures [4][I5], approximation algorithms [8][26], cut-
ting plane algorithms [30], and heuristics [I1]. In [36], Winter introduced a
linear-time algorithm solving the 2-ECSSP on series-parallel graphs. Most of
these algorithms rely on polyhedral considerations.

Given a graph G = (V, E), the convex hull of all the families of E induc-
ing a k-edge-connected spanning subgraph of G forms a polyhedron, hereafter
called the k-edge-connected spanning subgraph polyhedron of G and denoted by
P,(G). Cornujols, Fonlupt, and Naddef [I6] gave a system describing P»(G)
when G is series-parallel. Vandenbussche and Nemhauser [35] characterized in
terms of forbidden minors the graphs for which this system describes P2 (G).
Chopra [I0] described Py (G) for outerplanar graphs when & is odd. Didi Biha
and Mahjoub [I8] extended these results to series-parallel graphs for all k& > 2.
By a result of Balou, Barahona, and Mahjoub [I], the inequalities in these de-
scriptions can be separated polynomial time, which implies that the k-ECSSP
is solvable in polynomial time for series-parallel graphs.

When studying the k-edge-connected spanning subgraphs of a graph G, we
can add the constraint that each edge of G can be taken at most once. We



denote the corresponding polyhedron by Qx(G). Barahona and Mahjoub [2]
described Q2(G) for Halin graphs. Further polyhedral results for the case k = 2
have been obtained by Boyd and Hao [5] and Mahjoub [32][33]. Grotschel and
Monma [29] described several classes of facets of Q(G). Moreover, Fonlupt and
Mahjoub [25] extensively studied the extremal points of Q;(G) and character-
ized the class of graphs for which this polytope is described by cut inequalities
and 0 < x < 1.

The polyhedron P;(G) is known to be box-TDI for all graphs [31]. For
series-parallel graphs, the system given in [I6] describing P»(G) is not TDI.
Chen, Ding, and Zang [7] showed that dividing by 2 yields a TDI system for
such graphs. Actually, they proved that this system is box-TDI if and only if
the graph is series-parallel.

Contributions. Our starting point is the result of Chen, Ding, and Zang [7].
First, their result implies that P»(G) is a box-TDI polyhedron for series-parallel
graphs. However, this leaves open the question of the box-TDIness of Py(G) for
non series-parallel graphs. More generally, for which integers k and graphs G is
Py, (G) a box-TDI polyhedron?

We answer this question by proving that, for & > 2, P;(G) is a box-TDI
polyhedron if and only if G is series-parallel. Note that this work is one of the
first that proves the box-TDIness of a polyhedron without giving a box-TDI
system describing it. Instead, our proof is based on the recent matricial char-
acterization of box-TDI polyhedra given by Chervet, Grappe, and Robert [9].

By [34, Theorem 22.6], there exists a TDI system with integer coefficients
describing Py (G). For series-parallel graphs, the system provided by Chen,
Ding, and Zang [7] has noninteger coefficients. Moreover, the system given by
Didi Biha and Mahjoub [I8] describing Py (G) when k is even is not TDI. When
k > 2 and G is series-parallel, which combinatorial objects yield an integer TDI
system describing Py (G)?

We answer this question by exhibiting integer TDI systems based on multi-
cuts. When k is even, we use multicuts to provide an integer TDI system for
Py (G) when G is series-parallel. Our proof relies on the standard constructive
characterization of series-parallel graphs. When k is odd, we prove that the
description of P,(G) given by Didi Biha and Mahjoub [I§] based on multicuts
is TDI if and only if the graph is series-parallel. For this case, our proof relies
on new properties of the set of degree 2 vertices in simple series-parallel graphs
stated in Proposition [3]

The box-totally dual integral characterization of Py(G) implies that these
systems are actually box-TDI if and only if G is series-parallel. By definition of
box-TDIness, adding < 1 to these systems yields box-TDI systems for Qx(G)
for series-parallel graphs.

Outline. In Section [1} we give the definitions and preliminary results used
throughout the paper. In Section [2| we prove that, for k > 2, P(G) is a box-
TDI polyhedron if and only if G is series-parallel. In Section 3, we provide a



TDI system with integer coefficients describing Py (G) when G is series-parallel
and k > 2 is even. In Section ] we show the TDIness of the system given by
Didi Biha and Mahjoub [18] that describes P (G) for G series-parallel and k > 3
odd.

1 Definitions and Preliminary Results

This section is devoted to the definitions, notation, and preliminary results used
throughout the paper.

1.1 Graphs and Combinatorial Objects

Given a set E, a family of E is a collection of elements of E where each element
can appear multiple times. The incidence vector of a family F' of E is the vector
xF of Zf such that e’s coordinate is the multiplicity of e in F' for all e in E.
Since there is a bijection between families and their incidence vectors, we will
often use the same terminology for both.

Given a graph G = (V, E) and the incidence vector z € Z¥ of a family F of
E, G[z] denotes the graph (V, F').

Let G = (V, E) be a loopless undirected graph. Two edges of G are parallel
if they share the same endpoints, and G is simple if it does not have parallel
edges. A graph is 2-connected if it cannot be disconnected by removing a vertex.
The graph obtained from two disjoint graphs by identifying two vertices, one of
each graph, is called a 1-sum. A 2-connected graph is trivial if it is composed
of a single edge. We denote by K, the complete graph on n vertices, that is
the simple graph with n vertices and one edge between each pair of vertices.
Given an edge e of G, we denote by G \ e (respectively G/e) the graph obtained
by removing (respectively contracting) the edge e, where contracting an edge
uv consists in removing it and identifying w and v. Similarly, we denote by
G \ v the graph obtained form G by removing the vertex v and by G[W] the
graph obtained by removing all vertices not in the vertex subset W. Given a
vector z € R¥ and a subgraph H of G, we denote by x| the vector obtained
by restricting x to the components associated with the edges of H.

A subset of edges of G is called a circuit if it induces a connected graph in
which every vertex has degree 2. Given a subset U of V, the cut §(U) is the
set of edges having exactly one endpoint in U. A bond is a minimal nonempty
cut. Given a partition {V1,...,V,} of V| the set of edges having endpoints in
two distinct V;’s is called a multicut and is denoted by 6(V1,...,V;). We denote
respectively by M and Bg the set of multicuts and the set of bonds of G. For
every multicut M, there exists a unique partition {Vi,...,Vy,, } of vertices of V'
such that M = 6(V4,...,Vy,,), and G[V;] is connected for all i = 1,...,dp;. We
say that das is the order of M and Vi,...,Vy,, are the classes of M. Multicuts
are characterized in terms of circuits, as stated in the following.

Lemma 1 ([I3]). A set of edges M is a multicut if and only if | M NC| # 1 for
all circuits C of G.



We denote the symmetric difference of two sets S and T by SAT. It is
well-known that the symmetric difference of two cuts is a cut. Moreover, the
following result holds.

Observation 2. Let G be a graph, v be a degree 2 vertexr of G, and M be a
multicut such that |M N§(v)| = 1. Then, M U§(v) and MAS(v) are multicuts.
Moreover, dpusw) = dy + 1, and dyasw) = du-

A graph is series-parallel if its nontrivial 2-connected components can be
constructed from a circuit of length 2 by repeatedly adding edges parallel to an
existing one, and subdividing edges, that is, replacing an edge by a path of length
two. Equivalently, series-parallel graphs are those having no K4-minor [21].

By construction, simple nontrivial 2-connected series-parallel graphs have at
least one degree 2 vertex. Moreover, these vertices satisfy the following.

Proposition 3. For a simple nontrivial 2-connected series-parallel graph, at
least one of the following holds:

(i) two degree 2 vertices are adjacent,
(ii) a degree 2 vertex belongs to a circuit of length 3,
(iii) two degree 2 vertices belong to a same circuit of length 4.

Proof. We proceed by induction, the base case is K3 for which (i) holds.

Let G be a simple 2-connected series-parallel graph. Since G is simple, it
can be built from a series-parallel graph H by subdividing an edge e into a path
f,g. Let v be the degree 2 vertex added with this operation. By the induction
hypothesis, either H is not simple, or one among (i), (i), and holds for H.
Hence, there are four cases.

Case 1: H is not simple. By G being simple, e is parallel to exactly one edge
h. Hence, f,g,h is a circuit of G length 3 containing v, thus holds for G.
Case 2: (i) holds for H. Then, it holds for G.

Case 3: (i) holds for H. Let C be a circuit of H of length 3 containing a degree
2 vertex, say w. If e ¢ C, then holds for G. Otherwise, by subdividing e,
we obtain a circuit of length 4 containing v and w, and hence holds for G.
Case 4: holds for H. Let C' be a circuit of H of length 4 containing two
degree 2 vertices. If e ¢ C, then holds for G. Otherwise, by subdividing e,
we obtain a circuit of length 5 containing three degree 2 vertices. Then, at least
two of them are adjacent, and so (i) holds for G. O O

1.2 Box-Total Dual Integrality

Let A € R™*"™ be a full-row rank matrix. This matrix is equimodular if all its
m X m non-zero determinants have the same absolute value. The matrix A is
face-defining for a face F of a polyhedron P C R™ if aff (F) = {z € R" : Ax = b}
for some b € R™. Such matrices are the face-defining matrices of P.



Theorem 4 ([9) Theorem 1.4]). Let P be a polyhedron, then the following
statements are equivalent:

(i) P is box-TDI.
(ii) Every face-defining matriz of P is equimodular.
(iii) Each face of P has an equimodular face-defining matriz.

In Theorem [} the equivalence of conditions (#i) and (i) stems from the
following observation.

Observation 5 ([9, Observation 4.10]). Let F' be a face of a polyhedron. If
a face-defining matriz for F is equimodular, then so are all the face-defining
matrices for F.

We will also use the following.

Observation 6. Let A € R'* be a full row rank matriz, j € J, ¢ be a column
of A, and v € RL. If A is equimodular, then so are:

. A e . A 0

(i) { 4y } if it is full row-rank and (ii) { 41 }
Observation 7 ([9, Observation 4.11]). Let P C R™ be a polyhedron and let
F ={xz € P: Bz =b} be a face of P. If B has full-row rank and n — dim(F)
rows, then B is face-defining for F.

1.3 k-edge-connected Spanning Subgraph Polyhedron

Note that Py (G) is the dominant of the convex hull of all the families of E con-
taining at most k copies of each edge and inducing a k-edge-connected spanning
subgraph of G. Since the dominant of a polyhedron is a polyhedron, Py (G) is
a full-dimensional polyhedron even though it is the convex hull of an infinite
number of points.

From now on, k& > 2. Didi Biha and Mahjoub [I8] gave a complete description
of Pi(G) for all k, when G is series-parallel.

Theorem 8 ([I8]). Let G be a series-parallel graph and h be a positive integer.
Then Pop(G) is described by:

1) {x(D) >2h  for all cuts D of G, (1a)
x>0, (1b)
and Pap11(G) is described by:

@) {x(M) > (h+1)dpy — 1 for all multicuts M of G, (2a)

x> 0. (2b)

Since the incidence vector of a multicut §(Vi,...,Vy) of order £ is the half-
sum of the incidence vectors of the bonds 6(V7),...,8(V;), we can deduce an-

other description of Pap(G).



Corollary 1. Let G be a series-parallel graph and h be a positive integer. Then
Py, (G) is described by:

3) {m(M) > hdys  for all multicuts M of G, (3a)
z > 0. (3b)

We call constraints and partition constraints. A multicut M is
tight for a point of Py(QG) if this point satisfies with equality the partition con-
straint (respectively (Ba)) associated with M when k is odd (respectively
even). Moreover, M is tight for a face F of Py(G) if it is tight for all the points
of F.

The following results give some insights on the structure of tight multicuts.

Theorem 9 ([I8, Theorem 2.3 and Lemma 3.1]). Let x be a point of Pap+1(G),
and let M = 6(V1,...,Vg,,) be a multicut tight for x. Then, the following hold:

(i) if dye >3, thenx (0(Vi)No(V;)) <h+1 foralli#je{l,...,dm}.
(i) G\'V; is connected for alli=1,...,dp.

Observation 10. Let v be a degree 2 vertex of G and M be a multicut of G
strictly containing 6(v) = {uwv,vw}. If M is tight for a point of Py(G), then
both M\ f and M \ g are multicuts of G of order dp; — 1.

Proof. Tt suffices to show that u and w belong to different classes of M =
0(v,Va,...,Vg,,). Suppose that u,w € Vo. Then M is the union of the two
multicuts d(v) and M’ = §(v U Vo, ..., Va,,). Since ds,y + da = dar + 1, the
sum of the two the partition inequalities associated with §(v) and M’ implies
that the partition inequality associated with M is tight for no point of Py (G)
for every k > 2. O O

Chopra [I0] gave sufficient conditions for an inequality to be facet defining
for P, (G). The following proposition is a direct consequence of Theorems 2.4
and 2.6 of [10].

Proposition 11. Let G be a connected graph having K4 as a minor and let
h > 1. Then, there exist two disjoint nonempty subsets of edges of G, E' and
E", and a rational b such that

X7+ 2 >0, (4)
is a facet-defining inequality of Popi1(G).

Chen, Ding, and Zang [7] provided a box-TDI system for P»(G) for series-
parallel graphs.

Theorem 12 ([7, Theorem 1.1]). The system:

{ iz(D)>1 for all cuts D of G,

x>0 (5)
1s boz-TDI if and only if G is a series-parallel graph.



This result proves that the polyhedron P»(G) is box-TDI for all series-parallel
graphs, and gives a TDI system describing this polyhedron in this case. However,
Theorem [12]is not sufficient to state that Py(G) is a box-TDI polyhedron if and
only if G is series-parallel.

2 Box-TDlIness of Py (G)

In this section we show that, for k > 2, Py(G) is a box-TDI polyhedron for a
connected graph G if and only if G is series-parallel. Since P(G) = ) when G
is not connected, we assume from now on that G is connected.

When k > 2, Pi(G) is not always box-TDI, as stated by the following lemma.

Lemma 13. Fork > 2, if G = (V, E) contains a K4-minor, then Py(G) is not
box-TDI.

Proof. When k = 2h + 1 is odd, Proposition [L1| shows that there exists a facet-
defining inequality that is described by a non equimodular matrix as Py (G) is
full-dimensional. Thus, P;(G) is not box-TDI by Statement (i) of Theorem

We now prove the case when k is even. Since G has a K4-minor, there exists
a partition {Vi,...,V4} of V such that G[V;] is connected and §(V;, V;) # 0 for
all i < j € {1,...,4}. We now prove that the matrix A whose three rows are
x4 for i = 1,2,3 is a face-defining matrix of P, (G) which is not equimodular.
This will end the proof by Statement of Theorem

Let e;; be an edge in §(V;,V;) for all i < j € {1,...,4}. The submatrix of
A formed by the columns associated with edges e;; is the following:

€12 €13 €23 €14 €24 €34

V1) 1 1 0 1 0 0
¥ (V2) 1 0 1 0 1 0
(V) 0 1 1 0 0 1

The matrix A is not equimodular as the first three columns form a matrix of
determinant -2 whereas the last three ones give a matrix of determinant 1.

By Observation [7 to show that A is face-defining, it is enough to exhibit
|E|—2 affinely independent points of P, (G) satisfying (6(V;)) = k fori = 1,2, 3.

Let Dy = {e12, €14, €23, €34}, Do = {€12, €13, €24, €34}, D3 = {€13, €14, €23, €24}
and Dy = {eq4, €24, €34}. First, we define the points S; = 2?21 kxEVil 4 %XDJ',
for j = 1,2,3, and Sy = Z?Zl ExPVil 4+ kxPs. Note that they are affinely
independent.

Now, for each edge e ¢ {e12,e13, €14, €23, €24, €34}, We construct the point
Se as follows. When e € E[V;] for some i = 1,...,4, we define S, = Sy + x©.
Adding the point S, maintains affine independence as S, is the only point not
satisfying z. = k. When e € §(V;, V;) for some 4, j, we define S, = Sp—x* +x°,
where Sy is Sy if e € §(Vp, V) Ud(Va, V3) and Sy otherwise. Affine independence
comes because S, is the only point involving e.

In total, we built 4 + |E| — 6 = |E| — 2 affinely independent points. O O



The following theorem characterizes the class of graphs for which Py (G) is
box-TDI. The case k even is obtained using the box-TDIness for k£ = 2 and the
fact that integer dilations maintain box-TDIness. For the case k odd, on the
contrary to what is generally done, the proof does not exhibit a box-TDI system
describing P (G). For this case, the proof is by induction on the number of edges
of G. We prove that series-parallel operations preserve the box-TDIness of the
polyhedron. The most technical part of the proof is the subdivision of an edge
uw into two edges uv and vw. We proceed by contradiction: by Theorem [4]
we suppose that there exists a face F' of Py(G) defined by a nonequimodular
matrix. We study the structure of the inequalities corresponding to this matrix.
In particular, we show that they are all associated with multicuts, and that these
multicuts contain either both uv and vw, or none of them—see Claims
and These last results allow us to build a nonequimodular face-defining
matrix for the smaller graph, which contradicts the induction hypothesis.

Theorem 14. For k > 2, Py(G) is a box-TDI polyhedron if and only if G is
series-parallel.

Proof. Necessity stems from Lemma [I3] Let us now prove sufficiency. When
k = 2, the box-TDIness of System has been shown by Chen, Ding, and
Zang [7]. This implies box-TDIness for all even k: multiplying the right-hand
side of a box-TDI system by a positive rational preserves its box-TDIness [34]
Section 22.5]. The system obtained by multiplying by k the right-hand side of
System describes Py (G) when k is even. Hence, the latter is a box-TDI
polyhedron.

The rest of the proof is dedicated to the case where k = 2h + 1 for some
h > 1. To this end, we prove that for every face of Papy1(G) there exists an
equimodular face-defining matrix. The characterization of box-TDIness given
in Theorem [] concludes. We proceed by induction on the number of edges of
G.

If G is trivial, then Py y1(G) = {& € Ry : & > 2h 4+ 1} is box-TDL If G is
the circuit {e, f}, then Pop41(G) = {ze, 2y € Ry : xe + x5 > 2h + 1} is also
box-TDI.

(1-sum) Let G be the 1-sum of two series-parallel graphs G’ = (W', E’)
and G’ = (W"”,E"). By induction, there exist two box-TDI systems A’y > b’
and A"z > b” describing respectively Popy1(G’) and Popy1(G”). If v is the
vertex of G obtained by the identification, G \ v is not connected, hence, by
Statement (ii) of Theorem [9] a multicut M of G is tight for a face of Pyy11(G)
only if M C E® for some i = 1,2. It follows that for every face F of Py, y1(G)
there exist two faces F' and F” of Pyj,41(G’) and Pap11(G") respectively, such
that F = F' x F". Then Py,11(G) = {(y,2) € RY xRE": Aly > ¥/, A"z > b}
and so it is box-TDI.

(Parallelization) Let G = (V, E) be obtained from a series-parallel graph G’
by adding an edge g parallel to an edge f of G’ and suppose that Paj1(G’)
is box-TDI. Let A’z > b be a box-TDI system describing Py,11(G’). Note



that Popy1(G) is described by Az > b, zy > 0,24 > 0, where A is the matrix
obtained by duplicating f’s column. By Theorem 22.10 of [34], the system
Az > b is box-TDI, hence so is Ax > b,xy > 0,2, > 0. Thus, Pop4+1(G) is a
box-TDI polyhedron.

(Subdivision) Let G = (V, E) be obtained by subdividing an edge uw of a
series-parallel graph G’ = (V' E’) into a path of length two uv, vw. By contra-
diction, suppose there exists a non-empty face F' = {x € Pop41(G) : Apx = bp}
such that Ap is a face-defining matrix for F' which is not equimodular. Take
such a face with maximum dimension. Then, every submatrix of Ar which is
face-defining for a face of Pap41(G) is equimodular. We may assume that Ap
is defined by the partition constraints associated with the set of multicuts
M and the nonnegativity constraints associated with the set of edges Ep.

Claim 2.1. & = 0.

Proof. Suppose there exists an edge e € Ep. Let H = G\ e and let Ap,x =
br, be the system obtained from Apx = bp by removing the column and the
nonnegativity constraint associated with e. The matrix Ar being of full row
rank, so is Ap,. Since e € Ep, for all multicut M tight for ' not containing
e, M Ue is not a multicut. Hence M \ e is a multicut of H of order dy;, for
all M in Mp. Hence, the set Fy = {& € Pyp1(H) : Ap,z = bp,} is a
face of Pyp41(H). Moreover, deleting e’s coordinate of aff (F) gives aff (Fyy) so
Ar,, is face-defining for Fy. By the induction hypothesis, Ap,, is equimodular.
Since maximal invertible square submatrices of Ap are in bijection with those
of A, and have the same determinant in absolute value, Ar is equimodular, a
contradiction. O O

Claim 2.2. For e € {uv,vw}, at least one multicut of Mg different from é(v)
contains e.

Proof. By contradiction, suppose that uv belongs to no multicut of M g different
from 0 (v).

First, suppose that d(v) does not belong to Mp. Then, the column of Ap
associated with wv is zero. Let A be the matrix obtained from Ag by removing
this column. Every multicut of G' not containing uv is a multicut of G’ (rela-
belling vw by uw), so the rows of A% are associated with multicuts of G'. Thus,
F'={x € P,(G") : Azx = bp} is a face of Pop41(G’). Removing uv’s coordi-
nate from the points of F' gives a set of points of F” of affine dimension at least
dim(F') — 1. Since A% has the same rank of Ar and one column less than A,
then A’ is face-defining for F’ by Observation |7} By the induction hypothesis,
A% is equimodular. Since adding a column of zeros preserves equimodularity,
sois Ap.

Suppose now that §(v) belongs to M g. Then, the column of Ap associated
with uv has zeros in each row but x*("). Let A%z = b% be the system obtained
from Apz = bp by removing the equation associated with d(v). Then F* =
{z € Py(G) : Apx = by} is a face of P,(G) of dimension dim(F') + 1. Indeed, it
contains F' and z + ax"’ ¢ F for every point z of F' and o > 0. Hence, A}, is

10



face-defining for F*. This matrix is equimodular by the maximality assumption
on F, and so is A by Statement (ii) of Observation [} O O

Claim 2.3. |[M N§(v)| # 1 for every multicut M € Mp.

Proof. Suppose there exists a multicut M tight for F' such that |[M NJ(v)| = 1.
Without loss of generality, suppose that M contains uv and not vw. Then, F' C
{z € Popy1(Q) : Ty > xyy } because of the partition inequality associated
with the multicut M Ad(v). Moreover, the partition inequality associated with
d(v) and the integrality of Pap41(G) imply F C {z € Pap41(G) : Ty > h+ 1}
The proof is divided into two cases.

Case 1: F C {z € P3p11(G) : Ty = h+1}. We prove this case by exhibiting
an equimodular face-defining matrix for . By Observation [5| this implies that
Ap equimodular, which contradicts the assumption on F.

Equality x,, = h+1 can be expressed as a linear combination of equations of
Apx =bp. Let Az = bz denote the system obtained by replacing an equation
of Apx = bp by Ty = h + 1 in such a way that the underlying affine space
remains unchanged. Denote by A the set of multicuts of M containing vw but
not uwv. If N' # (), then let N be in N. We now modify the system Az = b
by performing the following operations.

1. Replace every equation associated with a multicut M strictly containing
0(v) by the partition constraint associated with M\ vw set to equality.

2. If §(v) € Mp, then replace the equation associated with d(v) by the box
constraint x,, = h.

3. Replace every equation associated with M € AN \ N by the partition
constraint (2a)) associated with M AJ§(v) set to equality.

4. If N # 0, then replace the equation associated with IV by the box con-
straint x,, = h + 1.

These operations do not modify the underlying affine space. Indeed, in Opera-
tion 1, M \vw is tight for F' because of Observation[I0]and F C {z € Pop41(G) :
ZTyw = h + 1}. Operation 2 is applied only if FF C {z € Pop11(G) : Typ = h}.
Operations 3 and 4 are applied only if N' # (), which implies that FF C {z €
Py +1(G) : Zyy = h+ 1} because of the constraint associated with NAJ(v)
and F C {x € Pop41(G) : Tyw > ZTuy }- Note that Operations 2 and 4 cannot be
applied both, hence the rank of the matrix remains unchanged.

Let A%hx = VY. be the system obtained by removing the equation z,,, = h+1
from Azx = bn. By construction, A%z = b% is composed of constraints (2al)
set to equality and possibly z,, = h or x,, = h + 1. Moreover, the column of
A associated with vw is zero. Let F” = {z € Pyp11(G) : A%z = b}, For
every point z of F' and a > 0, z + ax”"” belongs to F" because the column of
A, associated with vw is zero, and z + ax” € Paop41(G). This implies that
dim(F") > dim(F) + 1.
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If I is a face of Pyj,11(G), then A is face-defining for F” by Observation
and by A% being face-defining for F. By the maximality assumption on F, A%,
is equimodular, and hence so is A% by Statement (i) of Observation @

Otherwise, by construction, F”' = F*N{z € R¥ : 2,,, = t} where F* is a face
of Popy1(G) strictly containing F' and t € {h,h + 1}. Therefore, there exists
a face-defining matrix for F” given by a face-defining matrix for F* and the
row x"Y. Such a matrix is equimodular by the maximality assumption of F' and
Statement (i) of Observation [6] Hence, A% is equimodular by Observation
and so is A%, by Statement (i) of Observation [6]

Case 2: F Z {x € Popt1(G) : &y = b+ 1}. Thus, there exists z € F' such
that z,, > h + 1. By Claim there exists a multicut N # §(v) containing
vw which is tight for F. By Statement (i) of Theorem [J] the existence of z
implies that N is a bond, hence it does not contain wv. The set L = NAJ§(v)
is a bond of G. The partition inequality associated with L implies that
F C{x € Popy1(G) : Ty = Ty} and L is tight for F. Moreover, N is the
unique multicut tight for F' containing vw. Suppose indeed that there exists a
multicut B containing vw tight for F. Then, B is a bond by Statement (i) of
Theorem [J] and the existence of z. Moreover, BAN is a multicut not containing
vw. This implies that no point = of F' satisfies the partition constraint associated
with BAN because ©(BAN) = z(B)+xz(N)—2x(BNN) = 2(2h+1) —22(BN
N) < 4h + 2 — 2z, < 2h, a contradiction.

Consider the matrix A%, obtained from Ap by removing the row associated
with N. Matrix A% is a face-defining matrix for a face F* D F of Py 41(G)
because F* contains F' and z + ax™’ for every point z of F' and o > 0. By
the maximality assumption, the matrix A} is equimodular. Let Bp be the
matrix obtained from Ag by replacing the row xv by the row x — x*. Then,
By is face-defining for F. Moreover, Br is equimodular by Statement (ii)
of Observation [Bl—a contradiction. O O

Let Azx = V% be the system obtained from Apz = bp by removing uv’s
column from Ap and subtracting h + 1 times this column to bp. We now show
that {x € Pyp11(G’) : Apx = b} is a face of Popy1(G') if 6(v) ¢ Mp, and
Pyp+1(G)N{x : xyw = h} otherwise. Indeed, consider a multicut M in Mp. If
M = 6(v), then the equation of A%x = b induced by M is nothing but x4, = h.
Otherwise, by Observation [10]and Claim the set M \ uv is a multicut of G’
(relabelling vw by uw) of order dyy if uv ¢ M and dp; — 1 otherwise. Thus, the
equation of ALz = by induced by M is the partition constraint associated
with M \ wv set to equality.

By construction and Claim A% has full row rank and one column less
than Ap. We prove that A% is face-defining by exhibiting dim(F) affinely
independent points of Pap41(G’) satisfying Az = 0. Because of the integrality
of Popt1(G), there exist n = dim(F) + 1 affinely independent integer points
2t ..., 2" of F. By Claimsand there exists a multicut strictly containing
d(v). Then, Statement (i) of Theorem |§| implies that FF C {z € RF : z,, <
h+1,2y, < h+1}. Combined with the partition inequality Z,, + Ty > 2h+1
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associated with d(v), this implies that at least one of 2!, and z¢ is equal to
h+1fori=1,...,n. Since exchanging the uv and vw coordinates of any point
of F' gives a point of F' by Claim the hypotheses on 21, ..., 2" are preserved
under the assumption that 2¢, =h+1fori=1,...,n—1. Let y*,..., 4" ! be
the points obtained from z', ..., 2"~ by removing uv’s coordinate. Since every
multicut of G’ is a multicut of G with the same order, y',...,y" ! belong to
Py, +1(G'). By construction, they satisfy Apxz = bl so they belong to a face of
Poj41(G') or Popt1(G')N{x : ©yy = h}. This implies that A is a face-defining
matrix of Pyp41(G’) if 6(v) ¢ Mp, and Popi1(G') N {x : 24w = h} otherwise.
By induction, Pyj,+1(G’) is a box-TDI polyhedron and hence so is Pop41(G')N
{z : ©yw = h}. Hence, A% is equimodular by Theorem Since Ap is ob-
tained from A% by copying a column, then also A is equimodular—a contra-
diction. O O

By definition of box-TDIness and Qx(G), Theorem [14] implies that Qx(G)
is box-TDI when G is series-parallel. The converse does not hold. Indeed,
for instance, when G = (V, E) is a minimal k-edge-connected graph, Qx(G) is
nothing but the single point x¥ so it is a box-TDI polyhedron.

3 An Integer TDI System for Py, (G)

Let G be a series-parallel graph. In this section we provide an integer TDI
system for Po,(G) with h positive and integer.

The proof of the main result of the section is based on the characterization
of TDIness by means of Hilbert bases. A set of vectors {v!, ..., v*} is a Hilbert
basis if each integer vector that is a nonnegative combination of v!,... v can
be expressed as a nonnegative integer combination of them. The link between

Hilbert basis and TDIness is stated in the following theorem.

Theorem 15 (Theorem 22.5 of [34]). A system Az > b is TDI if and only
if for every face F of P = {x : Ax > b}, the rows of A associated with tight
constraints for F form a Hilbert basis.

In the previous theorem, we could restrict to minimal faces: indeed, the cone
generated by the constraints tight for a face F' is a face of the cone generated
by the constraints active for a face F/ C F [34].

Remark 1. A system Ax > b is TDI if and only if, for each minimal face F'
of P ={x: Ax > b}, the rows of A associated with constraints tight for F form
a Hilbert basis.

The rest of the section is devoted to prove that the system given by the
partition constraints and the nonnegativity constraints, which describes Py (G)
when k is even, is TDI when G is series-parallel.

The proof is based on the TDIness of System and the structure of in-
equalities . Their right-hand sides are proportional to k, hence it is enough
to prove the case k = 2. This allows us to use Theorem to obtain a TDI
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system for Py(G). In terms of Hilbert bases, the TDIness of this system implies
that, given a face F of P5(G), the integer points of the associated cone are the
half sum of the cuts tight for F. The technical part of the proof is to show
that each integer point of this cone is also the sum of incident vectors of the
multicuts tight for F.

Theorem 16. For a series-parallel graph G and a positive integer h, System
is TDIL.

Proof. We only prove the case h = 1 since multiplying the right hand side of a
system by a positive constant preserves its TDIness [34, Section 22.5].

The proof is done by induction on the number of edges of the graph G =
(V, E). When G consists of two vertices connected by a single edge ¢, System
is xy > 2,24 > 0 and is TDL If G is the circuit {e, f}, System is xe +ay >
2,2 > 0 and is TDI.

(Parallelization) Let now G be obtained from a series-parallel graph H by
adding an edge g parallel to an edge f of H. System associated with G
is obtained from that associated with H by duplicating f’s column in con-
straints and adding the nonnegativity constraint z, > 0. By Lemma 3.1
of [7], System ({3) is TDI.

For the other cases, we prove the TDIness of System associated with G
using Remark [1] More precisely, we prove that for any vertex z of P»(G), the
set of vectors {x™ : M € M.} U{x®:e € E,z, = 0} is a Hilbert basis.

(1-sum) Let G be the 1-sum of two series-parallel graphs G! = (W', E1) and
G? = (W2, E?) and let z be a vertex of P»(G). By construction, we have z =
(21, 2%) where 2z € Py(G?) for i = 1,2. Moreover, for each multicut M € M,
the graph obtained from G[z] by contracting the edges of E'\ M is a circuit.
Indeed, it is 2-edge-connected since G|[z] is, and it has z(M) = dps edges and
dys vertices. Therefore M is either a multicut of G tight for z' or one of G2
tight for 22.

By induction, Systems associated with G and G? are TDI. Thus, {x™ :
M e M. NM(GH}U{x® : e € E',z. = 0} is a Hilbert basis for i = 1,2 by
Theorem [I5] Since they belong to disjoint spaces, their union is a Hilbert basis.
By Theorem System is TDI.

(Subdivision) Let G = (V, E) be obtained by subdividing an edge uw of a
series-parallel graph G’ = (V/, E’) into a path of length two uv,vw, and let z
be a vertex of Py(G).

Without loss of generality, suppose 2, > Zyy. Define 2’ € ZF by 2., = Zow
and z, = z. for all edges e in E' \ uw. Remark that 2z’ belongs to P»(G’)
since G'[2'] is obtained by contracting the edge uv in G[z], and this contraction
preserves 2-edge-connectivity.

Remark that for all e € E, z. € {0,1,2}. Indeed, since z is a vertex of P2(G)
which is also described by System , if ze > 0, then e belongs to a cut D tight

for z. Moreover, as zy, > Zyw, the partition constraint (3a]) associated with §(v)
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implies that z,, € {1,2}. We now consider two different cases depending on the
value of zy,.

Case 1: zy, = 2.

We first show that every multicut of M, containing uv is a bond. Indeed,
remark that every multicut M with dy; = 2 is a bond. If a multicut M =
0(Vi,...,Va,,) € M, satisfies dpy > 3 and uv € §(Vq, Va), then M’ = 6(V; U
Vo, Va, ..., Vy,,) is a multicut and satisfies

Z(M/) §Z(M)*2<dM71:dM/.

Hence, the partition constraint associated with M’ is violated, a contradic-
tion.

Moreover, there exists at most one bond of M., say N, containing wwv.
As otherwise suppose there exist two bonds B; and B, in M, containing wwv.
Then, z(B1ABs) < z(B1) + 2(Bz) — 22y, = 0, which contradicts the constraint
(3a) associated with the multicut BiABs. For a multicut M not containing
uv, M € M, if and only if M € M_,. This implies that M, = M, UN. By
induction and Theorem M UE, is a Hilbert basis. As &, = £,/ (identifying
wv and vw) and N is the only member of M, U &, containing uv, M, U¢&, is
also a Hilbert basis.

Case 2: 2z, = 1.

Let v be an integer point of the cone generated by M, UE,. We prove
that v can be expressed as an integer nonnegative combination of the vectors
of M, UE,. This implies that M, U &, is a Hilbert basis.

Let B, be the set of bonds of M,. Since System is a TDI system
describing P»(G) in series-parallel graphs, the set of vectors {1x? : B € B,}UE,
forms a Hilbert basis by Theorem Then, there exist Ap € 5Z forall B € B,
and pe € Zy for all e € €, such that v =3 p s Apx? + Deee. HeX©

Since zyy > zZyw, the partition inequality associated with §(v) implies
that z,, = 1 and §(v) € M. In particular, vw ¢ &,. The vector v is an integer
combination of vectors of M, UE, if and only if v — L)\g(U)Jx‘S(“) is, thus we may

assume that Asq,,) € {0, %} Define w € ZE' by:

W, — Vuw + Vow — 2>\6(v) ife= uw,
CT v otherwise.

Remark that (B \ uvw) Uwuv and (B \ vw) Uvw are bonds of M, whenever B is
a bond of M, containing uw because z.,, = zyy = Zyw = 1. Moreover, a bond
B of M, which does not contain uw is a bond of M. Since §(v) is the unique
bond of G containing both uv and vw and £, = £,/, we have:

W = Z (A(B\uw)qu + )‘(B\uw)U'uw)XB + Z )\BXB + Z ,UfeXe-
BeB, :uweB BeB, :uw¢gB e€&,
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Thus, w belongs to the cone generated by M., UE,,. By the induction hypoth-
esis, M, U &,/ is a Hilbert basis, hence there exist N}, € Z for all M € M,
and p;, € Zy for all e € £+ such that w =23,/ , N x™M + Dece., HeX©-

Consider the family A of multicuts of M, where each multicut M of M.
appears Xy, times. Suppose first that A5 = 0. Then, vy, + vy, multicuts
of N contain uw. Let P be a family of v, multicuts of A containing uw and
Q={F €N :uwe F}\P. Then, we have

v = Z XI\/I_|_ Z X(M\uw)qu+ Z X(]VI\uw)va+ Z ,u/eXe' (6)

MeN wwg¢ M MeP MeQ e€el,

Suppose now that As.) = % Then, Wy, = Vyy + Vew — 1 multicuts of A/
contain uw. Let P be a family of vy, — 1 multicuts of A containing uw, let Q
be a family of vy, — 1 multicuts in {F' € N : uw € F} \ P, and denote by N
the unique multicut of A/ containing uw which is not in P U Q. Then, we have

— Z XM+ Z X(M\uw)qu+ Z X(]\/I\uw)va+X(N\uw)U§(v)+ Z ‘LL/eXe'
MeN:uwg¢M MeP MeQ e€&, s

(7)

Every M € M./ not containing uw is in M. For every M € M. containing
ww, (M \ uw)Uuv, (M \ vw)Uvw and (M \ uw)Ud(v) belong to M, since 2., =
Zuy = Zyw = 1. Since £, = &,/, then v is a nonnegative integer combination of
vectors of M, UE&, in both (6) and . This proves that M, U &, is a Hilbert
basis. Therefore by Remark System is TDI. O O

Theorem and Lemma (13| characterize the box-TDIness of System as
follows.

Corollary 2. System 18 box-TDI if and only if G is series-parallel.
Theorem (16| leaves open the following problem:

Open Problem 17. Characterize the classes of graphs such that System 18
TDI

4 An Integer TDI System for Py, 1(G)

In this section, we prove that System is TDI if and only if G is a series-
parallel graph. Proving the TDIness for k£ odd is considerably more involved
than for k even. The first difference with the even case is the lack of a known
TDI system describing Py (G) when k is odd, even a noninteger one. Thus, no
property of the Hilbert bases associated with Py (G) is known, and the approach
used to prove Theorem [16|cannot be applied. Instead, following the definition of
TDIness, we prove the existence of an integer optimal solution to each feasible
dual problem.

Another difference with the case k even stems from the structure of the
partition inequalities . In particular, the presence of the constant “—1” in
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the right-hand sides perturbs the structure of tight multicuts. Indeed, when k
is odd, the tightness of §(V1,...,V,) does not imply that of 6(V1),...,0(V,).
Consequently, it is not clear how the contraction of an edge impacts the tight-
ness of a multicut 6(V3,...,V,): merging adjacent V;’s is not sufficient to obtain
new tight multicuts. Due to the link between tight multicuts and positive dual
variables, the structure of the optimal solutions to the dual problem is com-
pletely modified when subdividing an edge. Proving directly that subdivision
preserves TDIness turned out to be challenging, and we overcome this difficulty
by deriving new properties of series-parallel graphs—see Proposition [3]

The proof starts with a minimal counterexample to the TDIness of the sys-
tem. We first study the interplay between multicuts associated with positive
values in dual optimal solutions and cuts of degree 2 vertices—see Claims[£.4}4.8]
Using these claims we prove that none of the three structures of Proposition
exists—see Claims [4.9] and [I.1T}—contradicting the series-parallelness of
the graph.

Theorem 18. For h positive and integer, System is TDI if and only if G
s series-parallel.

Proof. If G is not series-parallel, then System is not TDI because every TDI
system with integer right-hand side describes an integer polyhedron [22], but
when G has a K4-minor, System describes a noninteger polyhedron [10].

We now prove that, if G is series-parallel, then System is TDI. We prove
the result by contradiction. Let G = (V, E) be a series-parallel graph such that
System is not TDI. By definition of TDIness, there exists ¢ € Z¥ such that

D(G,c):

max Z bypynr

MeMe
S.t.

Y yu<e for all e € E, (8a)
MeMcg:eeM
ym >0 for all M € Mg, (8b)

is feasible, bounded, but admits no integer optimal solution, where by = (h +
1)dpr — 1 for all M € M. Without loss of generality, we assume that:

(i) G has a minimum number of edges,
(i) Y .cp Ce is minimum with respect to ().

By definition, D . is feasible if and only if ¢ > 0. Hence, by minimality
assumption , D,y has an optimal integer solution for every integer ¢’ # ¢
such that 0 < ¢ <e.

Let M be a multicut of G. We denote by &y the vector of {0,1}*¢ whose
only nonzero coordinate is the one associated with M. We say that M is active
for a solution y to D(q . if yar > 0. Note that, by complementary slackness,
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a multicut is active for an optimal solution to D(g,) only if it is tight for an
optimal solution to the primal problem. In particular, if a multicut is tight for
no point of Pa,41(G), then it is active for no optimal solution to D(¢,). Thus,
we will use Observation [I0] and Theorem [9] to deduce properties on the optimal
solutions to D(g,c)-

Claim 4.1. G is simple, 2-connected, and nontrivial.

Proof. Suppose by contradiction that there exist two parallel edges e; and es
and ¢, < ce,. Since a multicut contains either both e; and ez or none of them,
the inequality associated with ey is redundant because c., < c.,. This
contradicts minimality assumption , so G is simple.

Assume by contradiction that G is not 2-connected. Then G is the 1-sum
of two distinct graphs G; = (V1, 1) and Go = (Va, F2). By Statement of
Theorem El, the multicuts of G that intersect both E; and Es are not tight for
the points of Pap11(G), by complementary slackness, these multicuts are not
active for the optimal solutions to D(q ). Hence, every optimal solution y to
D(g,c) is of the form:

yjlw if M e Mg,,
YMm = 1112\4 if M e MGQ, for all M € MG,
0 otherwise,

where 3° is an optimal solution to DG, e, 5,) for i = 1,2. By minimality assump-
tion , there exists an integer optimal solution %’ to ’D(Gi,cmi) for i = 1,2,
implying that (7*,%?) is an integer optimal solution to D), a contradiction.

Finally, if G = K3, Mg contains only one multicut, say {e}, and the optimal
solution to D(g ) is yf{e} = ¢, which is integer. O O

Claim 4.2. For all edgese € E, c. > 1.

Proof. By hypothesis, ¢ > 0 is integer and D(g ) has an optimal solution, say
y*. Suppose by contradiction that there exists an edge e € E with ¢, = 0. Set
G' = G/e and ¢’ = ¢|g\. The active multicuts for y* do not contain the edge e
so they are multicuts of G’ since Mg = {M € Mcgle ¢ M}. Hence, the point
y' € RMc’ defined by yy, =y}, for all M € Mcr is a solution to D(gr, ).

By minimality assumption 7 there exists an integer optimal solution § to
D¢ o). Extending g to a point of ZMé& by setting to 0 the missing components
gives an integer solution to D(q ) with cost by > b"y = b"y*. This is an
integer optimal solution to D(g ) since y* is optimal, a contradiction with the
hypothesis that D ) has no integer optimal solution. O O

Claim 4.3. Every optimal solution y to D ) satisfies 0 < ypr < 1 for all
M e Mg.

Proof. By contradiction, suppose that y* is an optimal solution to D¢ ) such
that there exists a multicut M such that y;, > 1. Therefore, the point ¥’
defined by 4 = y* — &u is a solution to D(g ey where ¢ = ¢ — xM. By
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minimality assumption 7 D(,y admits an integer optimal solution 3”. The
point § defined by § = 3" + &u is an integer solution to D(q ) and we have:

b g=b"y" +by >b"y +by =0 y".
Therefore 7 is an integer optimal solution to D(g ), a contradiction. [ [

From the definition of series-parallel graphs, Claim implies that G con-
tains at least one degree 2 vertex. Let V be the set of degree 2 vertices of

G.

Claim 4.4. Letv € 17, d(v) = {e1, ez}, y be an optimal solution to D ), and
M be an active multicut for y such that My Nd(v) = ey. If §(v) is active for y,
then no multicut whose intersection with §(v) is eq is active for y.

Proof. We prove the result by contradiction. Assume that M; and §(v) are
active for y and that there exists a My active for y with My N §(v) = es. By
Observation M] = M; Ud(v) is a multicut of G such that dp; = dp, + 1 for
i=1,2. Let 0 < e < min{ynr,, Yrs Ys(v) - Then, the point:

Y =y—¢ (XM1 +xM + x‘;(”)> +e€ (XM{ + xMé)

is a solution to D(g,), and we have by = b'y + ¢, implying that y is not
optimal, a contradiction. O O

Claim 4.5. For every optimal solution to D(q,.), the constraints associated
with the edges incident to a degree 2 vertex are tight.

Proof. We prove the result by contradiction. Suppose that there exist an op-
timal solution y* to D(g,) and a vertex v with §(v) = {e1, ez} such that the
inequality associated with e; is not tight. For ¢ = 1,2, let s; be the slack
of the constraint associated with e;, that is,

Z *
S; = Ce; — Ynr-

MeMg:e;eM

Inequality associated with es is tight, as otherwise there exists 0 < n <
min{sy, sz}, such that y* + 15,y is a solution to D(q,.), a contradiction to the
optimality of y*. Hence, Claims and imply that there are at least two
distinct multicuts M; and M active for y* and containing es. Let 0 < & <
min{yy,, Yz, S1}- Fori = 1,2, e; € M;, as otherwise y' = y* +e(&ar,0e, — &)
is a solution to D(¢ ). This solution is such that bTy' =bTy*+e(h+1) > by,
a contradiction with the optimality of y*. Thus, M; and My contain §(v). Since
they are distinct, at least one of them, say Mj, strictly contains 6(v). Then,
y" = y*+e(=&ar, +Eny\en TE5(v)) 18 a solution to D o) because M \ ez belongs
to Mg by Observation[10l Then, b"y” = b y*+e(—bps, +bar, —(h+1)+2h+1) >
bTy*, a contradiction. O O
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Given a solution y to D(g,c), we define for each vertex v € V the set AY as
the set of multicuts active for y that strictly contain §(v). Moreover we define
the value a¥ as:

al= > yu 9)
MeAy
Claim 4.6. FEvery optimal solution y to D(q.) satisfies 0 < af < 1 for all
v E \7

Proof. Suppose by contradiction that there exist an optimal solution y* to D(g,.)

and a vertex v of V such that either ¥ >1ora? =0. Denote the two edges
incident to v by e; and ey in such a way that c., < c.,.

Suppose first that a}f* > 1. By Claim E there exist at least two multicuts
in AY". Let AY = {My,...,M,}. By Observation |10} for all i = 1,...,n,
M] = M; \ e; is a multicut of G with dp; = dy, — 1. Let ¢ = ¢ — x“.
By ag* > 1, there exist ¢; for all i = 1,...,n, such that 0 < ¢; < yj, and
> € = 1. The point y' defined by: /

n

Yyl =y + Z (—eilnr, + )

i=1

is a solution to D(g,). By definition of b, we have:
byt =bTy* —h—1. (10)

By minimality assumption , D@,y admits an integer optimal solution, say
y?. This solution satisfies with equality the capacity constraint associated
with e as otherwise y? + &5(,) would be a solution to D(g ) with cost b y* +
bs(w) > b"y* 4+ 2h + 1, contradicting the assumption that y* is optimal by
and h > 1. Hence, there exists a multicut M active for y? containing e, but
not e since ¢, +1 < ¢,,. By definition, M U ¢; is a multicut of G of order
dj; + 1. Define 3 € ZM¢ by:
yhr = y2 — XM 4 MU

By definition of ¢/ and y?2, the point y> is an integer solution to D(g,c)- Therefore,
by 7 y? being optimal in D(g,ry and by definition of y3, we have:

by  =bTyl +h+1<b > +h+1<bTy5
Thus, y° is an integer optimal solution to D(a,c), a contradiction.

Suppose now that ¥ = 0. First, note that 6(v) is not an active multicut for
y*. Otherwise by Claims and there would be a multicut containing
e1 and not es, say N7, and a multicut containing es and not ey, say N2, which
are both active for y*. This contradicts Claim Hence, by definition of ag*,
no active multicut contains §(v).
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By Observation [2} if a multicut M contains e; but not e;, then MA§(v) is
a multicut with the same order and by = baras(v). Hence, we can define the
point y* € QMo

0 ife; € M,
y?\/[: y}‘w-ky;/[m;(v) ife; ¢ M and e; € M, for all M € Mg,
Yir otherwise,

which is a solution to D(g &), where ¢ is defined by:

Cey +Ce, if e =eg,
Co = 0 if e=eq, for all e € E.
Ce otherwise,

By construction, we have:
iyt =bTy". (11)

Using the argument given in the proof of Claim we deduce that D(g ¢
admits an integer optimal solution, say y°. Let S be the family of active mul-
ticuts for y® containing es, where each multicut M appears 33, times in S. We
have |S| > c., as otherwise y° would be an integer optimal solution to DG,e)s
a contradiction.

We now construct from y® an integer solution 3% to D(a,e) with the same
cost by replacing e; by e; in some active multicuts for ¢°. More formally, since
|S| > ce,, there exists S’ C S with |S’| = ¢¢,. By Observation 2] MAd(v) is a
multicut of G for all M € &’ and bys = baras(v)- Let Y5 € ZM¢ be the point
defined by:

Y =y"+ Z (Emrase) — &) (12)
MeS’

By construction, we have:
bTyS =bTy5. (13)
Remark that for each M € &', adding &pas5(0) —Ear to a point of RM¢ increases
(v)
(resp. decreases) by 1 the left-hand side of the inequality associated with e
(resp. es) while not changing the left-hand side of the inequalities associated

with the edges of E \ {e1,ea}. Therefore, by definition of ¢, y% is a solution to
D(.)- By (13), y° being optimal and (LI, we have:

bTyG — bTy5 > bTy4 _ bTy*
Therefore y° is an integer optimal solution to D(a,¢), a contradiction. [ [
Claim implies that for each optimal solution y and for each v € V there
exists at least one multicut strictly containing §(v) that is active for y. For the

following claims we need to define a subset of optimal solutions to Dg ): let
D, be the set of optimal solutions to D(¢ ) for which §(v) is not active. Note
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that if ©, is not empty, then there exists a solution y in ©, maximizing o over
all z € ©,.

The following claim presents the structure of a specific optimal solution to
D(g,c) for which 6(v) is not active.

Claim 4.7. Let v € V with 6(v) = {e1,e2} and let y* € D,, mazimize o over
all z € ©,. Then, there are exactly 3 multicuts active for y* intersecting §(v):
two bonds F'Ue; and F'U ez and a multicut F U {e1,ea} of order 3, for some
FCE.

Proof. By Claim there exists at least one multicut strictly containing d(v)
which is active for y*, say My. By definition of ®,, d(v) is not active for y*.
Hence, by Claim there exists at least one multicut active for y* which
contains e; and not 6(v) \ e;, for i = 1,2. Let M; be such a multicut with
maximum order.

First, we prove that dy;, = 3. By definition, My = (v, V2, V3, ..., Va,, )-
Moreover, by Observation and complementary slackness, the two vertices
adjacent to v belong to two different classes, say Vo and V3. By contradiction,
suppose that das, > 4. Then, Mg = §(v U Vo U V3,...,Vy,, ) is a multicut of
order dyg, — 2. For i = 1,2, M! = M; U§(v) is a multicut of order dps, + 1. Let
0 < e <min{ys»Yar, > Yns, - Then, let y' € RM¢ be the point defined by:

Y =y — e, + ey + € Z (=€m, +€nrr) -

i=1,2

By construction, ¥’ is a solution to D(g ) with bTy* = bTy’. Hence ¢/ is an
optimal solution, but we have a¥ = a¥ + & because 6(v) C M/ for i = 1,2.
This contradicts the maximality of o . Therefore dpy, = 3.

Now, we show that M; is a bond. The result for Ms holds by symmetry. By
contradiction, suppose that My = §(V1,..., Va,, ) with dy, > 3. Without loss
of generality, we suppose that e € §(V1)Nd(V2). Then, M] = 6(ViUVz, ..., Va,, )
is a multicut of order dp;, — 1. Moreover, M4 = MU §(v) is a multicut of order
da, + 1. Let 0 < e <min{yy, v, ) and y' € RM¢ be the point defined by:

y/ = y* - E§M1 + EfM{ - 6£M2 =+ 6£Mé

By construction, y" is a solution to D¢ ) with bTy* = bTy. Hence ¢/ is an
optimal solution, but we have ag' = a¥ +¢ because §(v) C Mj. This contradicts
the maximality of a¥ . Therefore, dys, = daz, = 2.

We now prove that there exists a set F' such that My = F U §(v), and
M; = FUe; for i = 1,2. This implies that My, M7, and M> are the only
multicuts active for y* intersecting 0(v).

Remark that M; U Mz is a multicut so ¥ = y* + e(€ayunn, — vy — Ean)
is a solution to D(g,). The optimality of y* implies das,un, < 3. Since M;
and M are distinct bonds, there exists ' C F \ §(v) such that M; = F U e;,
for i = 1,2. Finally, let Ng = My \ ea and Ny = M; Uey. Note that § =
y* +e(€ny — &y + &N, — Eary ) is an optimal solution to D¢,y for which 6(v)
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is not active. Moreover, Ny and My are bonds active for ¢ since dpg, = 3. This
implies that No = F U ey, and hence My = F U §(v). O O

Claim 4.8. Letv e V and y be an optimal solution to D(q . Then,
(i) if sy = 0, then c, =1 for all e € 6(v),
(i) if ysw) > 0, then af +ysw) = 1, and there exists e € §(v) such that c. = 1.

Proof. (i.) First suppose that ys(,) = 0, then ©,, # (). Let y’ € D, maximize o
over all z € ®,. Then, by Claim[4.7] there exist exactly two active multicuts for
y’ containing e; for ¢ = 1,2. Combining Claims and and the integrality
of ¢, we obtain that ¢, =1 forall i =1, 2.

(ii.) Let now ys,) > 0. By Claim there exists an edge e € §(v) such
that all multicuts containing e that are active for y contain d(v). Hence, the
constraint (8a)) associated with e is:

CeZ D Y=Yt Y, Ui = Yiw T U (14)
M:ee M MEAg*

By Claim the constraint associated with e is tight. Thus, yj,, +a¥ =
¢e. By Claims [4.3) and [£.6] and ¢, being integer, we have that c. =1. = O O

The last three claims of the proof give some structural property of the graph
G. In particular we focus our attention on the vertices of V.

Claim 4.9. Vertices of degree 2 are pairwise nonadjacent.

Proof. Assume by contradiction that there exist two adjacent vertices v; and
ve in V, and denote §(v;) = {eg, e;} for i = 1,2.

We prove that §(v;) is active for all optimal solutions to D¢, the result for
d(v2) is obtained by symmetry. By contradiction, suppose that ©,, # (. Among
all the solutions y € D,,, let y* be one having oy maximum. Then, by Claim
the three multicuts active for y! intersecting d(vy) are My = F U §(vy),
By = FUep, and By = F'Uey, where B; are bonds for i = 0,1, and F C E\J§(v)
contains no nonempty multicut. By Claim on vs, there exists a multicut M
active for y! strictly containing 6(v2). By §(v1)Nd(ve) = €9, M intersects §(vy).
Since dp; > 3, Claim [4.7] for vy implies M = Mo, F = {e>}, and By = §(v2).

As yé(vl) = 0, by Statement (i) of Claim E Cey = Ce, = 1. By Claim

the constraints associated with ey and e; are tight. Since Agi = {My} by Claim

A7 we have:

Cei =Yhp, +yp, =1 fori=0,1. (15)

Let {Mj, ..., M,} be the set of active multicuts for y* such that M;N{eg,e1,e2} =
ey, fori=1,...,n. By Claim the constraint associated with e is tight,

hence, using :

n n
Cer = Uhto + Uy + ¥, + O _ Ukt =1+ U, + D Uh- (16)
=1 i=1
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By Claim By active for y!, and c., € Z, we have {My,..., M,} # 0 and
Ce, > 2. Thus, combining and , we have:

n
> Yht = Cer — 1= Yhy = Yisy- (17)
=1

Then, there exist €1,...,¢€, such that 0 <¢; < y}w fori=1,...,n, and

We have that, for i = 1,...,n, M; Ueg is a multicut with order das, + 1, hence
we can consider the following solution to D(g ):

y'=y' - <y%/10§M0 + ZQ&VA) + (Z/leofM(,\eo + ZﬁifMier> . (18)

i=1 i=1

We have that b'y' = bTy?, but agf = 0, a contradiction with Claim
Therefore D, # 0, and by symmetry we deduce that both §(vy) and §(vy) are
active for all optimal solutions to D(g,c)-

By Claim for every optimal solution y to D(g ) and every multicut M
of G, if M is active for y and contains e; for some i € {1,2}, then ¢y € M.
Let y* be the optimal solution to D (g ) maximizing oy over all y solutions

to D(G,¢). We have that AY, C Agf and all the multicuts in Ag; have order at
most 3. Otherwise, let M € AY, \ AY (resp. M € AY, such that dyp; > 4), and
0 <& < min{y}, ¥5(,,)}- The solution

YP =y — (€ + &) + EEnrves + Es(or)ues)

is optimal, but a{{f = aZ{: + ¢ by the choice of M, a contradiction to the
maximality of a{{:. Thus, M = {eg, e1, e2} is the only multicut in Ag{:

Let {N1,...,N,,} be the set of active multicuts for y* such that N; N
{eo,€1,e2} = eg. The constraint associated with eg is tight by Claim hence,
by AY. C AY, we have:

m
Ceo = 8, + Ys(r) T Ys(wa) T Z YN, - (19)
i=1

By Statement (ii) of Claim applied to v1, we have y5, ) + ag: =1, and so:

Cey = 1+ yg('uQ) + Z y}k\/'l (20)
i=1
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By Ag; = {M} and Statement (ii) of Claim applied to vy, we have y5, » +
Yy = 1, hence:

Coo =2=Uir + > _ YN, (21)
i=1
Since ce, is integer and since yy, < 1 by Claim by , we have:

> N, = Vi (22)

Hence, let Aq,..., A, be such that 0 < A; < gy, for i = 1,...,m, and
> ity Xi = Y4, Remark that §(vp) = M \ e;. Then, the point

Y=y - <yL€M + ZAKN,») + (yLﬁa(vz) + Z)\iﬁN,;um)
i=1

i=1

is a solution to D(g,.), and it is optimal by definition of b. Moreover,

5
Ys(ve) = Yy + y;(w) =1,
a contradiction with Claim O O

The following claim forbids a circuit of length 3 to contain a vertex of V.

Claim 4.10. Clircuits of length 3 contain no vertex of degree 2.

Proof. Assume by contradiction that in G there exist a vertex v € V and a
circuit {ey, ez, e3} such that §(v) = {e1,ez}. By Lemmall] a multicut contains
es only if it intersects §(v). On the other hand, by Observation [10] and com-
plementary slackness, each multicut strictly containing §(v) and active for an
optimal solution contains ez. Thus, for every optimal solution y to D(q ), we

have:
Z Ym = Z ym + Z ym — o). (23)
M:ezeM M:ey €M, M#65(v) M:ea€ M, M#5(v)

Let y* be an optimal solution to D(g ). By the constraint associated
with ez, , and Claim we have:

Ces = Z y}kw = Cey T Cey — 2y§(v) - Otg : (24)
M:eseM

Thus, by ( and ¢, € Z, we have that c., > c., +c., — 1.

Define G' = G\ e3 and ¢’ = ¢|g\.,. Note that for each multicut M € Mg,
M \ e3 is a multicut of G’ with order at least dps. Hence, y* induces a solution
to D(qr ey of cost at least b"y*. By minimality assumption , there exists an
integer optimal solution 4’ to D(¢r ), and we have by’ > b"y*.

By Claim and Statement (ii) of Claim we have that 2y5.,, + ¥ < 2.
2]
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Let M (resp. Ms) be the set of multicuts M = §(V4, ..., Vq,,) of G’ active
for 3/ such that the endpoints of ez belong (resp. do not belong) to a same V; for
some i € {1,...,dy}. For each M € My (resp. M € Ms), M (resp. M U e3)
is a multicut of G with the same order. Hence,

V= D Yubm+ Y Yabaue

MeMy MeMo

is a point of ZTG with b7y = bTy/. Thus, b'y"” > bTy*, and 3" is not a
solution to D¢ ). By definition, y” respects every constraint of D¢ .y but the
constraint associated with es.

By definition of 3", we have:

S oyl = SNl Y Y-l (25)

M:eseM M:e1 €M, M#§(v) M:eoe M, M#6(v)

Therefore, by 3" violating the constraint (8al) associated with es, , State-
ment (7) of Claim and the inequalities (8al) associated with e; and ey, we
have:

Cez < Z yX4 = Z yK/]"’ Z y;\//I_ag _ng(v) < c€1+ce2_ag _ng(v)'
M:eseM M:e1 €M M:eoeM
(26)
Thus, by (24)), we have oy + 2U5 () < ¥ + 25y < 2. By ey = cey +0ey — 1,
the integrality of y”, and (26)), we have that a¥ = Yswy = 0, and so ¢, =
Cey + Ce, — 1. Hence, by the integrality of y” and equation (25):

Co F1= D Y= > Y+ D> Yhr=ce tce (27
M:eseM M:eieM M:eseM

For i = 1,2, since ¢., > 1, there exists a multicut M; active for y” such that
Mi N 5(’0) = €;.

We claim that the constraint associated with es is not tight for y*.
By Cey = Cey + cep — 1, (24), and Claim d(v) is active for y*. Hence, by

Statement (ii) of Claim we have:
af + Y5y = 1. (28)
Hence, by and Claim , , and 6(v) active for y*, we have:
Z YM = Cey T Cer — 1 = Y5(p) = Ces — Y(v) < Ces- (29)

M:eseM

The point 3" respects all the constraints of D¢, except the one associated
with ez, and this constraint is not tight for y*. Therefore, there exists 0 < A < 1
such that
="+ (1= Ny’

<
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is a solution to D (g ). Moreover, § is optimal because bly* < by,

All multicuts active for at least one between y* and 3" are active for 3. Since
0(v) is active for y* and M, My are active for y”/, the three multicuts My, Mo,
and d(v) are active for g, a contradiction with Claim O O

Claim 4.11. Each circuit of length 4 contains at most one vertex of degree 2.

Proof. Assume by contradiction that there exists a circuit C' = {ey,...,e4} in G
covering two vertices of ‘A/, say v1, v2. By Claim v1 and vy are not adjacent,
hence we assume that d(vi) = {e1,e2} and d6(vay) = {es,es}. Let vs and vy be
the remaining vertices of C.

We prove that §(v1) is active for all optimal solutions to D¢, Indeed, if
Dy, # 0, then let 3 € D, maximize o over all z € D,,. By Statement of
Theorem|§|7 for every multicut M in Ag;, we have M = §{vq, Va,..., Vg, }, with
vs and vy belonging to different V;’s, hence M N §(vy) # (0. However, M \ §(v;)
contains 6(vq), a contradiction to Claim applied to v;. Exchanging the role
of v; and vq, we deduce that §(vy) is active for all optimal solutions to Da,e)-

Without loss of generality, there exists an optimal solution y such that o >
ay,. Then, we can build from y an optimal solution y* to D(g ) such that
Ai{; - A%r Indeed, suppose AY \ AY = {M,..., M,}. Then, since ol > oy,
there exist Ni,..., N, € AY \ AY, such that:

}: <> un, (30)

j=1
Hence, there exist €1, ..., €y, such that 0 < e; <yn;, for j =1,...,m, and
m n
D=2 v (81)
j=1 i=1

By Statement of Theorem@ and complementary slackness, v3 and v4 belong
to different classes of N; for each j = 1,...,m, implying that N; N d6(vs) # 0.
Moreover, since N; ¢ Av27 we have |N; N d(vg)| = 1, for all j = 1,...,m
Furthermore, by 5(1}2) being active for y and Claim there exists an edge in
d(va), say es, such that N; N d(ve) = ez for all j = 1,...,m. Therefore, the
point

m m

f=y-— (Z yar s, — Zqu:gMi\m) + [ Do eénve — Y eién, | (32)
i=1 i=1

j=1 =1

is a solution to D¢ ) with b'y* = by and Ay* C Ay* Let AY, = {M].. M’}.
For i = 1,...,p, since M/ € .Ay Statement ([ii) of Theorem |§| implies M/
5(111,112,‘/;,%,...,‘/;1%,), Where V3 and V} contaln respectively vz and wvy.
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Then, M = 6(vi,vo UVJ UV}, .. .,VC}M/) is a multicut of order dy;, — 2 for

i=1,...,p. Since §(vs) is active for y*, b& Statement (ii) of Claim we have
ag; + y(’;(%) = 1. Then, the point y* € QM¢& defined by:

P p
y =y - (yg(vz)&s(vz) + Zﬂ@fM;) + <Z yL{éM{/) )
=1

i=1

is a solution to D(g ), where ¢’ = ¢ — xO(2),
By dM:/ = dMll -2 fOI' all 1= 1, oD, and O(,g; —+ y:;f(’uz) = 1’ we have:

byt =bTy =l (2h+2) = Yi,)2h+1) =bTy" — (2h+1)—af,. (33)

By minimality assumption , DG,y admits an integer optimal solution, say
y?. The point y> € ZM¢& defined by 3° = 3% + &5(vy) 18 @ solution to D(g,c) such
that:
b yd =0Ty +2h 4 1. (34)
Therefore, by , the optimality of y2, and , we have:
by =0Tyl +2h+ 1+ oz%j; <b'y?+2h+1+ aﬁ’,; =b"yP+ ag;. (35)

By integrality of Py, 1(G) and duality, we have that b'y* € Z. Furthermore,
y* is integer by construction, so b'y* € Z. Then, by and Claim we
have that b'y* < bTy3, and so > is an integer optimal solution to Dg,e)>

contradiction. O O
Claims and Proposition [3] imply that G is not series-
parallel, a contradiction. O O

The box-TDIness of Py (G) and the TDIness of System (|2 give the following
result.

Corollary 3. System 18 box-TDI if and only if G is series-parallel.

Proof. By Theorem when G is not series-parallel, System is not TDI.
Whenever G is series-parallel, P (G) is box-TDI by Theoremand System
is TDI by Theorem O O
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