Synchronized Pickup and Delivery Problems
with Connecting FIFO Stack

Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

Abstract In this paper we introduce a class of routing problems where pickups and
deliveries need to be performed in two distinct regions, and must be synchronized by
considering the presence of a first-in-first-out channel linking them. Our research is
motivated by applications in the context of automated warehouses management. We
formalize our problem, defining eight variants which depend on the characteristics
of both the pickup and delivery vehicles, and the first-in-first-out linking channel.
We show that all variants are in general NP-hard. We focus on two of these variants,
proving that relevant sub-problems can be solved in polynomial-time. Our proofs
are constructive, consisting of resolution algorithms. We show the applicability of
our results by computational experiments on instances from the literature.

1 Introduction

In the field of logistics the analysis of routing problems plays a fundamental role:
when applied to real-world situations, it may lead to considerable cost savings for
transportation companies operating over large regions, see [8].

Routing problems are often encountered on a smaller scale too. As a relevant
case, in this paper we introduce the family of synchronized pickup and delivery
problems with connecting first-in-first-out stack (SPDP-FS). It is inspired by the

Michele Barbato
Universita degli Studi di Milano, Dipartimento di Informatica, OptLab, Via Celoria 18 — 20133
Milan (MI), Italy, e-mail: michele .barbato@unimi. it

Alberto Ceselli
Universita degli Studi di Milano, Dipartimento di Informatica, OptLab, Via Celoria 18 — 20133
Milan (MI), Italy, e-mail: alberto.cesellifunimi. it

Nicolas Facchinetti
Universita degli Studi di Milano, Dipartimento di Informatica, OptLab, Via Celoria 18 — 20133
Milan (MI), Italy, e-mail: nicolas. facchinetti@studenti.unimi.it



2 Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

production system of an industrial partner on smart cosmetics manufacturing [1].
Overall, problems in such a setting concern the transportation of items between a
pickup area and a delivery area inside the same factory. The two areas communicate
through a first-in-first-out (FIFO) conveyor. As a consequence the pickup and the de-
livery routes cannot be independently optimized. Instead they must be coordinated
so as not to violate the FIFO policy, and potentially synchronized. In particular, in
the application inspiring this work, the pickup vehicle is an automated crane which
collects items from the warehouse; at the end of each trip, that is a sequence of
pickup operations in which the crane starts empty, moves reaching and incremen-
tally loading items finally bringing them to an unloading spot, the items are put on
the conveyor in the same order they have been collected. The delivery vehicle is an
automated shuttle which must wait for loading until a batch of items is put on the
conveyor, but then might be free to follow any order to deliver them. Since the vehi-
cle capacities are finite and typically much lower than the overall number of items
to pickup and deliver (e.g., at most 2 or 3 items can be transported by a single trip)
the resulting problem of optimizing the pickup and delivery routes while satisfying
the constraints arising from the FIFO rule does not reduce in general to classical
routing problem as, e.g., the travelling salesman problem [2].

In this paper we provide a modeling of the above situation by introducing SPDP-
FS variants, each depending on the degree of freedom the vehicles have when load-
ing items to and from the conveyor with respect to the order of visits of the pickup
and delivery locations.

Contributions and Outline. In Sect. 2 we formally define eight SPDP-FS variants
and show that they are all in general NP-hard. We consider the case in which the
capacities of the pickup and delivery vehicles are part of the input and study the
cases in which they are fixed parameters. In Sect. 3 we focus on the variants in
which the order of the items on the conveyor must coincide with both their pickup
and delivery orders. We study how to complete partial solutions. To this aim we
first present an algorithm to construct a conveyor order which is consistent with two
given sets of pickup and delivery trips; our algorithm thus determines the feasibility
of the given sets of trips. Next, we present a dynamic programming algorithm to
determine the optimal pickup and delivery trips which are consistent with a given
conveyor order. In order to evaluate the suitability of the latter algorithm as a sub-
routine for more sophisticated SPDP-FS heuristics, in Sect. 4 we test it on instances
from the literature [7].

2 Modelling and Complexity

Throughout the paper, let n € Z~y and let G = (V,A) be a complete digraph
on the vertex set V = {0,1,2,...,n}. The pickup network is a weighted digraph
D' = (G,c") with arc cost function ¢': A — R, and whose vertices in V \ {0} rep-
resent the positions of n items identical in terms of size. Intuitively, D' represents



Synchronized Pickup and Delivery Problems with Connecting FIFO Stack 3

Fig. 1 Schematic illustration of the automated warehouse. The pickup area is on the left, delivery
area on the right. Both vehicles are assumed to have capacity 3. No permutations and no overlaps
are allowed.

a storage area (a warehouse in the real application) for raw materials demanded by
the production units of a factory. The delivery network is represented by another
weighted digraph D* = (G, ¢?) with arc cost function ¢*: A — R, . Intuitively, D
represents a production area. We assume that the production unit located at vertex
i € V\ {0} of D* must receive the item located at vertex i € V \ {0} of D'; in other
words, items and production units are in one-to-one correspondence.

The items are collected by a vehicle of finite capacity k; by visiting the corre-
sponding vertices of D'. The capacity is finite, and typically lower than |V \ {0}/:
in order to pick up all items, the vehicle performs several trips, where a trip is a
sequence of vertices forming a simple directed cycle starting and ending at vertex
0. Once items have been collected, they are delivered in an analogous manner in D?
by a second vehicle of capacity k.

Overall, a solution (P, D) consists of an ordered sequence of pickup trips P =
(p1,p2,...,p¢) and of an ordered sequence of delivery trips D = (d),da, ... ,dy)
that must be synchronized: indeed the items are passed from the pickup area to the
delivery area by means of a FIFO stack (a horizontal conveyor in the real appli-
cation) whose input (resp. output) extremity is located at vertex 0 of D! (resp. D?).
Thus items collected by a pickup trip must be put on the stack before those collected
by subsequent pickup trips. By the FIFO policy a delivery trip d; preceding another
delivery trip d; must deliver items that, on the stack, precede those delivered by d; .

For a trip t we indicate as a € t any arc between vertices which are consecutive
in 7. For every trip t and for R = 1,2 let c®(t) = ¥ue, c® (a) and for every sequence
of pickup trips P let ¢! (P) = ¥i_, ®(p;); symmetrically, f (D) = ¥ | ¢*(d;). The
objective of a problem in the SPDP-FS family is to find a solution (P, D) that mini-
mizes ¢! (P) + (D).

Example 1. In Fig. 1 we illustrate a small instance of a problem belonging to the
SPDP-FS family. A solution is depicted in boldface: the pickup vehicle (left) per-
forms first trip (1,5,4) then trip (2,3). Hence items in {1,4,5} must be delivered
before items in {2,3}. In the example they are in fact arranged in the order of visit.
This has an impact on the delivery solution. In the most constrained setting, the
delivery vehicle is forced to the inconvenient trip (1,5,4) to respect such an order,
as shown in Fig. 1. In fact, the order of visits is not the only degree of freedom of



4 Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

@@

& 00—

Fig. 2 Schematic illustration of the automated warechouse, when permutations are allowed (top)
and when overlaps are allowed (bottom).

the vehicles, which may or may not be allowed to permute items on the stack after
pickup or before delivery. This is what we call the permutation variant. For exam-
ple, in Fig. 2 (top) the delivery vehicle is allowed to retrieve the items {1,4,5} from
the stack, changing their order from (1,5.4) to (5,1,4) thereby removing the need
of a detour. Such an option may be symmetrically given to the pickup vehicle.

Besides permuting, delivery vehicles may or may not be allowed to mix items
from subsequent pickup batches. This is what we call the overlap variant. For ex-
ample, in Fig. 2 (bottom) the delivery vehicle is allowed to deliver (1,5), wait for
the next pickup batch to arrive, and finally deliver (4,2,3), possibly improving de-
livery cost. Permutation and overlap may or may not be allowed simultaneously,
giving more optimization potential at the expense of higher complexity in the real
world process. For instance, the trip (4,2,3) in the last example may be replaced
by (4,3,2), thus removing a detour. Pickup permutation and delivery permutation
are not equivalent. For instance, a delivery trip like (5,4,3) is feasible only due to
pickup permutations, while a delivery trip like (5,2,4) only due to delivery permu-
tations.

The SPDP-FS variants. As previously mentioned, the synchronization between
two sequences of pickup and delivery trips in a SPDP-FS solution may depend not
only on the order in which items are collected, but also on how items are arranged on
the stack. We therefore identify eight variants mixing the possibility of permuting
items by each vehicle (or not) and the presence of constraints allowing (or disal-
lowing) delivery trips to be overlapping different pickup trips. When permutation is
allowed we are essentially modelling situations where the items can be loaded or
unloaded without observing any particular order; when overlapping is disallowed,
we are modelling situations where the stack must be empty before a new pickup trip
can take place.



Synchronized Pickup and Delivery Problems with Connecting FIFO Stack 5

Formally, for every trip t let V (¢) be the set of vertices other than 0 visited by 7.
LetP = (py,pa2s--., pr) be an ordered sequence of pickup trips such that the V(p;)
form a partitioning of V' \ {0}. P induces a partial order: if vyw € V' \ {0}, we write
v=<pwifve pandw e pjforsome 1 <i < j</{andwe write v Ap w otherwise.
A P-sequence, instead, is the (totally) ordered sequence of vertices in V' \ {0}, in
the order they are visited in P. Identical definitions hold for a partial order <p and
a D-sequence w.r.t. a fixed ordered sequence of delivery trips D = (d,da, ..., dy).
(P,D) form a feasible SPDP-FS solution if it satisfies:

V(p)| <k Vi=1,2,....0 (1)
[V(dj)| <k Vji=1.2,....m 2)
V(p1),V(p2),...,V(ps) partition V \ {0} 3)
V(d),V(da),...,V(dy) partition V \ {0} “4)

Intuitively, SPDP-FS OVERLAP variants are those in which the FIFO stack is not
required to be empty before a new pickup trip can take place. As a result, delivery
trips can mix items from different pickup batches, as long as they are adjacent in the
stack. Formally, the OVERLAP variants are defined as follows:

NO-PERMUTATION,OVERLAP.  The pair (P,D) is a feasible solution if and only
if it satisfies (1)—(4) and the P-sequence is identical to the D-sequence.

PERMUTATION,OVERLAP. The pair (P,D) is a feasible solution if and only if it
satisfies (1)—(4) and for every v,w € V'\ {0} such that v <p w it also holds w Ap v.

DELIVERY PERMUTATION,OVERLAP.  The pair (P, D) is a feasible solution if and
only if it satisfies (1)-(4) and:

e forevery j=1,2,...,m,V(d;) is a set of elements which are consecutive in
the P-sequence;
e forevery v,w € V\ {0}, if v <p w then v precedes w in the P-sequence.

PICKUP PERMUTATION,OVERLAP. The pair (P,D) is a feasible solution if and
only if it satisfies (1)~(4) and for every v,w € V '\ {0} such that v <p w we also
have that v precedes w in the D-sequence.

Symmetrically, in NO-OVERLAP variants the FIFO stack is required to be empty
before new pickup trips, and therefore delivery trips do not mix items from different
pickup trips. Their models are obtained from the four above by further adding the
condition: Vj =1,2,...,m, Jaunique i € {1,2,.... 0} s.t. V(d;) TV (p;).

When the capacity values k| and k; are part of the input all SPDP-FS variants
above are NP-hard. We reduce from the Euclidean travelling salesman problem
(Euclidean-TSP) of which an instance is given by a complete graph H = (W, E) with
each vertex w € W corresponding to a point 7(w) in the Euclidean plane. Letting
¢(v,w) be the Euclidean distance between 7(v) and m(w), the Euclidean-TSP asks
to find a minimum weight Hamiltonian tour on the weighted graph (H,c). Note that
function ¢ is metric, that is, it satisfies the triangle inequality c(u,v) + c¢(v,w) >
c(u,w). Nonetheless, the Euclidean-TSP is known to be NP-hard [6].



6 Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

Proposition 1. If k; and k> are part of the input, the SPDP-FS is NP-hard.

Proof. Let (H,c) be a weighted complete graph on n vertices defining an Euclidean-
TSP instance. We define a SPDP-FS instance on D' = (H,¢') and D? = (H, ¢?) with
ki =n, k=1 and ¢! (u,v) = c(u,v) and ('Z(tl, v) =0 for all u, v vertices of H. Since
¢! is metric and k; = n a minimum cost Hamiltonian tour P of D' is also a minimum
cost pickup sequence satisfying (1). Let the P-sequence be (vi,va,...,v,). The de-
livery sequence D = ((v1),(v2),...,(v,)) has cost 0; moreover (P,D) is feasible for
all SPDP-FS variants. Hence the optimal value of the given SPDP-FS instance is the
optimal value of the starting Euclidean-TSP instance.

Some variants of the SPDP-FS become solvable in polynomial time when the
capacities k; and ky are very specific fixed values. The most immediate case is when
ki = ko = 1 (independently on the variant): here all trips of a sequence visit exactly
one vertex v € V '\ {0}. Then, all pairs of sets &2 = {py, pa,..., ps} of pickup trips
and 7 = {d,,d,,...,d,,} of delivery trips, when an arbitrary (but identical) ordering
is applied to both, yield a feasible pair (P, D) of pickup and delivery sequences for
every variant. Moreover, the cost of such a solution does not depend on the chosen
order.

The cases with larger fixed values of k| and k> are more involved. In fact, we are
able to provide a polynomial-time algorithm only for the NO-OVERLAP variants

with k; .k € {1,2}.

Proposition 2. If ky,k, € {1,2} there exists a polynomial-time algorithm solving
the NO-OVERLAP variants of the SPDP-FS.

Proof. We start by calculating for all v € V \ {0} the total cost c[v] of visiting only
vin a pickup trip and a delivery trip, i.e., c[v| = ¢' ((v)) +¢*((v)). We also compute,
forevery v,w € V'\ {0}, the minimum total cost c[v, w] of visiting v and w in the same
pickup trip and of delivering them in any manner by satisfying the NO-OVERLAP
variant under consideration. Let (v, w| denote the sequences of pickup and delivery
trips attaining value ¢[v, w]. The whole pre-processing phase takes O(n?) time.

Now, for every v € V \ {0} we let v and v/ be two copies of v. We consider
H' and H” two complete graphs on vertex sets W = {V': ve V\ {0}} and W =
{V": ve V\ {0}} respectively. From the union of H' and H"” we create a new graph
H obtained by further linking vertices v/ and v for every v € V\ {0}. Finally, we
associate weights s to the edges of H with s, = c[v,w] if e = {V/,w/} for some
vw e V\{0}, s, =c[v] if e= {y/,»/'} for some v e V\ {0} and s, = 0 otherwise. A
perfect matching of minimum weight in (H,s) corresponds to an optimal solution
for the considered NO-OVERLAP variant: just perform the trips in (v, w] and trip (u)
for every u,v,w € V\ {0} such that {V/,w'} and {«',u" } respectively belong to such
a perfect matching. The proposition holds since a perfect matching of minimum
weight can be computed in polynomial time on every graph [4].

The algorithm provided in the proof of Proposition 2 easily generalizes to all
SPDP-FS variants if k1,k> € {1,2} and at least one capacity value is 1. However,
when kj = ky = 2, the same algorithm does not work outside NO-OVERLAP variants.



Synchronized Pickup and Delivery Problems with Connecting FIFO Stack 7

The last observation suggests that NO-OVERLAP variants may have some struc-
tural feature which is not in common with the others. Supporting this intuition,
it is not hard to prove that (P,D) is a feasible solution to a PERMUTATION,NO-
OVERLAP problem if and only if it is a feasible solution to the cormresponding
PICKUP PERMUTATION,NO-OVERLAP problem. This immediately implies that
if (P.D) is a feasible solution to the DELIVERY PERMUTATION,NO-OVERLAP
problem then it is a solution to the corresponding PICKUP PERMUTATION,NO-
OVERLAP problem. Such a phenomenon does not occur on OVERLAP variants.

In fact, we have analysed the inclusion relations between the sets of solutions of
the eight variants building a full set-inclusion hierarchy. To keep the focus of the pa-
per we omit these results. However, our main conclusion is that NO-PERMUTATION
variants take a relevant place in such a hierarchy, and are therefore good candidates
to start a structural investigation on the whole SPDP-FS family.

3 Algorithms for Sub-Problems of NO-PERMUTATION Variants

From now on we restrict to NO-PERMUTATION variants; in particular, we consider
relevant subproblems arising when only part of a solution is given, and either feasi-
bility must be checked or optimal completion must be found.

NO-PERMUTATION feasibility. Let us assume to have a set 2 = {py,p2,...,ps}
of pickup trips and a set Z = {d,,d>,...,d,} of delivery trips such that (1) and (2)
hold. The feasibility problem is to independently find an ordering of the elements of
2 and 7 so that the resulting sequences P and D represent a feasible solution, or
to prove that no such ordering exists.

We start with the NO-PERMUTATION,OVERLAP case. Let us denote as starting
each vertex which is the first vertex of two trips in 22U Z. A trip ¢’ is said to be
contained in t if it is a subsequence of t. Two trips t = (uy,u, ... U, Vi, Va,...,Vf)
and t' = (vi,v2,...,vg, w1, wa,...,wy,) are said overlapping: they respectively end
and start by a same non-empty subsequence; note that there can be at most one trip
overlapping with a given trip f. We can solve the feasibility problem for .27 and %
in polynomial time. We omit the details of the algorithm, but its general idea is to
consider a set T = 22U Z, and then to pick a starting vertex v and one of the trips ¢
containing it, removing both  and all trips ¢’ contained in ¢ from T, to either update
t with a possible trip overlapping with ¢ or pick another starting vertex and to iterate,
until no update is possible. The problem is feasible if and only if 77 = @ at the end
of this procedure.

In the NO-PERMUTATION,NO-OVERLAP case we first check that every pair of
trips p € & and d € Z such that V(p) NV (d) # 0 also satisfies V(d) C V(p). If at
least one pair violates the condition then .22 and Z are infeasible. Otherwise we run
the iterative algorithm for the NO-PERMUTATION,OVERLAP case.

NO-PERMUTATION splitting. Now we tum our attention to the following sub-
problem: a stack configuration is given as input (together with data), and the task is



8 Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

to find pickup and delivery sequences of minimum cost which are consistent with
the given configuration. In other words, we assume that the pickup and delivery
sequences are fixed, while the depot return operations forming trips remain to be
optimized. Let § = (vy,...,v,) be a sequence of elements in V' \ {0}. It represents
the order of the corresponding items on the stack. A splitting of S is a partition of §
into subsequences that respect its order. For example, if S = (1,2,3,4,5) one of its
splitting is ((1,2),(3,4,5)), while ((3,4,5),(1,2)) is not because it does not respect
the order of S. Here we consider both NO-PERMUTATION variants, thus the trips
of P and D in a feasible SPDP-FS solution (P, D) are splittings of (1,2,...,n). The
optimal sequence splitting problem is to find two splittings P and D of (1,2,...,n),
minimizing ¢'(P) + ¢*(D) and such that (P,D) is feasible for the considered No-
PERMUTATION variant. Up to renaming the vertices, we give polynomial-time al-
gorithms to solve this problem for § = (1,2, ...,n).

For what concerns NO-PERMUTATION,NO-OVERLAP, we use an acyclic net-
work .4/ whose vertices are labelled (i, j) withO < j <i<n.Foreveryi=0.,1,....n
there are arcs from vertex (7,7) to all vertices (k,i) with 7 < k < min{i+ k;,n}. For
everyi=1,2,....nand j=1,2,...,i— | there are arcs from vertex (i, j) to all ver-
tices (i,k) with j < k < min{j +ka,i}. Vertex (i, j) is interpreted as a state in the
construction of the optimal pickup and delivery splittings P and D, namely it in-
dicates that all vertices from 1 to 7 have been visited by some pickup trip and all
vertices from 1 to j have been visited by some delivery trip. Thus, the arc from (i, 1)
to (i +k, i) for some 1 < k < k; corresponds to extending the current state (i,7) into
state (i+k,i) by performing p = (i+1,i+2...,i+k) as next pickup trip. Similarly,
the arc from (i, j) to (i, j+k) corresponds to performingd = (j+1, j+2,...,j+k)
as next trip in the optimal delivery sequence D. By construction, |V(p)| < ki,
|V (d)| < ky for all pickup and delivery trips p and d as above. Hence a path from
(0,0) to (n,n) corresponds to a pair (P,D) of pickup and delivery splittings of S;
moreover, the P-sequence and D-sequence of these splittings coincide. Finally, rep-
resenting .4/ as in Fig. 3 (left) the arcs traversing ./~ “vertically” only leave from
vertices on the “diagonal”. This property guarantees that each trip in the delivery
splitting is contained in a trip of the pickup splitting. To see this, let us fix a path
in 4. This gives a splitting of § into pickup and delivery trips. Letd = (ji,..., j2)
be one such a delivery trip. It corresponds to the arc of the path linking (i, j;) to
(i, j») for some i > j,. Letting jj be the smallest index such that (i, jy) is traversed
by the chosen path, the vertex preceding (i, jo) in the path is necessarily (jg, jo)- It
follows that the pickup splitting of S contains the trip p = (jo,...,7). Since jy < j
and i > j» we getV(d) C V(p). It follows that every path in .4 from (0,0) to (n,n)
corresponds to a splitting of S which is also a NO-PERMUTATION,NO-OVERLAP
solution. In fact the latter is a one-to-one correspondence as it can be easily verified
by an analogous reasoning. An example is given in Fig. 3 (left).

In a pre-processing step we calculate, in polynomial time, the cost ¢'[i}, ;] of the
trip corresponding to each arc between (iy, j) and (i, j) as well as the cost ¢? |y, ja]
of the trip corresponding to each arc between (7, j;) and (i, j2). Associating these
costs to the corresponding arcs in ./~ we obtain an acyclic digraph with nonnegative
weights. A path of minimum weight from (0,0) to (n,n) gives an optimal splitting of



Synchronized Pickup and Delivery Problems with Connecting FIFO Stack 9

Fig. 3 Networks .4 for the optimal sequence splitting problem with n = k; = k» = 3 in the cases
NO-PERMUTATION,NO-OVERLAP (left) and NO-PERMUTATION, OVERLAP (right). The boldface
path in the left network corresponds to the splittings P = ((1),(2.3)) and D = ((1),(2),(3)). The
boldface path in the right network corresponds to the splitting P = ((1),(2,3)) and D= ((1,2),(3)).

S by the arc-trip correspondence explained above. Being ./ acyclic, very efficient
algorithms can be used to compute such a path [5, Sect. 24.2].

For what concerns NO-PERMUTATION, OVERLAP, instead, we use a network ./
whose vertices are labelled (7,0) and (n, j) for 0 < i, j <n.Foreveryi=0,1,....n
there is an arc from vertex (i,0) to all vertices (k,0) with i < k < min{i +k;,n};
similarly, for every j = 0,1,...,n there is an arc from (n, j) to all vertices (n,k)
with j < k < min{j + k2,n}. An example is given in Fig. 3 (right). The arc-trip
correspondence is the same as in the NO-PERMUTATION,NO-OVERLAP case. As-
sociating costs to the arcs as we did for that variant, we compute an optimal pair of
pickup and delivery splittings by finding a minimum cost shortest path in .4".

4 Computational Results

Finally, we carried out experiments to assess the practical applicability of the op-
timal splitting algorithms presented in Section 3 for both NO-PERMUTATION vari-
ants.

Algorithms. We designed dynamic programming algorithms which are able to
compute an optimal sequence splitting when a stack configuration is given.

Their structure is simple: once the appropriate network .4” is built, we consider
the vertices in the topological order induced by their labels, that is, row-by-row
and, for each row, column-by-column. Then, we assign partial splitting costs to
each vertex, with a procedure similar to [5, Sect. 24.2]. The partial splitting cost of
the starting vertex (0,0) is initialized to 0. When a vertex is considered, its partial
splitting cost is set by looking at all its incoming arcs, and computing the minimum
among the cost of each arc plus the partial splitting cost of the corresponding starting
vertex. At the end of this procedure, the partial splitting cost of the vertex (n,n)
corresponds to an optimal (complete) one. A corresponding solution can be found
by keeping track of the arcs defining the minima.



10 Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

10 10
9

2
/_/_M iﬁ\
5
4
E]
2
1
o
© 12 18 24 30 6 42 49 B4 G0 OO /Z 7Y B4 90 YO 102108 114120 120132 6 12 18 24 30 36 42 48 B4 G0 U6 /2 /Y B4 SO 9 102 108 114 120126 132

— o Ovetap . — g Uverlap
Pickup Capacly
Overlan Ovedap

20pteaton

—
Prkup Cagoly

Fig. 4 Performance of heuristics.

For testing, we took as starting stack configuration the sequence of items corre-
sponding to an optimal Hamiltonian tour of a complete graph having one vertex for
each item, and one arc (7, j) between each pair of items i and j, whose cost is the
sum of pickup and delivery distances between i and j. Clearly, an optimal splitting
of such a Hamiltonian tour is not guaranteed to produce and optimal SPDP-FS so-
lution. Therefore we have also experimented with a simple 2-opt local search mech-
anism: we generate the full 2-opt neighborhood of the current solution and score it
by solving an optimal splitting problem for each of its elements. We take the best
solution in the neighborhood and we iterate, until a local minimum is reached.

As a trivial bound, we computed the optimal Hamiltonian tours of pickup and
delivery item graphs independently, and summed up their values: this is clearly a
relaxation of the problem, neglecting both the vehicle capacities and the effect of
the linking stack. Our algorithms have been implemented in C++ and compiled
with gee version 7.2 with full optimization options. Optimal Hamiltonian tours have
been computed by means of the Concorde library [3]. Tests were run on a linux PC
equipped with an 17-3630QM CPU running at 2.40GHz, single thread.

Datasets. We considered a dataset of pickup and delivery instances originally de-
signed for the double travelling salesman problem with multiple stacks [7]. Our
dataset includes three classes of instances, respectively containing 33, 66 and 132
pairs of pickup and delivery vertices. Ten instances are given for each class. Dis-
tances were set as the euclidean ones computed from the input coordinates, rounded
to the nearest integer and finally corrected with an all-pair shortest path procedure
to ensure triangle inequalities to be respected. For each instance having 33 (resp.
66) pairs of vertices, we considered pickup vehicle capacities from 3 to 33 (resp.
66) in steps of 3, and delivery vehicle capacities from 3 to the pickup capacity value
in steps of 3. For each instance having 132 pairs of vertices we considered instead
capacities from 6 to 132 in steps of 6, and delivery vehicle capacities from 6 to
the pickup capacity value in steps of 6. This procedure yielded a dataset of 11440
instances for each variant.

Computing time. The computing time for solving a single optimal splitting prob-
lem was always negligible (below 0.01s for both variants, independently on the in-
stance size and capacity). The computing time for the full 2-opt local search process
was also negligible on instances with either 33 or 66 pairs of vertices, independently



Synchronized Pickup and Delivery Problems with Connecting FIFO Stack 11

variant size|Avg. overhead Avg. impr. Avg. opt.
NO-OVERLAP 33 10.05% 0.84% 47.14%
66 8.17% 0.61% 54.27%

132 5.10% 0.41% 59.65%

OVERLAP 33 6.50% 0.76% 45.09%
66 5.56% 0.52% 53.00%

132 3.66% 0.33% 59.07%

Table 1 Quality of heuristics and bounds.

from the pickup and delivery capacity values. Therefore, in Figure 4 (left) we report
the computing time (y axis) for the full 2-opt process only on instances with 132
pairs of vertices (using logarithmic scale, on both variants), averaged by pickup ca-
pacity value (x axis); in Figure 4 (right) we report instead the number of 2-opt moves
required to reach a local minimum (y axis), on the same instances and performing
the same aggregation. Values related to the OVERLAP variant are depicted in grey,
those related to NO-OVERLAP in black.

As expected, higher capacity values yield higher computing times: the optimal
splitting graphs are more dense, and more checks are needed in the dynamic pro-
gramming algorithms. The number of 2-opt moves required to reach a local mini-
mum decreases as the capacity increases. We argue that higher capacity values yield
less overhead costs for the vehicle to retumn to the stack; as a consequence, being the
routing part of the cost dominant, the Hamiltonian tour is already similar to a local
minimum. The increase of overall CPU time is not monotone: for very high pickup
capacity values the reduced number of 2-opt moves balances the higher CPU time
needed during a single iteration.

Solutions quality. We denote as IS the value of the initial solution, as DA the sum
of costs of arcs leaving and returning to the depot for intermediate stops in such a
solution, as OS the solution value after 2-opt, and TB the value of the trivial bound.
In Table 1 we report in turn, for each class of instances, for both OVERLAP and NO-
OVERLAP variants, the average fraction of the initial solution cost for the vehicle
to return to the stack with intermediate stops (overhead, DA/IS), the average overall
improvement yielded by 2-opt (impr., (TO-IS)/TO) and the average gap between the
value of the solution found by 2-opt and the trivial bound (opt., (TO-TB)/TO).

The results show that the overhead decreases as the number of items increases;
this is most probably a statistical side effect: when the set of items is large, and
the depot is in the baricenter of the item locations (as in our instances) the prob-
ability of passing near the depot in a random connection is higher. The average
improvement yielded by 2-opt is always very low, and decreasing as the number of
items increases. At the same time, the gap between local minima solution values
and the trivial bound is very large, and increases as the number of items increases.
The values in these three columns make us conjecture that by computing an opti-
mal Hamiltonian tour, and then optimally split it, good heuristic solutions can be
achieved. However, we suspect the trivial bound to be very poor, thereby asking for
better lower bounding procedures.



12 Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

5 Conclusions

From a modelling point of view, we restricted the complexity of SPDP-FS from
industry by considering two peculiar features: the possibility of changing the order
of items during loading or unloading operations to and from the conveyor, and the
possibility of starting pickup trips even if the conveyor is not empty.

We have shown that all variants arising from the combination of these features
are NP-hard, although some of them admit polynomial-time resolution algorithms
when the capacities of the vehicles are fixed to small values i.e., 1 or 2.

By focusing on the NO-PERMUTATION variants, we could find polynomial-
time algorithms for two relevant sub-problems: checking feasibility when the set
of pickup and delivery trips are given (but the order of items in the conveyor is un-
known), and optimizing the pickup and delivery trips when the order of items in the
conveyor is given.

Our algorithms proved to be effective also from an experimental point of view:
tests on the double travelling salesman problem with multiple stacks showed that
a single sub-problem resolution can be carried out in fractions of a second; their
embedding in a simple local search algorithm provided promising results.

Since, on the contrary, trivial lower bounds appear very weak, our current re-
search is focused on the design of good quality ones.

Acknowledgements This research was partially funded by Regione Lombardia, grant agreement
n. E97F17000000009, project AD-COM, and Universita degli Studi di Milano, Dipartimento di
Informatica, Piano Sostegno alla Ricerca 2016-2020.

References

1. AD-COM: ADvanced Cosmetic Manufacturing (2020). https://ad-com.net/

2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A
Computational Study. Princeton University Press (2006)

3. D. L. Applegate, R. E. Bixby, V. Chvatal and W. J. Cook: Concorde (2003). http://www.
math.uwaterloo.ca/tsp/concorde.html

4. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. Journal of research of
the National Bureau of Standards B 69(125-130), 55-56 (1965)

5. Leiserson, C.E., Rivest, R.L., Cormen, T.H., Stein, C.: Introduction to Algorithms, vol. 6. MIT
press Cambridge, MA (2001)

6. Papadimitriou, C.H.: The Euclidean travelling salesman problem is NP-complete. Theoretical
computer science 4(3), 237-244 (1977)

7. Petersen, H.L., Madsen, O.B.: The double travelling salesman problem with multiple stacks—
formulation and heuristic solution approaches. European Journal of Operational Research
198(1), 139-147 (2009)

8. Toth, P., Vigo, D.: The vehicle routing problem, 2nd edition. SIAM (2014)



