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Introduction

In the last few years, technological progress has led to the growth of low-cost sensors

having computing and communication capabilities. Sensors of this kind installed in

a home environment can interact with each other creating what is defined as smart-

home. A smart-home is a habitation equipped with a network of sensors able to collect

data related to inhabitants and to the environment which surrounds them. Inside

this network, it is possible to find environmental (magnetic, pressure and temperature

sensors) and wearable sensors (inertial sensors installed on devices like smartwatches).

Furthermore, the spread of smartphones and the research in the ubiquitous sensing

field, whose purpose is to extract knowledge from sensors data, led to the development

of pervasive systems and context-aware applications. The purpose of the latter is to

adapt their behavior based on the context that surrounds the user (e.g., the weather,

the activity he is performing, the time of day). Among the context-aware applications,

there are Human Activity Recognition (HAR) systems, whose purpose is to detect

human activities through the analysis of videos containing human motions or data

coming from environmental and wearable sensors. HAR applications can be used

in a variety of areas, including the surveillance-based security and the healthcare

fields. HAR systems in the healthcare area, for example, can be built to monitor

and assist the residents of a smart-home. Inside such a habitation, the interactions

of the users with environmental sensors are detected and exploited to recognize the

actions the inhabitants are performing. If the smart-home is inhabited by more than

one person, we talk about multi-inhabitant HAR systems. In such a field, the system

has to be able to detect both the activities performed individually by the users and

the concurrent ones. In a multi-inhabitant setting, the environmental sensors can’t

automatically identify the user who interacted with them. For this reason, in the

1
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smart-home multi-inhabitant activity recognition field, an important issue called data

association consists of assigning the events generated by the available environmental

sensors to the correct users. For instance, if an environmental sensor suggests that

the fridge has been opened, how can the system detect which user performed this

action?

The purpose of this work is to extend an existing multi-inhabitant HAR system

[1] [2] developed at EveryWare Lab that recognizes high-level activities, such as cook-

ing or watching the television, starting from data coming from smartwatches and

environmental sensors. This system uses context data to handle the data association

problem. A positioning infrastructure composed by BLE beacons and WiFi access

points is used to detect the position of the users inside the habitation. Such infor-

mation is useful to assign an environmental event only to the users who are in the

same smart-home area of the triggered sensor. Streams of inertial and environmental

data associated in this context-aware manner and regarding each user of the habi-

tation are then given as input to a single-inhabitant activity recognition classifier.

The predictions of this classifier consist of vectors containing a probability value for

each activity detectable by the system. In the existing system, these vectors are then

weighted based on the probability that each detectable activity has to be performed

in the area in which the user is.

In this work, another source of context data is added to tackle the data association

problem. The inertial data of the smartwatches worn by the users are used to detect

the posture of each smart-home inhabitant. This context information can be useful to

correctly assign the events generated by the pressure mats installed inside the smart-

home. For instance, when a pressure mat is being activated inside the habitation,

such an event will be assigned only to the users whose posture is sitting and who are in

the same smart-home area of the triggered sensor. Furthermore, when a user is sitting

on a pressure mat, environmental events that can’t be generated while sitting (e.g.,

the opening of the fridge) will not be assigned to him. Context data are also used to

discard from the inferences of the single-inhabitant activity recognition classifier the

activities that are not context-consistent. To perform this process, different context

data are used: the position and the posture of the users, the position and the status of

the environmental sensors. For instance, the activity watching the television will be
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discarded by the system, unless the user is sitting on a pressure mat, he is in the same

smart-home area of the television smart-plug and the status of this sensor is active.

The experimental results of this work show that the use of the posture to tackle the

data association problem doesn’t improve the overall performances of the system.

This happens because the dataset examples used to train and evaluate the activity

recognition classifier do not contain cases in which the posture is necessary to correctly

assign the environmental events to the users. The deployment of the system in a real-

time setting helped to be aware of this issue and showed how the posture information

is necessary to correctly associate pressure mats in some multi-inhabitant scenarios.

Furthermore, the experimental results suggest that the use of different sources of

context information to refine the inferences of the activity recognition classifier helps

to improve the recognition rate of the system.

In the existing system, traditional machine learning techniques such as Support

Vector Machine were used to perform the activity recognition task. In the last years,

deep learning algorithms were widely used in HAR systems because they can improve

the recognition rate of more traditional solutions. The purpose of this work includes

the use of deep learning algorithms to improve the inference capabilities of the system.

The performances of these models have been validated through the leave-one-subject-

out cross-validation technique. The dataset used to train and validate the classifiers

was previously collected and annotated at EveryWare Lab in previous works. In this

thesis, different types of deep learning algorithms are evaluated. The greatest im-

provements of the system performances are obtained thanks to a deep neural network

composed of both convolutional and LSTM layers.

Another consideration is that the system was implemented through supervised

learning techniques, a standard solution in the activity recognition field that typically

allows achieving a high recognition rate. These methods present different issues. First

of all, to train an activity recognition algorithm with a high level of robustness, it is

necessary to collect and label a huge quantity of data to build a training set. This

process in a smart-home setting is tedious, time-consuming and not always feasible.

Furthermore, it is known that training a classifier with labeled data regarding the

subjects on which it will be used increases the recognition rate. But, for the same

previously mentioned considerations, it is not reasonable to collect and annotate data



4

for each possible user of the activity recognition model. To solve these supervised

learning issues, it is possible to use semi-supervised techniques. The idea is to initially

train the learning algorithm with a small-sized training set and then to automatically

label through appropriate methods new data coming from smartwatches and envi-

ronmental sensors in real-time. These newly labeled data can be used to increase the

size of the training set and then to retrain the statistical model. Another possibility

is to exploit the dynamic technique called incremental learning that can be used to

directly update the classifier through newly annotated examples without retraining

the model on the whole training set. Machine learning models that allow using such a

technique are called incremental algorithms. In this work, the semi-supervised active

learning technique is used in combination with deep neural networks, that are incre-

mental algorithms. Thanks to active learning, when the system is uncertain about

its prediction, it interacts with the users, asking them which is the activity they are

performing between the two most likely ones. The feedbacks of the users are then

exploited to label new data that will be used to update the deep learning algorithm.

In this way, the statistical model is updated over time, customizing the behavior of

the system based on the users who interact with it. In this work, the semi-supervised

solution allows achieving similar performances of the supervised one on our dataset.

The benefit of this solution is that only the examples of a single subject has to be

annotated. Its drawback is that, before achieving results similar to the supervised

solution, we have to wait for a certain number of classifier updates. Furthermore,

experimental results show that the use of context data to refine the prediction of the

semi-supervised classifier allows increasing its recognition rate and decreasing over

time the number of interactions with the users, necessary to apply the active learning

technique.

Along with the development of this work, a demo was deployed to test the system

in a real-time setting. During the performed tests, the division of the smart-home

into separate areas was different than the one used to collect the dataset. Further-

more, the position of some environmental sensors changed, even if each of them was

placed in the same area of the habitation in which it was during the dataset collec-

tion process. These changes are useful to make the deployment of the system in a

real-world scenario more realistic. The system had to detect the collaborative and
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individual activities performed by two subjects, using the inertial and environmental

data streams coming in real-time from smartwatches and smart-home sensors. The

deployment of the demo allows discovering that, in the scenario performed by the

two subjects, context data regarding the users’ posture were necessary to correctly

assign the environmental events generated by the pressure mats installed inside the

habitation. Furthermore, refining the classifier predictions through context data is in-

effective when a user is in transition between two subsequent activities. In such cases,

the statistical classifier makes an uncertain prediction, because the user is actually

performing an unknown activity. Discarding the context-inconsistent activities and

re-normalizing the probabilities vector emitted by the statistical model can make the

inference certain on an incorrect activity. For this reason, instead of refining the pre-

dictions of the classifier, context data were used to map each not context-consistent

activity to a transition activity.

To summarize, this work focused on the following points:

• improve through other context sources how the system assigns the environmen-

tal events to the users who populate the smart-home

• use deep learning algorithms to perform the activity recognition task

• use context data to refine the prediction of the activity recognition classifier

• apply semi-supervised learning techniques

• test the system in a real-time setting

The chapters of this work are organized in this way. Chapter 1 analyzes the state

of the art related to HAR systems, semi-supervised techniques and deep learning algo-

rithms relevant for this research field. Chapter 2 illustrates the high-level architecture

of the system developed for multi-inhabitant activity recognition. Chapter 3 presents

implementation details about the developed system, starting from the preliminary

operations applied to the data, passing through the ways used by the system to solve

the data association issue, arriving to the activity recognition predictions obtained by

the deep learning algorithms and the context refinement applied to these inferences.

Chapter 4 describes how the activity recognition system has been extended with semi-

supervised learning techniques. Chapter 5 concerns the experimental evaluation of
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the effectiveness of how the system performs the data association and the context

refinement, of the deep learning algorithms used for the activity recognition task and

of the developed semi-supervised techniques. Chapter 6 illustrates details related to

the real-time system realized to test the proposed solution. The last chapter summa-

rizes the obtained results and proposes possible future works which can improve the

system.



Chapter 1

Related work

Human Activity Recognition (HAR) is a research topic of strong interest for the real-

ization of context-aware systems, which can adapt themselves based on user behavior.

Examples of these systems include applications in the security, medical and military

fields. In the medical field, it is possible to cite the smart-homes for assisted living,

i.e. habitations equipped with a network of sensors and actuators which allow moni-

toring the health condition and the level of self-sufficiency of patients and old people.

In literature, detectable activities which can be performed by a user are divided in

• low-level activities: physical activities such as running and walking

• high-level activities: complex actions as cooking, watching the television and

eating

Based on the type of sensors used to monitor the users, HAR systems can be

classified into two categories [3]: vision-based and sensor-based. The first approach

typically involves the use of cameras and computer vision techniques, while the second

one exploits a network of sensors which can be

• wearable: placed directly or indirectly on the body of the user, useful to detect

his movements

• environmental: attached on objects to detect possible interactions of the user

with his surrounding area

7
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Generally, to infer the users’ activities it is possible to use two different approaches:

data-driven and knowledge-driven. The first involves the use of machine learning

techniques, which allow predicting the performed activities through statistical mod-

els built thanks to large datasets containing data collected monitoring the users. The

second takes advantage of prior knowledge about the application domain of interest

to infer the actions performed by the users through logical reasoning. Most of HAR

systems which use the data-driven approach work in a supervised way [4]: the activ-

ity recognition model is trained with a training set of examples that must be labeled

through a time-consuming process. Another possibility is to use unsupervised tech-

niques that work with huge datasets of unlabeled data. Other systems work in a

semi-supervised way, i.e. at the beginning, they use a relatively small-sized training

set which is then extended over time with new labeled data.

Section 1.1 illustrates a view of sensor-based HAR systems for high-level activities’

detection. Section 1.2 concerns data-driven approaches, presented in their supervised

and semi-supervised manners. Sections 1.3 and 1.4 describe knowledge-driven and hy-

brid activity recognition approaches. Finally, Section 1.5 illustrates how deep learning

algorithms can be used in the activity recognition field.

1.1 Sensor-based systems for high-level HAR

1.1.1 Mobile devices based activity recognition

Wearable sensors allow detecting the movements of a user. HAR systems based on

mobile devices typically exploit the following inertial sensors installed on devices such

as smartphones and smartwatches.

• Accelerometer: sensor useful to determine the device linear acceleration in

the three-dimensional space. Furthermore, it allows identifying the direction in

which the device is moving

• Gyroscope: sensor useful to determine the orientation of the device in the

three-dimensional space

• Magnetometer: sensor ables to detect the magnetic field intensity variations
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along the axes of the three-dimensional space. So, it allows to obtain information

about the device orientation

In [5] for example, the performances achieved by two activity recognition classifiers

that use data coming respectively from smartphones and smartwatches are compared.

It is underlined that smartwatch data are useful to detect activities that involve

distinctive hands movements (as eating and using the computer). Furthermore, unlike

smartphones, it is more likely that smartwatches are constantly worn during the daily

activities of a person. For this reason, they can be exploited in the HAR field.

1.1.2 Environmental sensors based activity recognition

Environmental sensors are useful to detect possible interactions of the user with his

surroundings. Examples of environmental sensors used in the HAR field are:

• Magnetic sensors: they allow to detect opening and closing events of objects

like doors

• Pressure mats: placed on chairs, allow to detect the moment in which a user

sits down or stands up

• Smart plugs: allow measuring the electric power absorbed by a household

appliance

• Passive InfraRed sensors (PIR): allow to detect the presence of a subject

inside an area

In a multi-inhabitant setting, environmental sensors can’t automatically identify

the users who interact with them. So, it is crucial to understand how to assign events

generated by these sensors to the users who are inside the smart-home. This prob-

lem is called data association. This issue doesn’t exist in single-inhabitant solutions

since, in such cases, each event is always generated by the same subject. In literature,

different works propose to handle the data association problem through probabilistic

graphical models. In [6] for example, a Hidden Markovian model is used to deter-

mine which is the most probable activity performed by a user based on the observed

environmental events sequence.
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1.1.3 Hybrid approaches

The combination of data coming from wearable and environmental sensors is being

tested in different works in literature. In [7], for example, the high-level activities are

recognized using the environmental events to identify the room in which is each user

and the smartphones’ inertial sensors to detect the low-level actions performed by

the inhabitants of the smart-home. Even in [8] is being developed a multi-inhabitant

HAR system exploiting the combination of inertial and environmental sensors. The

data association problem, in this case, is handled through the RFID technology, which

however forces the user to wear specific readers of these signals. Furthermore, it is

necessary to place an RFID tag on each object the system wants to monitor.

1.2 Data-driven models

Data-driven models involve the use of machine learning techniques, that allow pre-

dicting the performed activities through statistical models built thanks to data col-

lected monitoring the users. The advantage of using statistical models is that they

can handle sensor data uncertainty and complexity. The drawback of this solution

comes from the necessity to have a large dataset to robustly perform the training and

learning processes. Most of data-driven HAR systems work in a supervised way: the

activity recognition model is trained through a training set of labeled examples. In a

smart-home setting, collect and annotate a significant amount of data to build an ap-

propriate training set is a tedious, expensive, time-consuming and not always feasible

process. Furthermore, to improve the recognition rate of the system, it is useful to

add to the training set data related to that user and then retrain the activity recogni-

tion classifier. Since it is not reasonable to collect and annotate data related to each

possible user of the system, some applications work in a semi-supervised way, i.e. at

the beginning, they use a relatively small-sized training set which is then extended

over time with newly labeled data [4].
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1.2.1 Supervised approach

In the past years, traditional machine learning models have been widely used in

the HAR systems. For instance, in [9] are compared the performances obtained by

three classifiers for smart-home activity recognition based on environmental data.

The performance of their system achieved good results using Näıve Bayes (NB) and

Support Vector Machine (SVM) methods, but better performances were reached using

a Random Forest (RF) classifier. Also in [10], an RF classifier is used to detect

activities in a smart-home single-inhabitant setting. In the last years, deep learning

algorithms have been explored since their performances are promising for different

machine learning-based solutions. Section 1.5 will discuss about this type of classifiers.

1.2.2 Semi-supervised approach

Semi-supervised learning techniques can be used to mitigate some supervised ap-

proach problems. First of all, supervised approaches request to collect and annotate

a significant amount of examples to train a classifier. Furthermore, a person can

change the way to perform a specific activity, so statistical models that can evolve

and adapt themselves over time based on the users behavior should be used. In re-

alistic conditions, large amounts of unlabelled data are easily collected while a small

set of labeled training data is available. Semi-supervised learning techniques’ purpose

is to annotate part of these unlabelled data in order to expand the training set and

improve the recognition system. Generally, machine learning algorithms need to be

retrained on the whole training set, while incremental algorithms can be updated

using only new available data.

Different approaches such as self-learning, co-learning and active-learning have

been applied for semi-supervised learning. In the self-learning paradigm, the pre-

dicted label with the highest confidence can be added to the training set or directly

used to update an incremental classifier. In [11] different semi-supervised approaches

are used to improve activity classification on mobile phones, but in this analysis

self-learning never demonstrated any improvement. The co-learning technique uses

multiple classifiers, each trained on a different view of the dataset. First, the mod-

els are trained with the labeled data. Then, the most confident predictions of each
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classifier on the unlabeled data are used to increase the training set size. For ex-

ample, [12] presented a method to recognize user activities from smartphone sensors

using the co-learning technique. Unlike self-learning and co-learning, active learning

requires user feedbacks to label data with their true label. In [13], a combination of

context-aware reasoning and semi-supervised learning is used for activity recognition.

Both self-learning and active-learning techniques are used to improve the classifier

performances over time.

1.3 Knowledge-driven models

The knowledge-driven approach consists of building activity recognition models through

logical reasoning, exploiting the prior knowledge related to the application domain

of interest. For example, it is commonsense that the activity ”cook pasta” consists

of a sequence of actions involving a pot, hot water, a plate, pasta, salt, oil and a

sauce. On the other hand, people may perform this activity in different ways [3].

For instance, one may add grated cheese on pasta and another doesn’t. Even for the

same type of activity, different people may use different items (e.g., different types

of sauces) and in different orders (e.g., adding the sauce inside the pot and then fill

the plate with pasta, or vice versa). The drawback of this approach is that it could

have problems in handling the data uncertainty and that the models could be static

and incomplete because, as already mentioned, people can perform the same action

in different ways and the same person can change the way he executes an activity. So,

the prior knowledge is not sufficient to handle the variability with whom the activities

can be performed.

The ontologies are the most used formalism to build reliable knowledge-based

activity recognition models. For instance, [14] proposed a knowledge-driven approach

for activity recognition based on ontological modeling and semantic reasoning. In [15],

an OWL 2 activity ontology is used for modeling, representing and reasoning with

complex human activities.
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1.4 Hybrid models

There are hybrid approaches that exploit the advantages of both data-driven and

knowledge-driven methods. An example is COSAR [16], a mobile HAR system. Sta-

tistical techniques are used to identify a set of activities that could be the ones

performed by the user. Afterward, a symbolic reasoning module infers between these

which are the most logically probable, through the analysis of context data that sur-

round the user. The work [17] presents an approach that uses data-driven techniques

to evolve a knowledge-driven activity model. An initial and incomplete knowledge

model is used to help a clustering process to detect action clusters that represent

possible activities. Based on those action clusters, a learning process is then designed

to learn and model different ways of performing activities.

1.5 Deep learning for activity recognition

Conventional machine learning algorithms can achieve satisfying results in the sensor-

based activity recognition field. Generally, deep learning approaches are emerging in

the literature, since they tend to overcome the performances of standard machine

learning solutions on a wide range of research fields. Furthermore, conventional ma-

chine learning methods rely on heuristic handcrafted feature extraction, which is

usually limited by human domain knowledge and tends to obtain from data only

statistical information [18]. Deep learning algorithms tend to overcome this problem

because the features can be learned automatically through the neural network. Fi-

nally, neural networks can be updated incrementally with new data labeled thanks

to semi-supervised techniques.

1.5.1 Artificial Neural Networks theory

1.5.1.1 Introduction

Artificial Neural Networks (ANN) are computational models inspired by the biological

neural network. An ANN is a collection of layers. Each layer contains several nodes

called artificial neurons. An artificial neuron (Figure 1.1) computes a linear combi-

nation of its inputs and gives it to an activation function, that is used to introduce
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Figure 1.1: An example of artificial neuron.

non-linearity in the neural network. Without activation functions, the neural net-

work would be a linear model, so it would be too simple, generating the underfitting

problem illustrated with an example in Figure 1.2. ReLU is currently the most used

activation function. It maps negative values to zero and keeps the positive ones. This

activation function allows speeding up the training of the model [19]. The output of

the activation function of a neuron will be the input of the other neurons connected

to the first one. In this way, neurons belonging to different layers are connected. In

a neural network, there is an input layer, an output layer and a variable number of

hidden layers. A deep learning model is an ANN which contains more than a single

hidden layer. The input layer receives as input the data we want to exploit to solve

our classification or regression problem. The output layer emits the label that the

neural network associates with the received input or a vector containing a probability

distribution over the classes detectable by the neural network. The neurons of each

layer (excluded the input layer) receive as input the combination of outputs emitted

by the neurons of the previous layer.

1.5.1.2 Artificial Neural Network layers

In this section, we are going to describe some of the typical neural network layers

used in the Activity Recognition field.
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Figure 1.2: Examples of underfitting, overfitting and appropriate-fitting in binary
classification.

Fully connected layers In a Dense or Fully Connected (FC) layer, each neuron

is connected to all the neurons of the adjacent layers. Typically, the output layer

of the network consists of an FC layer that uses the Softmax activation function,

whose output is a value between 0 and 1 for each class that the neural network has

to recognize. The sum of these values is equal to 1. In this way, the output of the

classifier will be a probability distribution over the detectable classes.

Dropout technique The overfitting problem occurs when a machine learning algo-

rithm fits excessively on the training set and can’t classify correctly new data. This

problem is illustrated with an example in Figure 1.2 and can be reduced with the

dropout technique shown in Figure 1.3. When the dropout is applied to a layer, dur-

ing the training stage some of its neurons will be randomly chosen and disabled. In

this way, it is possible to reduce the dependency between neurons of the same layer,

increasing the robustness of the neural network.

Batch normalization layers The Internal Covariate Shift is the change in the

distributions of layers’ inputs. Because of this change, the layers need to continuously

adapt themselves to the new distribution they receive. It is possible to reduce the

Internal Covariate Shift problem and the training time by fixing the distribution of

the layer inputs. In particular, Batch Normalization layers transform the distribution

of a layer input to maintain its mean and standard deviation respectively close to 0
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Figure 1.3: Left: a neural network that doesn’t use the dropout technique. Right:
the same network, using the dropout technique.

and 1 [20]. The application of the batch normalization is similar to the normalization

and standardization processes that are typically applied in standard machine learning

solutions.

Convolutional layers Convolutional layers are used to extract features from the

received input, by applying to it a certain number of filters. The application of each

filter allows a convolutional layer to perform a convolution operation on its input,

generating what is called a feature map. The convolutional layer output will be the

stack of feature maps obtained by applying different filters.

Pooling layers A pooling layer can be used to reduce the dimensionality of the

feature maps generated by a convolutional layer, in order to maintain only the most

important information. In this way, it is possible to reduce the complexity of the

classifier, lightening the computation time and the overfitting problem. One of the

most used pooling layers, called Max Pooling, slides a filter on its input and, for each

position of the filter, only the maximum input value affected by the filtering operation

is kept.

Flatten layers Flatten layers are used to obtain a mono-dimensional vector starting

from a multi-dimensional input. So, the output of these layers will be a vector which
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contains the same number of elements contained in the input. The application of this

layer is necessary when the multi-dimensional output of a layer must be mapped into

a vector since the following layer needs to receive a mono-dimensional input.

LSTM layers Recurrent layers such as LSTM are used to create networks con-

taining loops. This allows connecting the current network input with information

related to past examples, through the following process. Each LSTM layer contains

a cell state, whose purpose is to maintain values over arbitrary time intervals during

the training stage. Three structures inside the layer called gates are then used to

manage the information memorized by the cell state. These gates will decide what

information will be thrown away from the cell state, what new information will be

used to update it and how to filter it to generate the cell output.

1.5.2 Deep learning for HAR systems

In the last years, deep learning methods have been widely used in HAR systems.

Typically, the following types of neural networks have been tested:

• Deep feedforward neural network: contains a certain number of FC layers

• Convolutional Neural Network (CNN) + FC layers: contains convolutional lay-

ers followed by FC layers

• Long-Short Term Memory network (LSTM): contains mainly LSTM layers

• CNN + LSTM

In [21], LSTM outperform CNN when the system has to deal with short activities

which have a natural order. CNN is better for long-term and repetitive activities

such as walking and running. The reason is that recurrent layers can exploit the

time-order relationship between data, while CNN is more capable of learning features

contained in recurrent patterns. Technically, no model outperforms all the others in

all situations [18]. In [22] is shown that the combination of CNN + LSTM achieves

better performances than the CNN + FC layers one. The first one contains four

convolutional layers followed by two FC layers, while the second one presents the

same structure but with LSTM layers instead of FC ones.
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System architecture

The purpose of the developed system is to infer the high-level activities performed

by the users of a smart-home. This system receives data from two different sens-

ing sources: environmental and wearable sensors. The firsts are located inside the

smart-home to detect possible users’ interactions with drawers, chairs and household

appliances; the seconds are the inertial sensors of each smartwatch provided to the

smart-home users, who place this device on their dominant arm to allow the software

to monitor their movements. Furthermore, the smartwatches receive positioning in-

formation about the users coming from a dedicated infrastructure. This information

will be used to detect in which smart-home area is each user. Inside a smart-home

environment, the usage of smartwatches in place of smartphones is appropriate be-

cause it is more likely that the first would be constantly worn by a person in his own

home. For example, the smartphone could be placed on the table by the user while

he’s cooking or eating his lunch. Furthermore, the arm movements detectable thanks

to the smartwatch can help the system to distinguish activities that involve only the

use of the arms, like eating or wash dishes.

One of the main problems in the multi-inhabitant field is called data association,

namely the ability of the system to associate the smart-home environmental events

to the different inhabitants. For example, when a pressure mat is activated in the

kitchen, how the system can recognize which user sat on it? Context data, like the

users’ posture and position inside the smart-home or information about the environ-

mental sensors, can help to achieve this task.

18
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Figure 2.1 illustrates the architecture of the developed system. It is possible to

notice that it consists of five main modules:

• Positioning Infrastructure: it collects positioning data that depend on the

positioning technology used by the system. These data are then received by the

users’ smartwatches and given to the Context Aggregation module

• Context Aggregation: it collects context data as position and status of the

environmental sensors and as position and posture of the users. The envi-

ronmental sensors position is known, while their state is derived based on the

events generated inside the smart-home. About the other context information,

two submodules are used:

– Micro-localization: it recognizes the position of the users inside the

smart-home based on positioning data coming from the smartwatches which

obtain this information thanks to the dedicated Positioning Infrastructure

– Posture: it recognizes the posture (sitting or not-sitting) of the users

based on the inertial data coming from the smartwatches

• Data Association: it assigns the environmental events to the users based on

the context data collected by the Context Aggregation module

• Activity Recognition: it recognizes the high-level activities performed by the

users

• Context Refinement: it refines through context data the predictions given

by the Activity Recognition module

Data acquired by the different devices are used by the Micro-localization and

Posture modules which, through machine learning techniques, infer respectively the

position of the users inside the smart-home and their posture (sitting or not sitting).

This information is used by the Data Association module to determine which users

interacted with the sensors installed in the smart-home. The environmental events

data, associated to the users, and the measurements coming from the inertial sensors

of the smartwatches are used by the Activity Recognition module to infer the actions
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Figure 2.1: Architecture of the developed system.
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performed by the users, through deep learning algorithms. Finally, the Context Re-

finement module refines the responses of the system, based on context data related to

environmental sensors position and status, and related to users’ position and posture.

In the following sections, the different modules of the system are described in detail.

2.1 Sensing devices

2.1.1 Smartwatches and environmental sensors

The smartwatches worn by the users are used by the system to monitor the movements

of their dominant arm. This is possible thanks to the inertial sensors (accelerometer,

gyroscope and magnetometer) installed inside these devices. Furthermore, Bluetooth

and WiFi antennas mounted on smartwatches can be exploited to locate the users in-

side the smart-home if the positioning infrastructure concerns the use of BLE beacons

or WiFi access points.

In this system, different environmental sensors are used to monitor the interaction

of the users with their surroundings. The sensors of this type installed inside the

smart-home are magnetic sensors, pressure mats and smart-plugs. Magnetic sensors

are useful to detect, for instance, the opening of drawers. Pressure mats are exploited

to recognize when someone is sitting on a chair. Smart-plugs can be used, for example,

to detect when household appliances are turned on.

2.1.2 Positioning infrastructure

The smart-home is divided into semantic areas. The granularity of this division

depends on how accurate is the localization technology used by the Positioning In-

frastructure. A high-level division could assign every room of the smart-home (living

room, kitchen, dining room and office) to a semantic area. A low-level division could

assign regions of the same room to different semantic areas: for example, the kitchen

could be divided into the cooker area, the fridge area and the sink area. Positioning

data are then used by the Micro-localization module to detect the users’ position

inside the habitation.

This module can implement one of the possible localization technologies known in
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literature. For example, it can use signals coming from BLE Beacons or WiFi access

points or a combination of them.

2.2 Context Aggregation

2.2.1 Environmental sensors position and status

The environmental sensors position inside the smart-home is known (e.g., the cooker

is in the kitchen semantic area). Instead, their status is detected and memorized by

the system every time an environmental event is generated (e.g., the fridge has been

opened/closed).

2.2.2 Micro-localization

This module receives positioning data from the users’ smartwatches which obtained

them thanks to the Positioning Infrastructure. With this information, it can detect

through machine learning techniques the position of the users inside the smart-home.

So, its output will be the semantic area in which each user currently is. The smart-

home can be divided into semantic areas with different granularity levels. A finer gran-

ularity allows providing context information more detailed to the Data Association

and Context Refinement modules. Tendentially, this will increase the performances

of these modules.

2.2.3 Posture

In this module, a low-level activities classifier is used to detect the posture of a

user, starting from the inertial data obtained by his smartwatch. The output of

such a classifier is a probability distribution over the low-level activities detectable

by the system. Users’ posture can help the system during the data association and

the context refinement stages. Even in this case, based on the number of low-level

activities that the system can detect, it is possible to provide these two modules

information more or less sophisticated. The Posture module, for example, could

detect only two low-level activities (sitting and not-sitting) or more (sitting, standing,
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walking).

2.3 Data Association

While the data related to the inertial sensors can be associated automatically to the

users, thanks to unique user IDs assigned to each smartwatch, in a multi-inhabitant

environment we need to use heuristics to assign the environmental events of the smart-

home to the different users. When the inertial data coming from the smartwatches

and the environmental data coming from the smart-home arrived as input to the

system, it performs the data association exploiting the context data collected by the

Context Aggregation module: the environmental events generated inside the smart-

home are assigned only to the users whose context is consistent with the event (e.g.,

only users which are in the kitchen could activate the cooker). In this way, for each

user is created a stream of inertial data to which associated environmental events are

appended. The main rules used to associate the environmental events are:

• To assign an environmental event to a user, he must be in the same area in

which is placed the sensor that generated that event

• When the posture of a user becomes sitting, the system checks if there are

unassigned and active pressure mats in the same area of that user. In this case,

one of these sensors is associated with the user

• When a pressure mat is assigned to a user, this sensor must not be associated

with other users as long as it remains active

• Some environmental events (as the opening of the fridge) can’t be assigned to

sitting users

• If an environmental event not generated by a pressure mat occurs when more

users are in the same area of the sensor, such an event is associated with every

user that could have generated it.

Context data received by the Context Aggregation module can be used and com-

bined to perform correctly the data association. For instance, when a sensor is acti-

vated in the living room area, the system is sure that this event couldn’t be generated
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by a user which is in the kitchen area. The granularity level used to divide the smart-

home into semantic areas could affect the effectiveness of the Data Association mod-

ule. We can consider the case in which two users are simultaneously in the kitchen

and the fridge sensor is activated. In case of high-level areas division, the system will

never be sure to assign such an event to one of these users based only on their posi-

tion. In case of low-level areas division, if only one of the users would be in the fridge

area, then the system would be sure about who generated the environmental event.

The posture context information is useful to assign correctly the events generated by

the pressure mats: when a pressure mat is activated in an area where there are more

users, this event can be assigned only to the users whose detected posture becomes

sitting. Furthermore, when a user is sitting on a pressure mat, the system can avoid

assigning to him events that cannot be triggered in this posture. Indeed, is unlikely

that a sitting user can open the fridge or turn on the cooker.

2.4 Activity Recognition

Streams of inertial and associated environmental data for each user are used by the

Activity Recognition module to predict in real-time the activities that the subjects are

performing inside the smart-home. To perform this task, a single-inhabitant activity

recognition classifier is used. Its output will be a probability distribution over the

activities detectable by the system. Different machine learning algorithms can be

used inside this module: from standard solutions for the HAR field, such as Support

Vector Machines, to deep neural networks that have been widely explored in the last

years.

2.5 Context Refinement

This module’s purpose is to improve the reliability of the system predictions, ex-

ploiting context information collected by the Context Aggregation module. We use

different kinds of context data for this purpose: environmental sensors status, position

of environmental sensors and users inside the smart-home and posture of users.

An example related to the use of sensors and users’ position is the following: a
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user can watch the television only if he is in the same area in which the television

smart-plug is placed. The following example instead is related to the status of the

environmental sensors and to the users’ posture: a user can watch the television only

if he is sitting and the television smart-plug is turned on. It is possible to note that,

increasing the number of low-level activities detectable by the Posture module will

affect the prediction refinement process. For instance, if the system could detect

multiple low-level activities, it would know that the user is not sitting, but also that

he is walking. In this case, it is possible to discard also the activities which typically

are not performed walking, like washing dishes. The following example combines all

the context information available to the system: a user can watch the television only

if he is sitting, he is in the same area of the television smart-plug and the television

smart-plug is turned on.
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Proposed solution

This chapter describes the techniques developed to detect the activities performed

by the users in a multi-inhabitant setting, based on the data streams regarding the

smartwatch inertial sensors and the smart-home environmental ones. The software

modules realized were developed using the language python with 3.5.2 version.

Section 3.1 describes preliminary operations applied to the data before the data

association process. These operations were already developed in system [1] and consist

of data time alignment, data segmentation and the application of a median filter.

Section 3.2 describes how the environmental events generated inside the smart-home

can be associated with the users, using context information such as the position of

sensors and users, and the posture of the latter. Section 3.3 outlines how features were

extracted from inertial and environmental sensors data streams. Furthermore, it is

described how streams of raw data were created to give them as input to deep learning

algorithms letting them handle the feature extraction task. Section 3.4 presents an

overview of the deep learning algorithms tested in this work. Finally, Section 3.5

outlines how context data can be used to refine and improve the predictions of the

activity recognition classifier.

3.1 Data preprocessing

This section outlines the preliminary operations already developed in a past work

[1] which are applied to the data before the data association process. The following

26
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Figure 3.1: Classes hierarchy which represents inertial sensors measurements and
environmental events.

sections describe these operations, which are data time alignment, data segmentation

and median filtering.

3.1.1 Data time alignment

In this stage, the data structure that represents inertial and environmental sensors

data is modified. Indeed, during the acquisition of the dataset, these data were orga-

nized in a database inside a structure called sensorData which groups them based

on the sensor type that generated the measurements. Furthermore, a class for each

type of sensor was created and inserted in the classes hierarchy shown in Figure 3.1.

At the top of this hierarchy, there is the BasicSensor class which stores information

commons to all the types of sensors. This information regards the userID of the

user and the timestamp related to the sensor measurement, the label regarding the

activity performed at that moment and the room in which the user was in. In the

lowest level of the hierarchy, there are classes that represent the different sensor types.

Each of them specifies information related to a particular type of sensor. All of these

classes are inside the sensor package.
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This representation is not convenient to perform a temporal segmentation of the

data obtained by all the sensors. For this reason, these data are reorganized in a

single structure, ordered based on the timestamp of the measurements related to all

the different types of sensors. This process was made for each scenario performed

during the dataset acquisition and the results were stored in specific files to avoid the

repetition of this operation.

3.1.2 Data segmentation

With data segmentation, smartwatch inertial sensors and environmental sensors mea-

surements are grouped in consecutive temporal windows. In this way, the system can

recognize the activities using both data regarding the users’ gestures and the history

of the last manipulations of the inhabitants with monitored smart-home objects. The

segmentation windows are created through a two-steps process.

A first temporal window is defined by a couple (a, l), where a represents an

environmental event (if present) and l identifies an inertial measurements temporal

neighbourhood of a with a fixed width. This width is determined by two parameters:

past and future, which represent respectively the number of seconds preceding and

following the environmental event. Empirically, the best values obtained in [1] on

the EveryWare Lab dataset for these parameters were 16 and 0. Exploiting these

first type of windows, it is possible to create another kind of data segments that will

be used to perform the feature extraction. Each segment is composed by the last k

environmental events detected and the measurements contained in the last first type

of window created as explained above. The k parameter allows defining how much

the system is interested in the history of environmental events. Empirically, in [1] the

best results on the EveryWare Lab dataset were obtained using a k parameter equals

to 11.

Furthermore, to help the system to detect transitions between activities, an over-

lap percentage between consecutive windows of the second type was introduced. This

increases the number of examples presented in the training set as well. Empirically,

in [1] 80% of overlap was the value that led the system to the best performances on

the EveryWare Lab dataset.
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Figure 3.2: Median filtering applied to the signal obtained by the x-axis of the mag-
netometer.

3.1.3 Median filtering

During this stage, the signal noise of each axis of each sensor inside a temporal win-

dow is cleaned through the application of a median filter. In this way, the value of

each signal point is approximated with the median value of a neighborhood centered

in the point itself and with a fixed width. Empirically, in [1] the best results on the

EveryWare Lab dataset were obtained with a width equals to 11. This filtering oper-

ation was added in the system using the medfilt function of the python scipy.signal

library. Figure 3.2 shows how the application of a median filter can change a temporal

signal.

3.2 Data association

In a multi-inhabitant setting, the system has to detect the activities performed by the

users inside the smart-home, recognizing if they are performing independent or group

actions. The main problem is the correct association of environmental events to the

users which inhabit the smart-home. Wrong associations could create feature vectors

containing noisy data: for example, they could hold for a user information about
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events generated by another user. This makes the learning process more complicated

for the activity recognition classifier since inertial data are not sufficient to distinguish

high-level activities, especially in front of noisy data regarding the environmental

events. In this section, it is described how the system uses context data to tackle the

data association problem.

3.2.1 Users’ micro-localization and sensors’ position

The smart-home is divided into semantic areas. The Micro-localization module devel-

oped in [2] provides to the system information about the area in which is each user.

To achieve this goal, the module uses the signals detected by the user’s smartwatch

coming from BLE Beacons and WiFi access points installed inside the smart-home.

These data are segmented in 5 seconds windows with a 50% of overlap and filtered

with a Savitzky-Golay filter. For each data segment, it is extracted a feature vector

containing the mean value of the signal coming from each WiFi and Beacon source.

These feature vectors are then given as input to a Random Forest Classifier.

The information about the semantic area in which is placed each environmental

sensor is known to the Context Aggregation module. Combining this information with

the users micro-localization, it is possible to enhance the data association performed

by the system using the heuristics that will be described in Section 3.2.3

3.2.2 Users’ posture

To detect the posture of the users which inhabit the smart-home, a low-level activity

recognition algorithm was trained receiving as input only the handcrafted features

that will be described in Section 3.3.1.2 related to the inertial sensors of the data seg-

ments. These features are dimensionally reduced to 84 through the ANOVA technique

that will be described in Section 3.3.1.3 and then standardized. Instead, for each data

segment, the information coming from environmental sensors was discarded. In this

way, the detected posture depends only on the user’s gestures. This is important be-

cause the posture will be used to perform the data association, so it can’t be based on

information coming from environmental events. In the training set, the label of each

high-level activity was mapped in one of the two postures detectable by this classifier:



CHAPTER 3. PROPOSED SOLUTION 31

Figure 3.3: Structure of the low-level classifier used to detect the users’ posture.

SITTING and NOT SITTING. Examples of activities that can be performed in both

of these postures (such as answering or making a phone call) were not used to train

the algorithm.

Figure 3.3 shows the structure of the neural network used to detect the users’

posture. At the beginning, the input is given to a Batch Normalization layer, which

maintains input mean and standard deviation respectively close to 0 and 1. This

allows reducing the training time. Then, data flow through two Fully Connected (FC)

layers, separated by a Dropout layer with a rate equals to 0.5, which is necessary to

reduce the overfitting problem. The first FC layer is composed of 128 neurons and

uses the ReLU activation function. The last FC layer contains two neurons, one for

each of the detectable postures. In order to obtain a vector with a probability for

each of these two postures, the last FC layer uses a Softmax activation function. The

performances reached by this classifier are explained in Section 5.3.1. The model was

developed using the keras python library.

3.2.3 Association of events to inhabitants

As already mentioned in this work, inertial data obtained by the smartwatches can

be directly associated with the users, thanks to the use of uniques userIDs. Instead,
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environmental data has to be associated with the people who inhabit the smart-home.

The effectiveness of the handcrafted feature extracted from this type of data depends

on how the data association is performed.

We can imagine a setting in which we are able to perform a perfect data association

that can correctly assign each environmental event to the user who generated it. As

we will describe in Section 3.3.1.1, in the feature vectors there are features that count

how many times an environmental sensor is being activated or disabled. Furthermore,

a time decay function is applied to environmental features regarding disabled sensors

to reduce their weight over time. In a multi-inhabitant setting, there can be a problem

when the same sensor is activated and disabled by different users. We can consider

as U1 the user who activated the sensor, while U2 will be the user who disabled it.

In this situation, wrong feature vectors could be created for both the users.

• U1: in his feature vector we have the information about the activation of the

sensor, but we don’t have the one regarding its deactivation. So, the features

related to that sensor will be incorrect: the time decay function will not be

applied to a feature related to the sensor since it is still considered active, while

the feature which counts the deactivation events will not be increased.

• U2: here we can consider two cases:

– if the activity of U2 doesn’t depend on the sensor, then the feature vector

will be right because the activity he is performing is not based on the

manipulation of that sensor. This can happen when U2 closes a drawer

which U1 forgot to close.

– if the activity of U2 depends on the sensor, then also his feature vector

will be wrong because it doesn’t contain information about the activation

event of the sensor. This can happen when U1 turns on the tv, he watches

it with U2 and then U2 turns it off.

We can now analyze a naive solution in which any environmental event is associated

with all the users. The problem described above is solved because the activation

and deactivation events will be associated with both U1 and U2. However, in this

situation to a user we could associate events belonging to other users, creating noisy

feature vectors.
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After the previous analysis, we can conclude that

• we should assign the deactivation event of a sensor to the user who generated

the event, but also to the user who previously activated the sensor

• we shouldn’t assign any environmental event to any users

So, when the system has to create a feature vector starting from a data segment

related to a user, it follows this scheme:

• at the beginning, associate with the user any environmental event, even without

knowing who generated it

• then, remove the assignements that are not context-consistent

In this work, three different context sources were used to tackle the data association

problem. These can be also combined in order to obtained hybrid approaches.

• Micro-areas (M)

• Posture (P)

• PosturePlus (P+)

The results obtained with the combination of these three approaches are described in

Section 5.3.2.

Micro-areas approach This approach uses the following heuristic to decide how

to perform the data association exploiting positioning context data: if a sensor is

being activated or disabled when the user is not in its own semantic area, then this

event is not considered. This heuristic is not applied in two cases: when the event

regards activities which can be performed in any smart-home area (such as answering

or making a phone call) and when it concerns the deactivation of the pressure mat

on which the user was sitting. This choice allows the system to recognize when to

unallocate a pressure mat from a user in cases in which the detected user position

is wrong. This is important when the Micro-areas approach is combined with the

Posture or the PosturePlus one.
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Posture approach This approach uses the following heuristics to decide how to

perform the data association exploiting context data concerning the users’ posture:

• once a pressure mat is assigned to a user, that sensor will not be assigned to

other users as long as it remains active

• if a user is not sitting on a pressure mat, the system uses the posture classifier

to detect his posture based on the inertial data coming from his smartwatch

– if the detected posture is NOT SITTING, then if the user in the past was

sitting on a pressure mat, only the features related to that pressure mat

will not be zeroed. In this way, the time decay function will continue to be

applied to that sensor features. If the user in the past wasn’t sitting on a

pressure mat, then all the features related to pressure mats will be zeroed

– if the detected posture is SITTING, then the last activated pressure mat

is assigned to the user. Only the features related to that pressure mat will

not be zeroed

This approach leads to the following problems:

• when the system assigns to the user the latest activated pressure mat, it could

assign a pressure mat on which actually another user is sitting. Combining this

approach with the Micro-areas one, this problem is solved because we assign to

the user one of the pressure mats placed in his own smart-home area and, as

we are going to discuss in Section 3.3, features concerning pressure mats of the

same area will be then grouped.

• the posture classifier sometimes confuses the inertial data regarding the COOK-

ING activity with the ones concerning the WATCHING TV activity. So, in

these cases, the detected posture will be SITTING and this can lead to a wrong

data association. The same problem occurs with the inertial data concerning

the activities EATING and TAKING MEDICINES. Within this list, this is the

only unresolved problem, whose solutions will be discussed in Chapter 7.

• some high-level activities can be performed both with a sitting and a not-sitting

posture. These activities are ANSWERING PHONE and
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MAKING PHONE CALL. Also in these cases, the system could generate wrong

feature vectors. To solve this issue, the heuristics of the posture approach

shouldn’t be applied to feature vectors related to these activities during the

training of the high-level activities classifier.

Because of the last two problems, the high-level activities classifier which uses the pos-

ture approach was trained without applying the previously described heuristics for fea-

ture vectors related to ANSWERING PHONE, MAKING PHONE CALL, COOK-

ING and TAKING MEDICINES activities.

PosturePlus approach This approach uses the following heuristic to decide how

to perform the data association exploiting context data concerning the users’ posture:

some environmental events shouldn’t be assigned to sitting users. These events are all

the detectable environmental events (such as the opening of the fridge or of a drawer)

excluding turning on the television, answering and making a phone call. The idea

is that, in a real setting, it is unlikely that a user would open the fridge while he is

sitting on a chair. The problem of this approach is related to the posture classifier

issues described during the analysis of the Posture method. With this approach, for

example, the system could not assign the turning on of the cooker to the user who is

performing the activity COOKING, because his detected posture is SITTING.

3.3 Feature extraction

In this work, deep learning algorithms are trained and tested in two ways: giving

them as input handcrafted features or raw data. Handcrafted features are extracted

both from environmental and inertial sensors. Then they are dimensionally reduced

through the application of the ANOVA technique and finally standardized. This

approach was already developed in [1] and it is explained in Section 3.3.1. In this

work, only the environmental sensors feature extraction was modified in order to

group features that represent the same semantic information. Instead, when raw

data are used, the input of the activity recognition model consists of matrices in

which the first row contains the environmental sensors handcrafted features, while
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each of the other rows holds raw data coming from the axis of a single inertial sensor.

This approach is explained in Section 3.3.2.

3.3.1 Handcrafted features

3.3.1.1 Environmental sensors feature extraction

In order to define the environmental sensors features, we can consider the following

intuitions:

• We need to count how many times a sensor is activated and disabled

• Sensors which were activated more recently are more important than the others

• If the status of a sensor is active, this indicates that there is an ongoing interac-

tion between the user and the object monitored by that sensor. So, this sensor

must have greater importance than the sensors activated in the past

• Features related to pressure mats placed in the same smart-home area can be

synthesized in a single feature. The idea is that, for the activity recognition

classifier, it is important to know that there is at least one active pressure

mat in a specific semantic area and it shouldn’t be important to know which

is. This because pressure mats of the same smart-home area communicate the

same semantic information. This consideration can be done when the same type

of environmental sensors (e.g, pressure mats, smart-plugs) is used to monitor

the same kind of smart-home objects (e.g., the chairs, the stoves)

So, two types of features were used: one based on counting environmental events,

the other based on the status of the sensors. To both types of features is applied a

time decay function, that reduces the weight of the feature over time.

• Temporal extraction counting events: for each environmental sensor, two

features of this type are defined. One counts the number of activation events,

the other counts the number of deactivation events of that sensor. To each of

these features (if non-zero) is applied a time decay function. Considering that

in the smart-home there are 16 environmental sensors and 2 smartphone events
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are used (making of an outgoing call and answering to an incoming call), so 36

features of this type are defined. Grouping features related to pressure mats

placed in the same area, this number is reduced to 24.

• Temporal extraction dependent on the status: it counts the number of

activation events related to a sensor and applies a time decay function only if

the sensor status is disabled. Grouping features related to pressure mats placed

in the same area, the number of this type of feature is 12.

So, 36 environmental sensors’ features are defined in total.

3.3.1.2 Inertial sensors feature extraction

In order to characterize users’ movements through inertial sensors, the work [1] con-

sidered features that are well-known in the activity recognition literature [4]. The

following features were extracted from each axis of each smartwatch inertial sensor

considered (accelerometer, gyroscope and magnetometer).

• Mean: it computes the mean value of the signal. It helps to detect if an activity

is static (lower mean value) or not (higher mean value)

• Difference between max and min: it computes the difference between the

maximum and the minimum values contained in a data segment

• Variance: it computes the signal variance, which provides a measure of the

variability of the signal

• Standard Deviation: it computes the signal standard deviation, which pro-

vides a measure of the stability of the signal

• Median: it represents the value which separates the upper half from the lower

half of the signal

• Root Mean Square (RMS): it computes the square root of the mean of the

signal values squares
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• Kurtosis: it represents information regarding the shape of the signal values

distribution. It expresses how this distribution deviates from a normal distri-

bution

• Symmetry: it expresses how the values distribution is symmetric. A zero value

indicates a symmetric distribution, while non-zero values indicate an asymmet-

ric distribution

• Zero-crossing rate: it computes the number of times in which the signal

crosses a specific value, called zero. In this case, the zero value is the value which

corresponds to half of the signal range. This feature helps to detect oscillatory

and repetitive movements, typical of activities such as eating or drinking

• Number of peaks: it counts the number of maximum and minimum signal

pitches. This feature helps to distinguish dynamic activities from static ones

• Energy: it computes the sum of the squares of the signal points absolute value

Furthermore, for each inertial sensor the following correlation indices are computed

for each combination of its axes:

• Pearson correlation: it is used to detect if there is a linear relationship be-

tween two signals, i.e. it expresses the attitude of a signal to change based on

the variation of another signal.

• Cross correlation: it provides a measure of similarity between two signals

Finally, for each inertial sensor, the following features is computed on all of its axes:

• Magnitude: this feature is used to detect strong changes during the execution

of the activities

In this way, 40 features for each inertial sensor are defined, obtaining 120 total

features related to the inertial data.
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3.3.1.3 Dimensionality reduction

This stage allows finding between all the previously defined features which are the

most meaningful ones. These will be the features that distinguish better the activities

and they will be given as input to the deep learning algorithms. To select the k best

features, the work [1] used a technique based on the variance analysis called ANOVA

(ANalysis Of VAriance) [23]. This approach allows comparing groups of data based on

the variability of each group (within variance) and the variability between the groups

(between variance). In this case, each group consists of all the feature vectors related

to the same activity. To compute this comparison, for each feature is computed

the ratio between the between and the within variance of the groups through the

statistical test called F-test. The k most meaningful features are selected based on

the ones which obtained the highest F-test values. Empirically, in [1] the use of 84

features led to the best results on the EveryWare Lab dataset. This means that, when

the deep learning algorithms are trained with handcrafted features, they receive as

input a vector containing 84 values for each data segment generated by the system.

The implementation of this stage is realized through the SelectKBest class of the

sklearn.feature selection python library.

In this work, environmental sensors features related to pressure mats placed in

the same smart-home areas are collapsed in a single feature. This approach led to

an improvement of the system performances. This could have happened because,

in [1], the application of the ANOVA technique discarded the features related to

the pressure mats that were activated less frequently during the dataset collection.

For this reason, the information about the activation of these pressure mats would

not be given as input to the activity recognition classifier and maybe this affects its

recognition rate. Now, probably, all the features related to pressure mats remain

in the feature vectors. Due to time constraints, it was not possible to verify this

hypothesis during the development of this work. Furthermore, it should be done

again the tuning of the k ANOVA parameter since some environmental features are

changed.
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3.3.1.4 Standardization

Standardization consists of a transformation which makes the data distribution equals

to a distribution with zero mean and variance equals to 1. This avoids that features

with a higher variance dominates the learning function of the activity recognition

classifier. The standardisation operation is realized using the StandardScaler class

of the sklearn.preprocessing python library.

3.3.2 Raw data for deep learning feature extraction

When we want to let the deep learning algorithms handle the feature extraction oper-

ation, data coming from the smartwatch inertial sensors are segmented, manipulated

through a median filter and then given directly as input to the learning models. In-

stead, features regarding the environmental sensors are extracted in a handcrafted

way, as described in Section 3.3.1.1. This choice comes from the idea that maybe it

is not necessary to use too much detailed information about environmental events to

correctly predict an activity. For example, to distinguish the activity ”setting up the

table” from the activity ”washing dishes” it doesn’t seem required to know for each

sample of time if the cutlery drawer was opened or closed. Probably it is sufficient to

know if it was opened at least once in the last temporal window of data.

So, when the deep learning algorithms are trained with raw data, they receive

as input, for each data segment generated by the system, a vector containing the

36 environmental handcrafted features and a matrix with shape (9, samples num),

where samples num is the mean number of samples measured by the inertial sensors

for each data segment created using a specific window size. At the beginning, it is

created a matrix of 9 rows. Each of the 9 rows contains the measurements coming

from each axis of each smartwatch inertial sensor. The system needs to apply to

this matrix a function called interpolation or subsampling because of two related

reasons. The first reason is that the number of samples coming from the different

inertial sensors changes based on their sampling rate. So, each of these 9 rows con-

tains a different number of values. The second reason is that the shape of the input

received by the deep learning algorithms must be always the same. The interpo-

lation or subsampling function receives as input the 9 rows regarding the inertial
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data and the samples num value. Then it forces each input row to have a number

of samples that is equal to samples num, trough the interpolation (to add samples)

or the subsampling (to discard samples) techniques. Both techniques, when applied

to a row, require the generation of a random number r that represents a possible

position of the row. The interpolation inserts in the r -th position of the row the

mean value between its r -th and r+1 -th values. The subsampling, instead, discards

the r -th value of the row. These techniques are applied iteratively to each row until it

contains a number of values equal to samples num. A data segment is discarded if its

rows contain less than samples num - 100 samples. In this way, the system doesn’t

consider data segments that contain a number of samples too low compared to the

samples num value.

3.4 Deep learning for activity recognition

Once the environmental events are associated with the different smart-home users, it

is possible to use deep learning algorithms in order to detect their activities. In this

work, two different shapes of input were used to train the activity recognition models.

In one case, the input consists of vectors containing 84 handcrafted features based

on environmental and inertial sensors, dimensionally reduced through the ANOVA

technique and finally standardized. In the other case, features are manually extracted

only for the environmental sensors, while inertial data are directly used in their raw

shape. In both cases, we tested four different artificial neural networks based on the

type of layers they use:

• a network which contains mainly Fully Connected layers

• a network which contains Convolutional and Fully Connected layers

• a network which contains LSTM and Fully Connected layers

• a network which contains Convolutional, LSTM and Fully Connected layers

At the beginning of Section 1.5 is available a theoretical introduction to neural net-

works and their layers. Each of these networks was trained using the keras python
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Figure 3.4: Structure of the activity recognition algorithm which uses handcrafted
features and mainly Fully Connected layers.

library and presents one of the typical neural network structures used in the activ-

ity recognition field (as described in Section 1.5). In this thesis, the parameters of

each neural network layer were experimentally tuned. The results obtained using

these classifiers are illustrated in Section 5.3. Section 3.4.1 describes the structure of

the neural networks trained using as input vectors of 84 handcrafted features, while

Section 3.4.2 illustrate the structure of the deep learning algorithms trained using

as input matrices of 9 rows containing raw data generated by inertial sensors and a

vector holding the 36 environmental handcrafted features.

3.4.1 Use of handcrafted features

In this section the neural networks trained using handcrafted features are described.

Figure 3.4 shows the structure of the classifier which uses mainly FC layers. The first

is a Batch Normalization layer, as already mentioned, useful to reduce the training

time. After that, data flow through two FC layers containing respectively 128 and

32 neurons, and both using the ReLU activation function. Before the last FC layer

there is a Dropout layer, used to reduce the overfitting problem. Finally, another FC

layer uses 13 neurons (one for each of the 13 high-level detectable activities by the

system) and the Softmax activation function.

Figure 3.5 describes the model which uses Convolutional and FC layers. After
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Figure 3.5: Structure of the activity recognition algorithm which uses handcrafted
features, Convolutional and Fully Connected layers.

the Batch Normalization, a one-dimensional Convolutional layer is used in order to

identify patterns between features close to each other contained in the input vector.

A flatten layer is necessary to obtain a monodimensional vector to give as input to the

next layers. Again, we have a 128 neurons FC layer with a ReLU activation function,

a Dropout layer and the output FC layer with the Softmax activation function.

Figure 3.6 describes the activity recognition algorithm which uses LSTM and

FC layers. An LSTM layer with 128 units is used to maintain inside the network

information about past examples of the training set. Each LSTM layer in keras

library has a boolean parameter called stateful. If the layer is stateful, its memory

will consider the examples of the whole training set. If the layer is stateless, its

memory will be reset after each batch during the training stage. This means that the

layer will learn only the temporal patterns present inside the single batches. In this

work, each LSTM layer is stateless. This choice is based on the following idea: if the

system needs to predict the activity CLEARING TABLE, it should be enough for it

to know that the last activities performed by the user were COOKING and EATING,

it shouldn’t be necessary for it to know the activities he performed during the whole

day. Finally, Figure 3.7 presents a combination of the last two described structures.
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Figure 3.6: Structure of the activity recognition algorithm which uses handcrafted
features, LSTM and Fully Connected layers.

3.4.2 Use of raw data

In this section the deep learning algorithms trained using raw data coming from

inertial sensors and handcrafted features extracted from environmental ones are de-

scribed. It is important to clarify that the size of the windows use to segment data

will affect these classifiers’ input shape. We have already mentioned that the inertial

data will be given as input through a matrix that depends on a variable called sam-

ples num. This variable value indicates the number of inertial measurements collected

inside a single segmentation window. When we’ll describe the experimental results

obtained by the following classifiers in Chapter 5, we will consider that reducing the

window size, also the samples num value will be decreased. So, using the same neural

network structure varying the window size will affect the relative complexity of the

model. For example, if the first FC layer of the classifier contains 512 neurons, the

complexity of the model will be relatively greater when segmentation windows of 14

seconds are used instead of 16 seconds ones.

Figure 3.8 shows the structure of the classifier which uses mainly FC layers. It

is possible to notice that the model at the beginning is divided into two stacks of

layers. The idea is to split the input since data coming from inertial sensors are raw,

while information related to environmental sensors is obtained through handcrafted

features. The first stack receives as input the matrix containing the inertial informa-

tion. These data flow through different FC layers before being flattened in order to

obtain a vector of values needed by the Concatenate layer to combine the outputs of
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Figure 3.7: Structure of the activity recognition algorithm which uses handcrafted
features and a combination of Convolutional, LSTM and Fully Connected layers.
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the two stacks which must be of the same shape. The second stack receives as input

the vector containing the environmental handcrafted features. After the Concatenate

layer, another couple of FC layers are used before the last one which uses the Softmax

activation function.

Figure 3.9 describes the model which uses Convolutional and FC layers. In this

case, inertial information flows through bi-dimensional Convolutional layers, useful

to extract features from the received data. Kernels with shape (2,2) are used to find

patterns between data contained in rows close to each other. This is important be-

cause in this way the convolutional filters work with information provided by pairs

of axes of the same inertial sensor. This is another reason which explains why data

coming from inertial and environmental sensors were divided into two different stacks:

the application of these convolutional layers to matrix rows containing semantically

different information shouldn’t lead to performance improvements. A Batch Normal-

ization layer is added before each Convolutional one to speed up the model training.

After the Convolutional layers, inertial data flow through different FC layers before

reaching the Concatenate one. Environmental data already consist of handcrafted

features, so they don’t pass through any Convolutional layer.

Figure 3.10 shows the structure of the classifier which uses LSTM and FC layers.

After the LSTM layers, raw and environmental data pass through FC layers. The

only difference is that environmental information flows through two recurrent layers

instead of only one. Finally, Figure 3.11 presents a combination of the last two

described structures.

3.5 Context refinement

Information provided by the Context Aggregation module can be used to improve

the system performances. In this work, two approaches were tested. In the first

case, once the activity recognition classifier generates its prediction, the Context

Refinement module refines this inference using context information. In the second

case, context data such as position and posture of the users are included directly

in the feature vectors used to train the machine learning algorithms. The following

sections describe the implementation of these approaches.
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Figure 3.8
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Figure 3.9
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Figure 3.10
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Figure 3.11
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3.5.1 Use of context data to refine the classifier predictions

The activity recognition classifier can predict a wrong activity, that is not consis-

tent with the context surrounding the user. To mitigate this problem, the Context

Refinement module applies knowledge-based reasoning on context data in order to

exclude from the probability distribution resulting from the activity recognition al-

gorithm those activities which are not context-consistent. After this operation, the

probability distribution is re-normalized.

In this work, three approaches were developed and combined:

• Micro-areas (M)

• Sensors (S)

• Posture (P)

Using the Micro-areas approach, the probability related to an activity is discarded if

the user is not in one of the semantic areas in which the activity can be performed

(WASHING DISHES in KITCHEN for example). This positioning information is

known a priori by the system and will be illustrated in Figure 5.2. Furthermore, for

some activities the positioning information used is based on the semantic area in which

are placed environmental sensors: for example, a user can perform WATCHING TV

only if he is in the same semantic area in which is placed the television smart-plug.

With the Sensors approach, the status of the sensors is used to perform the context

refinement. For example, a user can perform EATING if he is sitting on a chair or

can perform WATCHING TV if the television smart-plug is active. Such reasoning

can’t be used for COOKING and the cooker smart-plug, because not necessarily a

user stop to perform this action at the same moment in which the sensor is turned

off.

Using the Posture approach, the activities probabilities are discarded based on

the users’ posture. For example, a user can’t perform WASHING DISHES if he is

sitting and can’t perform EATING if he is not sitting.
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3.5.2 Use of context data as features

Another possible usage of context data consists of providing this information to the

activity recognition classifier directly as input together with the environmental sen-

sors handcrafted features. Even in this case, different approaches were tested and

combined.

• Micro-areas (M): a new feature value is added generating a digit that iden-

tifies one of the smart-home areas. This value is then mapped in a number

between 0 and 1.

• Posture (P): a new feature value is added generating a digit that identifies the

sitting posture (1) and the not sitting one (0).

The comparison between the results obtained by these approaches and the ones de-

scribed in Section 3.5.1 are illustrated in Section 5.3.3.



Chapter 4

Semi-supervised extension of the

system

The system described in Chapter 2 has been extended with semi-supervised learning

techniques. The idea is to train the activity recognition algorithm with a set of

examples which is relatively small. In this way, it is possible to lighten the dataset

collection and annotation operations. Through the active learning technique is then

possible to label new data in real-time thanks to the directly interaction with the

users. Incremental machine learning algorithms do not need to be trained receiving

as input the whole dataset at once, but they can be updated over time with these

newly labeled examples. This is important because retrain a classifier on the whole

dataset to which are added new instances would be inconvenient. Furthermore, the

active learning technique enables the system to adapt itself to the users’ behavior.

This happens because, when the system is uncertain about its prediction, it can ask

the user related to this uncertainty which is the activity he is performing between the

two most likely ones. The feedback of the user is then used to update the activity

recognition classifier.

Section 4.1 illustrates how the system architecture was extended to introduce semi-

supervised learning techniques. Section 4.2 instead describes how such a solution was

implemented.

53
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4.1 Architecture extension

To extend the system with semi-supervised learning techniques, it was necessary to

introduce a new module called Prediction Confidence Evaluation (PCE). In Figure

4.1 it is possible to notice how the architecture described in Chapter 2 has been

extended. Once the Context Refinement module refines the predictions emitted by

the activity recognition classifier, the PCE module has to evaluate the uncertainty

level of this inference. This is measured through the entropy value related to the

probabilities vector generated as output by the Context Refinement module. This

vector contains the probabilities related to the activities detectable by the system after

the not context-consistent ones were discarded. If the system is uncertain between two

possible activities, then it is explicitly asked to the user which of those is the correct

one through an Android application developed for tablet in parallel works [24, 25].

The user can also answer through the graphic interface that none of the two activities

is the correct one. This technique that allows labeling new data in real-time based

on the users’ feedbacks is called active learning. Since the deep learning classifiers

are incremental algorithms, then it is possible to update the neural networks through

these new annotated instances.

The refinement of the predictions emitted by the Activity Recognition module

before evaluating the uncertainty of the system allows reducing the number of inter-

actions with the users. This result is demonstrated in Section 5.4.3. This happens

because the refinement based on context data avoids asking something to the users

when at least one of the two most probable activities is logically impossible. For exam-

ple, if the classifier is uncertain about the activities WATCHING TV and COOKING,

then it is easy to detect if one of them is logically impossible based on context data

such as the position of the user inside the smart-home. So, if the user is in the

KITCHEN area, then the activity WATCHING TV will be discarded because the

television smart-plug is in the LIVING ROOM area, while the activity COOKING

will be maintained in the probabilities vector since the cooker is in the KITCHEN

area, too. Discarding one activity, after the normalization of the probabilities vector,

all the other activities will be more likely. In this case, the probability of the COOK-

ING activity will increase and is less probable that the system will remain uncertain

about the action performed by the user.
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Figure 4.1: Extended system architecture.
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In this work, we also introduced into the system the self-learning paradigm. With

this technique, when the system is very confident about its inference, the feature

vector related to the predicted activity can be used to update the incremental clas-

sifier, using the prediction itself as label. Even in this case, the predictions context-

refinement is applied before passing the probabilities vector emitted as output by the

activity recognition classifier to the PCE module. In this way, the uncertainty of the

system should decrease thanks to the elimination of probabilities related to logically

impossible activities. Unfortunately, as already happened in another mentioned work

[11], this approach doesn’t improve the performances of the system. Such a result

will be described in detail in Section 5.4.

4.2 Implementation

To extend the system architecture with semi-supervised learning techniques, it is

necessary to add to the system the new module called PCE that will work on the

refined prediction emitted by the Context Refinement module. This means that

the operations applied by the other modules of the system don’t change with this

extension. In this work, two methods were developed and evaluated: active learning

and self-learning. As already mentioned, thanks to the use of incremental algorithms,

it is possible to update the activity recognition classifier with data labeled with these

techniques.

When the Context Refinement module refines the probabilities vector predicted

by the activity recognition classifier, then the PCE module computes the entropy

value of this vector using the python library scipy.stats. The entropy value of a

probability distribution can be used to measure the uncertainty of the distribution

itself. It measures the heterogeneity of the values contained in the distribution. The

uncertainty of the prediction will be lower when the entropy value related to the

probabilities vector tends to zero. This happens when, inside the vector, only one

probability has a value that tends to 1, while the other probabilities tend to zero.

The uncertainty of the prediction will be higher when the entropy value is greater

than zero. This happens when inside the vector different probabilities have similar

values greater than zero.
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The level of uncertainty of a prediction can be used to determine whether a semi-

supervised technique could be applied. If the entropy value is lower than a fixed

threshold σ, then the prediction is considered certain and the PCE module applies

the self-learning method: the feature vector that generated the prediction is labeled

using the most likely activity contained in the vector emitted by the Context Refine-

ment module. This newly annotated example can be used to update the incremental

activity recognition classifier. It is important to note that computing the entropy

of the vector after the context refinement operation should reduce the uncertainty

of the inference. If the entropy value is greater than a fixed threshold α, then the

prediction is considered uncertain and active learning is performed. Through the

Android application developed for tablet, it is asked to the user which is between

the two most likely activities the correct one. The user can also affirm that none

of them is the activity he was performing. If the user answers with one of the two

proposed activities, then his feedback is used to label the feature vector related to

the statistical inference. Then, this annotated example can be used to update the

activity recognition algorithm. Even in this case, it is useful to apply the context

refinement before the uncertainty evaluation performed by the PCE module. This

choice allows reducing the number of interactions between the system and the users.

This result will be shown in Section 5.4.3.

Once a feature vector is labeled thanks to one of the previously described tech-

niques, it is possible to decide whether to update immediately the activity recognition

classifier with it or to add it to a batch that will be filled with other examples. In

the second case, when the batch reaches a certain size, it can be used to update the

machine learning algorithm. Updating the classifier with a single example at a time

allows improving faster the inference performances related to the activity of that in-

stance. On the other hand, the neural network will modify its weights based on the

example of a single activity and this means that there could be a worsening of the

performances regarding the other activities. If the classifier is updated with a batch

that contains examples of different activities, then the just described issue should be

avoided. On the other hand, the performance improvement will be slower since the

neural network has to update its weights considering examples related to different

detectable activities. The evaluation of these methods is described in Section 5.4.



Chapter 5

Experimental evaluation

In this chapter the results of the experimental evaluation performed during this work

are presented. Sections 5.1 and 5.2 respectively describe the dataset and the metrics

used to experimentally evaluate the system. Sections 5.3 reports the multi-inhabitant

classifier evaluation, by comparing the results varying the type of neural network and

the context data used to perform the data association and the context refinement.

Section 5.4 describes the evaluation of the semi-supervised extension of the system.

5.1 Considered dataset

To evaluate the system we used a dataset already collected in past works at Every-

Ware Lab, whose openspace was used to simulate a smart-home environment. The

lab was divided into 6 semantic areas, each representing a different room of the habi-

tation (hall, kitchen, dining room, medicine room, living room and office). Different

environmental sensors were installed to monitor the interaction of the users with

their surroundings: 14 BLE beacons, 5 magnetic sensors, 9 pressure sensors and 2

smart-plugs. Furthermore, incoming and outgoing mobile calls necessary to perform

some high-level activities were simulated through a dedicated Android application.

In Figure 5.1 it is shown how the smart-home was divided into semantic areas and

how environmental sensors and beacons were placed during the dataset acquisition.

During the acquisition, 12 different subjects were involved. Both single- and multi-

inhabitants scenarios were simulated, recording activities performed at the same time

58



CHAPTER 5. EXPERIMENTAL EVALUATION 59

by one, two or four subjects. Before the acquisition, the users were instructed about

the sequence of activities that they had to perform. To increase the dataset variabil-

ity, the users were free to execute each activity in their own way. Overall, the dataset

was built through the acquisition of 12 scenarios in a single-inhabitant setting, 10

scenarios with 2 subjects inside the habitation and 10 scenarios with 4 subjects in-

volved. During the deployment of the system in a real-time setting, we realized that

in these scenarios the posture of the users was never useful to correctly perform the

data association problem. In particular, when a user is sitting on a pressure mat in a

specific smart-home area performing a certain activity, all the other users present in

the same area are sitting on other pressure mats and are performing the same action.

For this reason, in the experimental results the posture context information seems to

be useless, but in Chapter 6 we’ll see that in other multi-inhabitant scenarios it is

essential. The activities collected in the dataset are the following:

• ANSWERING PHONE: the user takes a smartphone from his pocket and presses

a button that generates an event associated with an incoming call. Finally, he

puts the smartphone to his ear

• CLEARING TABLE: the user collects plates, glasses and cutlery from the table,

puts the bottles in the fridge and takes the tablecloth

• COOKING: the user can warm the milk or cook pasta. In the first case, he

takes a pot from the dedicated drawer, he fills it with milk taken from the

fridge and warm through the cooker. In the second case, he takes a pot from

the dedicated drawer, he fills it with tap water warm through the cooker. In

a second moment, salt and pasta taken from the pantry are added. The user

waits for the pasta cooking and then he can drain the pasta and eventually

dress it with condiments taken from the fridge

• EATING: the user sits on a DINING ROOM chair and simulates to eat what

he cooked

• GETTING IN: the user enters in the smart-home, takes his coat off and hangs

it on the coat hanger
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• GETTING OUT: the user puts on the coat taken from the coat hanger and

then he leaves the smart-home

• MAKING PHONE CALL: the user takes a smartphone from his pocket and

simulates the composition of a telephone number. Then he presses a button

that generates an event associated with an outgoing call. Finally, he puts the

smartphone to his ear

• PREPARING COLD MEAL: the user can prepare a sandwich or a salad. In

the first case, he takes some bread from the pantry, he cuts it with a knife taken

from the dedicated drawer and then he fills it with food taken from the fridge.

In the second case, he puts some salad from the fridge into a bowl. Oil and salt

taken from the pantry are added to the salad, which is then mixed with cutlery

taken from the dedicated drawer

• SETTING UP TABLE: the user puts the tablecloth on the table, then he puts

on it also plates, glasses, napkins, cutlery and one or more bottles taken from

the fridge

• TAKING MEDICINES: the user takes medicine from the dedicated drawer and

assumes it. Eventually, he can perform this action using a glass filled with water

taken from the fridge

• USING PC: the user sits on the OFFICE chair and simulates the usage of the

computer writing on the keyboard and moving the mouse

• WASHING DISHES: the user simulates to wash dishes with his hands

• WATCHING TV: the user turns on the television and sits on a LIVING ROOM

chair

Figure 5.2 shows the semantic areas in which each activity could or couldn’t be

performed (respectively through numbers 1 and 0) by the users during the dataset

acquisition. This modeling derives from common sense knowledge and it is exploited

by the Context Refinement module to refine the inferences of the activity recognition

classifier.
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Figure 5.1: Division of the smart-home into semantic areas and position of the envi-
ronmental sensors.
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Figure 5.2: Semantic areas in which each dataset activity can (1) or cannot (0) be
performed.

5.2 Metrics

To evaluate the predictions of a learning model, it is necessary to give it as input

some examples and then compare the classifier’s output with the ground truths of

such examples. In this way, it is possible to compute:

• TP (True Positive): how many times an activity is predicted in the right way

• FP (False Positive): how many times an activity is predicted even if it wasn’t

performed by the user

• FN (False Negative): how many times an activity is not predicted

Based on these values, it is possible to compute metrics which are well known in

literature, such as:

• Precision: the percentage of an activity correct predictions on the total number

of predictions which have the same activity as result. It is computed as

Precision =
V P

V P + FP
(1)

• Recall: the percentage of an activity correct predictions related to the total
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number of predictions performed on examples of the same activity. It is com-

puted as

Recall =
V P

V P + FN
(2)

• F1: the harmonic mean of precision and recall, which allows to obtain a sum-

mary about the quality of the classifier’s predictions. It is computed as

F1 = 2 · Precision ·Recall
Precision+Recall

(3)

5.3 Multi-inhabitant classifier evaluation

The evaluation of the activity recognition classifier is computed through the leave-

one-subject-out cross-validation technique. With this approach, shown in Figure 5.3,

the dataset examples are divided based on the user who generated them. At each

iteration of the process, data related to one of the users are used as test set, while

the others are the training set used to train the classifier. At the end of each step,

the mean of the activities f1 score is computed based on the predictions made by

the classifier on the test set. At the end of the process, the mean of the f1 scores of

each step is computed. This technique provides an evaluation of the quality of the

predictions, but also on the generalization ability of the system, i.e. how much the

system is effective when it receives as input examples of activities performed by users

not considered during the training.

The best performances classifier obtained during the evaluation process has the

following properties:

• as input, it receives handcrafted feature both for inertial and for environmental

sensors, segmented into 14 seconds temporal windows

• to perform the data association and the context refinement, it uses only the

context data provided by the Micro-localization module

• the deep neural network contains a combination of convolutional and recurrent

layers
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Figure 5.3: Example of leave-one-subject-out cross-validation.

We already mentioned why the posture information is useless with our dataset to

perform the data association. In Section 5.3.3, it will be explained why this happens

also for the context refinement process.

Figure 5.4 and Table 5.1 show respectively the confusion matrix and the f1 score

values obtained by the most performing classifier. In the confusion matrix, the value

in position (i,j) describes the percentage of times in which the j label was predicted

while the ground truth was the i label. The confusion matrix allows making different

remarks:

• ANSWERING PHONE, EATING, MAKING PHONE CALL, USING PC

and WATCHING TV: these activities tend to be detected without problems,

probably because each of them is recognizable based on the environmental sen-

sors with whom the user has to interact when he performs the action. For

example, EATING could be easy to recognize, because it’s the only activity

which is performed in DINING ROOM sitting on a pressure mat

• CLEARING TABLE, COOKING, PREPARING COLD MEAL,

SETTING UP TABLE e WASHING DISHES: all of these activities can be per-

formed inside the KITCHEN area and require the interaction of the user with

some environmental sensors. Furthermore, some activities share the interaction
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with the same sensors (e.g., both preparing a cold meal and setting up the ta-

ble require the opening of the fridge). Probably, these activities are confused

because the system hasn’t enough detailed context information to associate for

sure the environmental events generated in the KITCHEN area when more users

are there. So, it could happen that while a user is performing the action WASH-

ING DISHES the system associate to him the event related to the turning on

of the cooker. In such a case, the system could infer the COOKING activity

for this user

• GETTING IN e GETTING OUT: these activities don’t require an interaction

of the user with environmental sensors, but they have similar gestures and the

system can confuse them

• TAKING MEDICINES: this activity is confused with a low percentage with

different dataset activities, probably because it is an action which can be per-

formed in different semantic areas of the smart-home (e.g., sitting on a chair of

the dining room or standing near the medicine cabinet of the medicine room)

From the previous analysis, we can notice that, generally, the system confuses

activities such that context information is not sufficient to perform a certain data as-

sociation of the environmental events characteristic for those activities (the cooker for

COOKING, the fridge for SETTING UP TABLE or PREPARING COLD MEAL).

5.3.1 Posture classifier evaluation

To detect the users’ posture, a low-level activities classifier was trained. It can detect

two possible postures: SITTING and NOT SITTING. To train this statistical model,

the same dataset used to build the high-level activities classifier was considered. The

only difference is that, in this case, only inertial data were used. Each feature vector

was labeled based on its high-level activity annotation. EATING, USING PC and

WATCHING TV labels were mapped into the SITTING one. The vectors related to

the activities MAKING PHONE CALL and ANSWERING PHONE were discarded

since those activities can be performed both with a sitting and with a not sitting

posture. The other labels were mapped into the NOT SITTING annotation.
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Figure 5.4: Confusion matrix of the activities obtained by the most performing clas-
sifier.
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precision recall f1-score support
ANSWERING PHONE 0.99 0.99 0.99 1100

CLEARING TABLE 0.86 0.88 0.86 554
COOKING 0.83 0.79 0.79 996

EATING 0.99 0.99 0.99 2897
GETTING IN 0.83 0.90 0.86 289

GETTING OUT 0.82 0.59 0.67 212
MAKING PHONE CALL 0.90 0.97 0.93 1034

PREPARING COLD MEAL 0.71 0.65 0.66 640
SETTING UP TABLE 0.77 0.76 0.75 674
TAKING MEDICINES 0.72 0.81 0.74 443

USING PC 0.99 0.99 0.99 1681
WASHING DISHES 0.95 0.82 0.88 994

WATCHING TV 1.00 0.98 0.99 4475
avg / total 0.94 0.92 0.93 15989

Table 5.1: F1 scores obtained by the most performing classifier.

Figure 5.5 and Table 5.2 show respectively the confusion matrix and the f1 score

values obtained by this low-level classifier, using data segmented into 16 seconds

window size. We can notice that in the 11% of cases, the posture NOT SITTING is

confused with the SITTING one. This is mainly due to the following problem: very

static activities as COOKING (that during its execution requires to wait until the

water boils) sometimes are confused with WATCHING TV by the low-level classifier.

In such cases, the wrong detected posture will be SITTING, when instead it should be

NOT SITTING. To solve this problem, it should be necessary to train the low-level

classifier giving it also examples labeled as STILL STANDING, i.e. activities in which

the user is still standing and not walking. This should reduce the number of times

in which standing and static activities as COOKING bring the low-level classifier to

predict SITTING. Another problem is that sometimes the low-level classifier confuses

TAKING MEDICINES with EATING, because of their common gesture of drinking

from a glass of water. Also in these cases the detected posture will be SITTING

instead of NOT SITTING. Another possible solution to this problem will be explained

in Chapter 7.



CHAPTER 5. EXPERIMENTAL EVALUATION 68

Figure 5.5: Confusion matrix of the postures obtained by the low-level classifier.

precision recall f1-score support
NOT SITTING 0.89 0.89 0.89 4150

SITTING 0.94 0.94 0.94 7796
avg / total 0.92 0.92 0.92 11946

Table 5.2: F1 scores obtained by the low-level classifier.



CHAPTER 5. EXPERIMENTAL EVALUATION 69

Figure 5.6: Comparison between different types of context information used to per-
form the data association.

5.3.2 Data association evaluation

This section analyzes the impact of context information to perform the data asso-

ciation. The different types of context information described in Section 3.2.3 were

considered and combined. Figure 5.6 shows the f1 scores obtained by the classifier

using different combinations of context information in order to perform the data as-

sociation. It is possible to notice that the best performances are obtained using only

the information provided by the Micro-localization module. This means that the

usage of the posture worsens the results. We already mentioned that the scenarios

used to collect the dataset do not contain examples in which the user posture is use-

ful to correctly perform the data association. This leads to the result that posture

information doesn’t improve the performances of the system on this dataset. Fur-

thermore, the classification errors of the low-level classifier generates wrong feature

vectors during the data association process. These errors will be propagated to the

activity recognition task, worsening the results.

Figure 5.7 compares the most promising result with hypothetical results, which

can be obtained with a precisely detected posture of the users or with a perfect

data association. It’s important to note that, the perfect data association suffers
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Figure 5.7: Comparison between the most promising results related to data associa-
tion using context information.

from the following problem: when a user activates a sensor which is then disabled

by another user, then the feature vectors related to the first user can be wrong,

as explained in Section 3.2.3. The figure shows that the posture, even if perfect,

doesn’t improve the performances of the data association process obtained using

only the information provided by the Micro-localization module. This happens for

the previously discussed reasons. Furthermore, the bar related to the Perfect Data

Association (PDA) represents the f1 score obtained using a perfect assignment of the

environmental events to the users.

5.3.3 Context refinement evaluation

This section analyzes the usage of context data to perform the context refinement.

The analysis considers all the possible combinations between the different types of

data association with the different types of context refinement. The three types of

context refinement approaches already described in Section 3.5.1 were considered and

combined. Figure 5.8 shows the f1 scores obtained with the Perfect Data Association

varying the context information used to perform the context refinement. It is possible

to notice that the combination of all the context data (with perfect information



CHAPTER 5. EXPERIMENTAL EVALUATION 71

Figure 5.8: Comparison between different types of context information used to per-
form the context refinement, combining them with the Perfect Data Association.

about the posture of the users) could bring to the best results. Obviously, these

results are hypothetical because they use perfect data about the assignment of the

environmental sensors and the users’ posture. Anyway, this allows us to understand

that, in the future, an improvement of the data association and the detection of the

users’ posture can allow the system to reach better performances.

The Figures 5.9 and 5.10 show the use of different types of context information

in order to perform the context refinement, combining them respectively with sev-

eral combinations of context information for data association. Since the best results

concern the data association performed using the micro-areas approach, we can focus

on Figure 5.11, which is only about these results. We can notice that the best not-

hypothetical result is obtained using only context data about the micro-localization

both for the data association and the context refinement. Combine this context source

with the one regarding the environmental sensors’ status doesn’t change much the

overall f1 score. This probably happens because of cases in which there are wrong

environmental sensors associations: for example, if the television smart-plug active

status is not assigned to the user who is performing WATCHING TV, then the con-

text refinement will remove that activity from the possible results of the system.
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Figure 5.9: Comparison between different types of context information used to per-
form the context refinement, combining them with individual context approaches for
data association.

Furthermore, the addition of posture information generates a deterioration of the

results for the same reasons explained in Section 5.3.1. Finally, also in this case, a

perfect information about the posture of the users could help the system to improve

its performances.

Figure 5.12 compares the most promising result with hypothetical results, which

can be obtained with combinations of a perfect detected users’ posture and a perfect

data association. The best not-hypothetical result uses only the context information

provided by the Micro-localization module both for the data association and the

context refinement. We already noticed that with perfect information about the users’

posture, this result would be more positive. The last bar of the figure shows the best

f1 score value which we can reach considering the Perfect Data Association and all the

available context data (including the information about the perfect users’ posture) to

perform the context refinement. We can notice how the proposed solution achieves

results that are not so far from the best performances that can be hypothetically

reached on our dataset. Furthermore, these results can be improved with the solutions

that will be proposed in Chapter 7.
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Figure 5.10: Comparison between different types of context information used to per-
form the context refinement, combining them with hybrid context approaches for data
association.

Figure 5.11: Comparison between different types of context information used to per-
form the context refinement, combining them with the micro-areas context approach
for data association.
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Figure 5.12: Comparison between the most promising results related to the combina-
tion of data association and context refinement.

5.3.4 Deep learning evaluation using handcrafted features

In this section different deep learning algorithms are analyzed using handcrafted fea-

tures and the best not-hypothetical combination of data association and context re-

finement described in the previous sections. So, both the data association and the

context refinement are obtained using only the information related to the users’ po-

sition inside the smart-home. Four different types of deep learning models (already

described in Section 3.4) were evaluated varying the data segmentation windows size:

• FC Layers: a model which contains only fully connected layers

• CNN + FC Layers: a model which contains convolutive layers followed by

fully connected layers

• LSTM: a model which contains only LSTM recurrent layers

• CNN + LSTM: a model which contains convolutive layers followed by LSTM

recurrent layers

Figure 5.13 shows the results of this analysis. We can notice that the CNN + LSTM

model achieves a little improvement with respect to the other models, allowing also
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Figure 5.13: F1 score values related to the four neural networks tested with hand-
crafted features, varying the data segmentation window size.

the use of a shorter window size. Furthermore, the models using convolutive layers

seem to have better performances when a small window size is considered with respect

to the algorithms which don’t use this type of layers.

The performances of the CNN + LSTM model which uses 14 seconds segmentation

windows are shown in Figure 5.4 and in Table 5.1. The explaination of such results

can be found at the beginning of the Section 5.3.

Context data as features Figure 5.14 shows the comparison between the f1 score

values obtained using context data for the context refinement or/and directly during

the classifier training. We can notice that, also giving the context information directly

in the feature vectors, the use of only micro-areas data allows obtaining better results

rather than using also users posture information. Anyway, using context data as

features, the f1 score values are increased of a couple of percentage points.

On the other hand, the context refinement leads to even better results. The last

two bars of the figure show the difference between using context data both for context

refinement and as features and using them only to perform the context refinement.

This last option allows the model to achieve the best performances. Furthermore,
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Figure 5.14: Comparison between f1 score values obtained using context data for
the context refinement or/and directly during the training of the activity recognition
model.

the use of context data as features has an intrinsic scalability problem: the growth of

the number of context sources will make the activity recognition classifier ever more

complex. Instead, the refinement of the statistical predictions will be always applied

on a recognition algorithm trained only on inertial and environmental data.

5.3.5 Deep learning evaluation using raw data

It is important to clarify that the size of the windows used to segment data will affect

the activity recognition classifiers’ input shape. We have already mentioned that the

inertial data will be given as input through a matrix that depends on a variable called

samples num. This variable value indicates the number of inertial measurements

collected inside a single segmentation window. We have to consider that reducing

the window size, also the samples num value will be decreased. So, using the same

neural network structure, varying the window size will affect the relative complexity

of the model. For example, if the first FC layer of the classifier contains 512 neurons,

the complexity of the model will be relatively greater when are used segmentation

windows of 14 seconds instead of 16 seconds ones. This happens since in the first case
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Figure 5.15: F1 score values related to the four neural networks tested with raw data,
varying the data segmentation window size.

the input will be composed by matrices of shape (9, 444), while in the second case the

matrices shape will be (9, 508). Furthermore, the results of this section are influenced

by the hardware constraints of the machine used to perform the tests. CNN + FC

Layers, LSTM and CNN + LSTM structures couldn’t be too complex during the

experiments, so their results would be increased without these constraints. Despite

these issues, neural networks trained with raw data allow us to make some interesting

considerations if compared with the ones trained with handcrafted features. These

observations will be described in the next section.

Figure 5.15 shows the f1 scores obtained by the four different neural networks.

Because of the hardware constraints, the FC layers structure obtained the best results.

The most important thing to notice is that the LSTM neural networks achieve their

best performances with a lower segmentation window size.
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Figure 5.16: Comparison between the best model obtained using handcrafted fea-
tures, using raw data and using another incremental algorithm, such as the Stochastic
Gradient Descent classifier.

5.3.6 Comparison between handcrafted features and raw data

In this section, we compare the best results obtained with handcrafted features and

raw data. Furthermore, we even consider the performance obtained with an incre-

mental algorithm different from the neural networks. Figure 5.16 shows these results.

We can notice that the use of handcrafted features or raw data allows the system to

achieve similar results. This means that the handcrafted features chosen for this work

can be considered good enough in the activity recognition field. Furthermore, neural

networks can achieve better performances rather than other incremental algorithms

such as Stochastic Gradient Descent (SGD) or Näıve Bayes classifiers. In Figure 5.16

only the SGD classifier is considered among other incremental algorithms since it

obtained the best results excluding deep learning methods.
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5.4 Semi-supervised extension evaluation

In this section, the best model obtained by the previous analysis is used to perform

the hyperparameters tuning regarding semi-supervised techniques. Three hyperpa-

rameters were tuned:

• Active learning entropy treshold: when the probabilities vector emitted by

the activity recognition model has an entropy value greater than this threshold,

then the system asks the user to confirm which activity he’s doing. The feature

vector related to this prediction is labeled based on the user’s feedback and used

to update the classifier. The obtained tuned value for this parameter is 0.6

• Batch size: the number of samples labeled with the user’s feedbacks used to

fill the batch which will be used to update the classifier. The obtained tuned

value for this parameter is 32

• Self learning entropy treshold: when the probabilities vector emitted by the

activity recognition model has an entropy value lower than this threshold, then

the feature vector related to this prediction is labeled based on the most proba-

ble inferred activity and used to update the classifier. During the experiments,

the use of this parameter didn’t lead to performances improvements

Furthermore, some experiments have shown the benefits that the context refinement

introduces when semi-supervised techniques are used.

To conduct these experiments, at the beginning, the activity recognition classifier

is trained only on data regarding a single subject of the dataset. Then, it is evaluated

how the model improves its performances thanks to incrementally updates made

on data concerning all the other subjects. This process is performed through the

leave-one-subject-out cross-validation technique to obtain more robust results. In

particular, these are the steps followed to conduct the experiments:

• for each subject of the dataset, all its data are used to train an activity recog-

nition classifier. In this way, 12 different classifiers are built.

• for each classifier, it is built a test set with all the dataset examples that are not

related to the user whose data were already used to train the classifier. These
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examples are shuffled and divided into windows of 800 samples, built with an

80% of overlap. Each sample of each window is used to test the classifier.

The statistical model is eventually updated through semi-supervised techniques

during these tests, based on the hyperparameters mentioned before. When all

the examples of a single window has been used to test the classifier, then it is

possible to compute the f1 score obtained by the classifier on such examples.

• finally, the f1 mean score of each window is computed as the mean of the f1

scores obtained by the 12 classifiers related to that same window

In Figure 5.17 we can notice how the combination of active learning (with an

entropy threshold of 0.6) and context refinement allows the system to achieve better

performances, using a batch size parameter equals to 32 and without using any self-

learning techniques. Furthermore, in Figures 5.18 and 5.19 we can see that the context

refinement reduced also the number of user’s feedbacks required by the system during

the experiments.

Another important aspect is that we can compare the classifier trained on the

whole training set, with the classifier trained through semi-supervised techniques. The

first classifier is the one obtained through the experiments conducted before this semi-

supervised section. It reached an overall f1 score of 0.9330 (as we have already seen in

Figure 5.14). Thanks to Figure 5.17, we can notice that the classifier trained through

semi-supervised techniques reached an overall f1 score of about 0.9250. Generally,

fully supervised algorithms reach better performances than the semi-supervised ones.

Their drawback is the annotation of the examples of the whole dataset. This semi-

supervised solution allows achieving similar performances of the supervised one on

our dataset. The benefit of this solution is that only the examples of a single subject

has to be annotated. Its drawback is that before achieving results similar to the

supervised solution, we have to wait for a certain number of classifier updates.

5.4.1 Active learning

Figure 5.20 shows how the f1 mean score trend changes over time, varying different

active learning entropy thresholds. It is possible to notice that the best results are

obtained with thresholds between 0.4 and 0.6. The Figures 5.21 and 5.22 show how
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Figure 5.17: F1 score mean trend, comparing the usage of active learning and/or
context refinement.

Figure 5.18: Variation over time of the user’s feedback percentage requests, comparing
the usage of active learning and/or context refinement.
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Figure 5.19: A zoomed version of the Figure 5.18.

the user’s feedback percentage requests trend changes over time, varying different

active learning entropy thresholds. Between the best results of Figure 5.20, here the

value 0.6 is the one which reduces more the questions ratio. It is important to see

that the greatest decrease in the number of feedback requests came after the first

window of 800 samples. This means that, during the evaluation of this window, the

system tends to ask frequently feedbacks to the user (about 17% of times with a 0.6

threshold). After the first 800 samples, the activity recognition model seems to be

already enough certain about its predictions thanks to the previous requests, indeed

the percentage is reduced until about the 5% of the number of samples.

5.4.2 Batch size

This parameter establishes how many feature vectors labeled thanks to user’s feed-

backs will fill the batch used to update the activity recognition classifier. Figure 5.23

shows that a batch size equals to 1 creates difficulties during the updates and doesn’t

improve very much the model performances over time. Probably, this happens since

the classifier at each update changes its weights based on the example of a single

activity and this can modify weights that are important for the prediction of other
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Figure 5.20: F1 score mean trend, comparing different active learning entropy thresh-
olds.

Figure 5.21: Variation over time of the user’s feedback percentage requests, comparing
different active learning entropy thresholds.
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Figure 5.22: A zoomed version of the Figure 5.21.

activities. The best results are instead obtained with a batch size value equals to 32.

On the other hand, we can see in Figures 5.24 and 5.25 that a batch size value

equals to 1 decreases a lot the percentage of user’s feedback requests. This happens

probably because the classifier receives updates more frequently since it doesn’t need

to fill the batch with more labeled examples. In this way, frequent updates generate

a faster improvement of the performances at the beginning of the process, as we can

see in Figure 5.23 for the f1 score values related to about the first 2000 samples. This

improvement allows the system to reduce faster also the questions ratio. At the same

time, the figures suggest that a batch size equals to 1 can lead the classifier to be sure

about wrong predictions. Indeed, the decreasing number of user requests indicates

that the algorithm is certain about its inferences, while the f1 score obtained by the

classifier does not improve very much over time.

5.4.3 Prediction refinement based on context data

As already mentioned at the beginning of Section 5.4, the context refinement allows

the system to improve the performances and to reduce the user questions ratio. In

Figure 5.17, we can see that the context refinement without the use of active learning
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Figure 5.23: F1 score mean trend, comparing different batch size values.

Figure 5.24: Variation over time of the user’s feedback percentage requests, comparing
different batch size values.
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Figure 5.25: A zoomed version of the Figure 5.24.

increases the classifier performances of about 5 percentage points. It improves by

about 2 percentage points the f1 mean score over time if used with active learning

as well. Figures 5.18 and 5.19 show that context refinement reduces also the user

questions ratio, generally with a 2 percentage points difference.

5.4.4 Self-learning

In Figure 5.26 we can see that using only the self-learning technique described in

Chapter 4 leads to lower performance. This behavior can be explained through two

examples. In the first example, the classifier is sure about the prediction of an activity

which is already easy to infer for the classifier. So, if the model is already very good

at predicting the activity WATCHING TV, another labeled example of this activity

doesn’t improve the performances. Furthermore, it is possible that, in this way, the

statistical model is updated in an unbalanced manner since the self-learning technique

will be applied only to activities that are already detectable with an high recognition

rate. In the second example, the classifier is sure about a wrong prediction. This could

happen because of activities related to similar patterns of inertial and environmental

data. So, updating the model with a feature vector labeled as COOKING while
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Figure 5.26: F1 score mean trend, comparing different self-learning entropy thresh-
olds. Note that there wasn’t any self-learning update using a threshold equals to
1e-11.

its ground truth is WATCHING TV leads to a deterioration of the results. Similar

results are obtained in [11], where self-learning never improved the activity recognition

performances.

Figures 5.27, 5.28 and 5.29 show the results obtained with the combination of self-

learning and active learning techniques. The idea is that active learning can improve

the performances of the classifier and thanks to this improvement the self-learning

could become effective. Actually, from these figures, we can understand that this

is not happening since the combination of the techniques and the use of the active

learning technique only lead to very similar results. For these reasons, the self-learning

technique was not included in the system.



CHAPTER 5. EXPERIMENTAL EVALUATION 88

Figure 5.27: F1 score mean trend, comparing the use of self-learning technique alone
or in combination with the active learning technique.

Figure 5.28: Variation over time of the user’s feedback percentage requests, comparing
the use of self-learning technique alone or in combination with the active learning
technique.
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Figure 5.29: A zoomed version of the Figure 5.28.



Chapter 6

Implementation of a demo

A demo was set up at EveryWare Lab to test the system in a real-world setting,

in which, instead of dataset examples, the system processes data coming in real-

time from environmental and inertial sensors while the users are performing different

activities. The division of the smart-home into the semantic areas during the de-

ployment of this prototype was different than the one used to collect the dataset

(e.g., the KITCHEN and the DINING ROOM areas were collapsed to the only DIN-

ING ROOM area). In this work, the existing demo is being modified following what

the experimental results described in Chapter 5 suggested. During the development

of the demo, some issues emerged conflicting with these experimental results, mainly

because of the data used to train the activity recognition classifier. These problems

led us to modify the behavior of the system and paved the way for new future works.

Section 6.1 explains how the demo was realized using as suggestions the experi-

mental results obtained in this work. Section 6.2 shows the issues encountered during

the development of the demo and how they were solved. Finally, Section 6.3 describes

a multi-inhabitant scenario used to test the system in a real-time setting.

6.1 Demo structure

In this work, the existing demo realized at EveryWare Lab is being modified following

what the experimental results described in Chapter 5 suggest. Figure 6.1 shows the

architecture of the real-time system. Inertial and positioning data are collected by

90
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the application installed on the smartwatch of each user, while environmental sensors

send information about the activated events to the smart-home gateway. All these

data are sent to the Data Collection server that records them on a database. The

Demo App gets from the database the information it needs to predict the high-level

activities performed by the users. The Tablet Broker module developed in [25] collects

the inferences of the Activity Recognition module and evaluate if they are certain or

uncertain. Based on this decision, the Tablet App developed in [24] will display the

activities performed by the users or asks them feedbacks regarding what they are

doing. These feedbacks are used to update the activity recognition classifier. The

following sections will describe in detail how each software component of the system

works in a real-time setting.

6.1.1 Smartwatch App

Home Watch is the name of the Android application installed on the smartwatch of

each user and used to collect inertial and positioning data. Each user has to wear

the smartwatch on his dominant arm and, after the application is started, he has to

insert a unique numeric ID. This process allows assigning automatically to the users

inertial and positioning data collected by each smartwatch. The gathered inertial

data come from accelerometer, gyroscope and magnetometer while positioning data

are collected through the Bluetooth and WiFi antennas present on the smartwatches,

that can detect in this way the signals emitted by BLE Beacons and WiFi access points

installed inside the smart-home. These data are then sent to the Data Collection

server that will record them on a database.

6.1.2 Smart-home gateway

The environmental sensors are handled through the Z-Wave wireless protocol. Thanks

to a DomoticZ client, each environmental sensor is configured so that, when an event

occurs, this information is sent using REST methods to a JavaScript server deployed

on the smart-home gateway. This server, executed through NodeJS, has to format

the received data and to send them to the Data Collection server, that will record

them on a database.
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Figure 6.1: Architecture of the real-time system.
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6.1.3 Data Collection server

The Data Collection server is implemented in Python and its purpose is to record on

a MongoDB database the data that it receives from the smartwatches of the users and

the smart-home gateway. Inertial, positioning and environmental data are recorded

in different structures. Data coming from smartwatches are recorded into a MongoDB

collection called sensorData. Each document of this collection contains information

and measurements regarding inertial and positioning data detected by a smartwatch

in a specific time interval. Data coming from environmental sensors are recorded

into a MongoDB collection called smartRoomData. Each document of this collection

contains information about an environmental event generated inside the smart-home.

6.1.4 Demo App

The Demo App is a script developed in Python, whose purpose is to monitor the users,

detecting the activities they are performing. For each user monitored by the system,

the Demo App starts two thread: followUser and analizeUser. The first one has to

detect in real-time the position of the user inside the smart-home, while the second

one uses a deep learning algorithm to recognize the high-level activities he performs.

A data structure called HomeStatus is created to record information regarding the

status of the smart-home. It memorizes the current position, posture and activity that

each user is performing, the status and the position of the environmental sensors and

who each pressure mat is assigned to. Furthermore, the HomeStatus data structure

records a buffer that contains couples of inferences related to the last 5 seconds

regarding the position and the activity of each user. These couples are appended

to the buffer if the high-level activity inference has a probability that overcomes a

fixed threshold. This process will be described in detail during the analysis of the

analizeUser thread.

followUser In this thread, the micro-localization classifier is loaded, indicating the

level of granularity that the system will use to divide the smart-home into semantic

areas. When the same semantic area is predicted by the classifier with the highest

probability for at least 4 times, then the HomeStatus is updated with the new position

of the user.
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analizeUser When the analizeUser thread starts, the single-inhabitant activity

recognition classifier is loaded by the system. Then, a series of python iterators

implements the operations described in Chapter 3 necessary to segment data extracted

in real-time from the MongoDB database into windows of 14 seconds. From each

window, handcrafted features are extracted using a context-aware data association

that considers the position of the user inside the smart-home.

Once the Context Refinement module discards the logically impossible inferences

emitted by the activity recognition classifier through the Micro-areas approach and

renormalizes the vector of probabilities associated with each detectable activity, then

the Tablet Broker module has to evaluate the uncertainty of the system about its

prediction. When the most likely activity hasn’t a value that at least twice overcomes

the 50% of probability, then the inference is discarded. Otherwise, the status of the

smart-home is updated with a new couple of inferences that contains the last micro-

localization prediction recorded in the HomeStatus and the not-discarded most likely

activity. If the probability of this activity is greater than 65%, then the prediction is

considered certain by the Tablet Broker. Otherwise, it is considered uncertain. It is

important to notice that the uncertainty of the system should be evaluated using the

entropy value of the probabilities vectors emitted by the Activity Recognition module

and then refined by the Context Refinement one. The focus of this demo was not to

test the active learning technique, so it has inherited the use of probability thresholds

from the existing application already developed at EveryWare Lab.

6.1.5 Tablet App

The Tablet App receives from the Tablet Broker module JSON data containing the

probability distributions regarding the position and the activities performed by the

users and information about possible uncertainties of the system. If the system is

certain about its inference, the Android application will display the activities that

the users are performing. As shown in Figure 6.2, if the system is uncertain about a

prediction, the Tablet App will ask the user related to this doubt which is between

his two most probable activities the correct one. Hence, the user can answer in two

ways: through a tap on the screen of the tablet or through voice control. Eventual

feedbacks of the users are then sent back by the Tablet App to the Tablet Broker
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Figure 6.2: Android activity of the Tablet App that is shown when users’ feedbacks
are required because of the uncertainty of the system.

module that can use them to update the activity recognition classifier, exploiting in

this way the active learning technique.

6.2 Demo issues

During the deployment of the real-time demo, different issues arose:

• the use of the Context Refinement module can deteriorate the overall perfor-

mance of the system

• during the execution of some scenarios, the posture context information is nec-

essary to correctly assign pressure mats to users

• the use of recurrent neural networks could be tricky in a real-time setting
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• some actions tend to be recognized when the user is going to change activity

The following four sections describe in detail each of these issues.

6.2.1 Change the prediction refinement process

In a real-time setting, the Context Refinement module currently developed in our so-

lution can lead to a worsening of the activity recognition performances. This problem

arises since the number of activities recognizable by the system is limited. For this

reason, when a subject is performing an activity that is not detectable by our frame-

work, then it could happen that the system is enough certain about a prediction that

will be necessarily wrong. The same problem arises when a user is not performing

any activity because he is in ”transition” between two actions. The Context Refine-

ment module makes the occurrences of this issue more probable. Indeed, when the

prediction refinement process is applied, there is a good chance that the most likely

activity is enough probable that it leads the Tablet Broker module to consider the

system prediction as certain.

To solve this problem, it is necessary to take into account a new class of activities

that we are going to call TRANSITION. Then, it is possible to proceed in two ways:

• train the activity recognition classifier considering even data examples regarding

the TRANSITION action

• instead of discarding logically impossible activities through the Context Refine-

ment module, these actions should be mapped to the TRANSITION activity

In our real-time system, we chose the second solution. An example can help to

explain how this solution was implemented: the WATCHING TV activity will be

mapped to the TRANSITION one if the user is not in the same semantic area of the

television smart-plug or if this sensor is not being activated. Furthermore, with this

arrangement, the TRANSITION activity will never be displayed on the Tablet App,

neither in case of a certain prediction nor if an uncertain inference occurs.
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6.2.2 Pressure mats association

The experimental results described in Chapter 5 suggest that the context information

regarding the users’ posture is not necessary to improve the performances of the data

association process. This happens since, in the collected dataset, every time a subject

is acting while he is sitting on a pressure mat, all the other users who are in the same

semantic area are performing the same action while sitting on other pressure mats.

This problem was discovered thanks to the real-time implementation of the system

and it suggests how, in machine learning solutions, it is not feasible to collect a dataset

enough rich to consider all the possible scenarios that will be faced by the system after

its deployment. Furthermore, in each dataset semantic area, at most only one activity

could be performed while sitting on a chair. For this reason, when a pressure mat

is assigned to a subject, the activity recognition classifier tends to predict the only

activity that can be performed while sitting inside the semantic area in which the

user currently is. Finally, the importance of using the users’ posture to perform the

data association process is more evident during the demo deployment because the

division of the smart-home into semantic areas used in the real-time experiments was

different than the one used to collect the dataset. For instance, the KITCHEN and

the DINING ROOM areas were collapsed to the only DINING ROOM area. This

means that the number of activities that can be performed in the DINING ROOM

area during the demo is greater than the one regarding the collected dataset. So, it

is more likely that wrong assignements of pressure mats occur when different users

are performing actions inside the DINING ROOM semantic area.

At the beginning, the Demo App assigned an activated pressure mat to the first

user whose analizeUser thread discovered that the sensor was being activated. For

this reason, a pressure mat can be wrongly assigned to a user who is not sitting on a

chair. For the reason previosuly explained, once the pressure mat is assigned to the

user, the activity recognition classifier tends to predict the only activity that can be

performed while sitting on a chair inside the user semantic area. We can consider

the following example: user U1 is EATING in DINING ROOM and he is sitting on a

chair, while user U2 is WASHING DISHES in the same semantic area. If the system

assigns the pressure mat to U2, then the predicted activity of him will wrongly be

EATING. To solve this problem, the low-level activity recognition classifier that can
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detect the users’ posture was introduced in the Demo App through the analizeSitting

thread. At the same time, the combination of Micro-areas, Posture and PosturePlus

approaches was used to perform the context-aware data association. It is important

to notice that the low-level activity recognition classifier presents some issues, already

described in Chapters 3 and 5. Possible solutions that can be developed in the future

will be mentioned in the last chapter.

analizeSitting When this thread is started, the low-level activity classifier is loaded

to detect the posture of the user. As input, it receives the inertial handcrafted features

extracted by each segmentation window. Since the data association is performed con-

sidering the users’ posture, when the detected posture is SITTING, then it is checked

if there is an active pressure mat that is not assigned to any user. In such a case, the

sensor will be associated with the user until it will be disabled.

6.2.3 Use of an LSTM-based neural network

The neural network used inside the analizeUser threads exploits a combination of

convolutional and LSTM layers. The use of recurrent layers could be tricky since

they increase the probability that the inference of the activity recognition classifier

is overfitted on data used to train the statistical model. For instance, the activity

CLEARING TABLE is easily detected by the system if it is performed by a user after

the EATING action. This happens because in the training data often the subjects

cleared the table after they ate. It is important to notice that CLEARING TABLE

is one of the activities that the system hardly recognize when a neural network that

doesn’t contain recurrent layers is used. Unfortunately, there can be also cases in

which the recurrent layers lead to wrong predictions because the same pattern of

subsequent activities can be found in different scenarios used to collect the dataset.

For example, after that a user acts WASHING DISHES, the system tends to detect

the activity USING PC. This particular situation is solved thanks to the prediction

refinement that maps USING PC to TRANSITION since the user is washing the

dishes in DINING ROOM and the computer can be used only in the OFFICE area.
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6.2.4 Delayed predicitons

The last issue concerns the fact that the system tends to recognize some actions

when the user is going to change activity. This happens for activities that typi-

cally require not much time to be performed (e.g., GETTING IN, GETTING OUT,

SETTING UP TABLE and CLEARING TABLE). To solve this problem, the perfor-

mances of the high-level activities classifier should be increased when shorter segmen-

tation windows are used. Decisions that regard handling the previously mentioned

activities depend on the purpose of the deployed system. For instance, if it is im-

portant for the users to know in real-time the system predictions, then it would be

improper to display on the tablet these activities after their execution.

6.3 Considerations about a tested scenario

The scenario described in Table 6.1 was executed several times by two subjects dur-

ing the development of this work. The activity SETTING UP TABLE is hardly

recognized by the system. Typically, its probability is not high enough to obtain an

inference that can be considered certain by the Tablet Broker. Furthermore, the cases

in which the SETTING UP TABLE activity is detected and considered as a certain

prediction occur only after that Alice starts to prepare a cold meal. The activities

PREPARING COLD MEAL, WATCHING TV, COOKING and EATING are nearly

always detected correctly and within a reasonable time. Rarely Alice and Bob are con-

fused by the system while they are respectively performing EATING and COOKING.

This happens when the pressure mat on which Alice is sitting is wrongly assigned

to Bob. This is all because the low-level activities classifier sometimes improperly

detect as SITTING the posture of Bob. If this happens before that Alice’s posture is

recognized as SITTING, so the first analizeSitting thread that will check if there are

available and active pressure mats will be Bob’s one. Since Bob will be considered

seated, when the cooker is activated, it will be assigned erroneously to Alice. In the

last chapter, possible solutions to improve the performances of the posture classifier

are described. Furthermore, CLEARING TABLE is correctly detected by the system

when an LSTM-based neural network is used. Otherwise, its prediction leads to the
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Alice Bob

SETTING UP TABLE (DR) WATCHING TV (LR)
PREPARING COLD MEAL (DR) WATCHING TV (LR)

EATING (DR) COOKING (DR)
EATING (DR) EATING (DR)

WATCHING TV (LR) CLEARING TABLE (DR)
WATCHING TV (LR) WASHING DISHES (DR)

Table 6.1: The tested scenario. DR and LR mean respectively DINING ROOM and
LIVING ROOM.

same considerations made for the activity SETTING UP TABLE. Finally, WASH-

ING DISHES is correctly detected by the system when Bob is performing it, but

sometimes it is also predicted in place of other actions (e.g., SETTING UP TABLE).

This happens typically at the beginning of the scenario, when the two subjects start

to perform their activities.



Chapter 7

Conclusion and future work

The focus of this work was to extend an existing multi-inhabitant activity recogni-

tion system with semi-supervised learning techniques, using deep learning algorithms.

Furthermore, the use of context data has been extended to tackle the data association

problem and to refine the inferences of the deep learning algorithms. Particularly,

a module was added to the system to detect the posture of the users. This system

can detect the actions performed by the users who inhabit a smart-home, using iner-

tial data coming from their smartwatches and environmental events generated by the

sensors installed inside the habitation. The main issue of a multi-inhabitant activity

recognition system is to associate the environmental events to the users who could

have generated them. The developed system uses context data such as the position

of the users inside the smart-home, their posture and the position and the status of

environmental sensors to address this problem. The position of the users is computed

by a random forest classifier that receives as input data coming from BLE beacons

and WiFi access points. The posture of the users is detected by a neural network

that receives as input data coming from the smartwatches of each user. The position

of the environmental sensors instead is known and fixed inside the smart-home. Once

the environmental events are associated, it is possible to create for each user feature

vectors containing both inertial and environmental data. These feature vectors are

used by a deep learning algorithm which combines convolutional and recurrent layers

to recognize the high-level activities performed by the users. The predictions of the

101
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activity recognition classifier are then refined through a reasoning module that dis-

cards the logically impossible activities based on the available context data. Finally,

when the system is uncertain about its inference, it is asked to the user through a

tablet application which is between the two most probable activities the one he is

performing. The feedback of the users is then exploited to annotate new data that

can be used to update the activity recognition classifier. The interaction between the

system and the users is possible thanks to an Android tablet application developed

in parallel works.

The developed system has been tested in a real-time setting. This setting was

different than the one simulated to collect the dataset used to train the activity

recognition classifier and to evaluate all the modules of the system. Particularly, the

division of the smart-home into semantic areas was less sophisticated and the position

of the environmental sensors has been changed, even if they were still placed in the

same semantic areas as before. These adjustments allow making the deployment

of the system more realistic. In the tested multi-inhabitant scenario described in

Chapter 6, most of the performed activities were correctly recognized by the system,

even if sometimes there is a subtle difference between the detectable actions (e.g., the

system can distinguish the COOKING activity from the PREPARING COLD MEAL

one). The use of positioning and posture context information to tackle the data

association problem allows improving the assignments of environmental events to

users and, therefore, even the recognition rate of the deep learning algorithms. The

behavior of the Context Refinement module has been changed in order to make it

more effective in a real-world setting. This adjustment will be further explained in

this chapter. However, the deployment of the system shows how the context data

are useful to mitigate possible classification errors generated by the statistical model.

The active learning technique has been implemented in the real-time system, but the

focus of the demo was not on its semi-supervised extension. So, the effectiveness of

the active learning technique in a real-time setting cannot be evaluated in this work.

In a real-time setting, different issues should be solved. When the user is not

performing any activity detectable by the system, the Context Refinement module

shouldn’t be applied. As already mentioned in Chapter 6, the reason is that, for in-

stance, the system can’t detect an activity that indicates that the user is in transition
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between two detectable actions. So, if the refinement is applied in these situations,

usually the most likely activity will be enough probable to be indicated to the user as

the correct one even if he is not performing any detectable action. To solve this prob-

lem, the activity recognition classifier should be trained even with examples regarding

an action such as TRANSITION. Currently, the behavior of the Context Refinement

module is being changed in this way: instead of discarding not context-consistent

activities, it maps them to the TRANSITION activity. Such an activity will never be

displayed by the tablet application. This is very useful to avoid showing to the users

activities that couldn’t be performed.

The problem of the posture classifier is that it was trained mapping the high-level

activities’ labels to two possible low-level annotations: SITTING and NOT SITTING.

Troubles come when a high-level activity that is mapped to SITTING is confused by

the posture classifier with another one that is mapped to NOT SITTING, or vice

versa. This happens for example when COOKING is confused with WATCHING TV

because they are both very static actions. In such cases, the detected posture will

be SITTING instead of NOT SITTING. To solve this problem there are two possible

solutions.

• The low-level classifier can be trained with examples of the activity STAND-

ING STILL in which the user is standing without performing any action. This

solution solves the issue when the involved activities are COOKING and WATCH-

ING TV, but it doesn’t handle all the instances of the problem.

• A more robust solution consists of creating the training set for the posture

classifier following these steps: for each user, we label as SITTING only the

feature vectors obtained with inertial data temporarily contained between the

activation and the subsequent deactivation event of the same pressure mat; all

the other feature vectors will be annotated as NOT SITTING.

Furthermore, the low-level activities classifier could be trained to detect more than

two postures. Such a solution would be used by the Context Refinement module to

discard activities that can’t be performed with the current posture of a user.

Some activities are confused because inertial data are not sufficient to distinguish

them. In this case, it is possible to install inside the smart-home other environmental
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sensors that should help to make some activities more identifiable through them. For

instance, a sensor could detect if the tap of the kitchen is being opened or not. This

would help to recognize the WASHING DISHES activity.

Some activities are confused because the system hasn’t context information enough

accurate to perform correctly the data association task. This happens for the activities

that can be performed in the KITCHEN and the DINING ROOM semantic areas.

To solve this problem, there could be two possible solutions:

• train a gesture detection classifier that recognizes when a user opens a drawer

or turns on the stove

• use a finer-grain positioning infrastructure that allows the system to divide the

smart-home into smaller semantic areas. In this way, if the kitchen of the smart-

home is divided into different semantic areas, when the fridge will be opened

the system will be uncertain only about users who are in the FRIDGE AREA

and not about all the people present in the KITCHEN
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