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Ricordiamo l’obiettivo generale della codifica canale: vogliamo trasmettere un messaggio attraverso
un canale con rumore massimizzando la quantità di informazione trasmessa per uso del canale e
simultaneamente minimizzando la probabilità di errore di decodifica. Il primo ed il secondo teorema
di Shannon mostrano come sia possibile trasmettere la massima quantità di informazione (che è
finita, in quanto limitata dall’entropia della sorgente) con probabilità di errore arbitrariamente
vicina a zero. Operativamente, Shannon dimostra che è sufficiente usare una codifica a due stadi:
prima codifico il messaggio con un codice sorgente ottimo. Quindi ricodifico la parola di codice
ottenuta tramite un codice canale ottimo.

Formalmente, un canale discreto senza memoria è definito da
〈
X ,Y, p(y | x)

〉
dove X è un

alfabeto finito di simboli di ingresso, Y è un insieme finito di simboli di uscita e p(y | x) è la matrice
di canale, ovvero la matrice delle probabilità condizionate p(y | x) = P(Y = y | X = x) di ricevere
il simbolo y ∈ Y dato che è stato inviato x ∈ X . I simboli di ingresso e uscita possono anche
appartenere a insiemi diversi, ovvero X 6= Y. Per esempio, un simbolo di ingresso inviato potrebbe
essere sostituito con un altro dal canale.
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Qui sopra sono indicati due semplici esempi di canale. Sono entrambi canali binari, X = Y = {0, 1}.
Le probabilità sulle frecce indicano la matrice p(y | x). Il primo è un canale binario senza rumore:
p(1 | 1) = p(0 | 0) = 1 e p(1 | 0) = p(0 | 1) = 0. Il secondo è un canale binario con rumore
simmetrico di parametro p, p(1 | 1) = p(0 | 0) = 1− p e p(1 | 0) = p(0 | 1) = p.

Un canale è detto senza memoria per la seguente ragione. Supponiamo che il canale venga usato n
volte per inviare il messaggio xn = (x1, . . . , xn) ottenendo in uscita yn = (y1, . . . , yn). Per la chain
rule delle probabilità,

p(yn | xn) = p(yn | yn−1, xn)p(yn−1 | yn−2, xn)× · · · × p(y1 | xn) .

Ora, se il canale è senza memoria vale che

p(yn | yn−1, xn) = p(yn | xn)

p(yn−1 | yn−2, xn) = p(yn−1 | xn−1)

...

p(y1 | xn) = p(y1 | x1) .
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Ovvero,

p(yn | xn) =
n∏
t=1

p(yt | xt) .

In altri termini, un canale è senza memoria quando l’uscita ottenuta ad ogni uso del canale,
condizionata sull’ingresso, è indipendente dagli utilizzi passati e futuri.

Diamo ora la definizione di capacità di una canale. Il secondo teorema di Shannon fornirà un’inter-
pretazione operativa della capacità come massima quantità di informazione trasmissibile ad ogni
uso del canale quando la probabilità di errore di decodifica è arbitrariamente piccola.

La capacità di un canale
〈
X ,Y, p(y | x)

〉
è definita come

C = max
p(x)

I(X,Y )

dove il massimo è su tutte le distribuzioni di probabilità sui simboli di ingresso.

Enunciamo alcune semplici proprietà della capacità. Ricordando che

0 ≤ I(X,Y ) =

{
H(X)−H(X | Y )
H(Y )−H(Y | X)

e che H(X) ≤ log2 |X |, H(Y ) ≤ log2 |Y|, otteniamo che

0 ≤ C ≤ min
{

log2 |X |, log2 |Y|
}
.

Calcoliamo la capacità di alcuni canali discreti senza memoria cominciando dal caso più semplice:
il canale binario senza rumore
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Dato che H(X | Y ) = 0, cioè dato Y in uscita non ho incertezza su X in entrata, dalla definizione
di capacità otteniamo

C = max
p(x)

I(X,Y ) = max
p(x)

(
H(X)−H(X | Y )

)
= max

p(x)
H(X) = 1 .

Si noti che 1 bit è anche la massima quantità di informazione trasmissibile ad ogni uso del canale,
ovvero in questo caso semplice l’interpretazione operativa della capacità è evidente.

Passiamo ad un secondo esempio semplice, il canale con rumore e uscite disgiunte. Qui l’alfabeto
d’ingresso è {0, 1} mentre quello d’uscita è {0, 1, 2, 3}. La matrice di canale è data da
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Come per il canale binario senza rumore, H(X | Y ) = 0 e quindi C = 1. Anche in questo caso 1
bit è evidentemente la massima quantità di informazione trasmissibile ad ogni uso del canale.

Un canale lievemente più complesso è la “macchina da scrivere rumorosa”, dove l’alfabeto di ingresso
e quello di uscita sono entrambi {0, 1, 2} e la matrice di canale è definita da

0
1/2 //

1/2

��

0

1
1/2 //

1/2
��

1

2
1/2
//

1/2

GG

2

In questo caso è immediato vedere che per qualunque simbolo di ingresso x, vale H(Y | X = x) = 1.
Quindi

C = max
p(x)

I(X,Y ) = max
p(x)

(
H(Y )−H(Y | X)

)
= max

p(x)
H(Y )− 1 = log2 3− 1

dove abbiamo utilizzato il fatto (facile da verificare) che, in questo canale, ad una distribuzione
p(x) uniforme in ingresso corrisponde una distribuzione p(y) uniforme in uscita.

Terminiamo con due esempi più complessi. Per primo, il canale binario simmetrico
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Iniziamo coll’osservare

I(X,Y ) = H(Y )−H(Y | X) = H(Y )−H(Y | X = 0)P(X = 0)−H(Y | X = 1)P(X = 1) .

Vediamo allora che

H(Y | X = 0) = −P(Y = 0 | X = 0) log2 P(Y = 0 | X = 0)− P(Y = 1 | X = 0) log2 P(Y = 1 | X = 0)

= −(1− p) log2(1− p)− p log2 p

= H(p)

dove H(p), lo ricordiamo, è l’entropia di una Bernoulliana di parametro p. In modo del tutto
analogo si dimostra che H(Y | X = 1) = H(p). Quindi,

C = max
p(x)

I(X,Y ) = max
p(x)

H(Y )−H(p) .

Ci resta quindi da calcolare il massimo di H(Y ) al variare di p(x). Se scriviamo

P(Y = 1) = P(Y = 1 | X = 0)P(X = 0) + P(Y = 1 | X = 1)P(X = 1)

= pP(X = 0) + (1− p)P(X = 1)
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notiamo che quando P(X = 1) = 1
2 abbiamo che P(Y = 1) = 1

2 . Quindi, per questa scelta di p(x)
abbiamo che H(Y ) = 1, che è massima dato che Y = {0, 1}. Possiamo quindi concludere che

C = 1−H(p) .

L’ultimo esempio di canale è quello binario a cancellazione, con X = {0, 1}, Y = {0, 1, e} e matrice
di canale definita come
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Il simbolo “e” nell’alfabeto di uscita rappresenta la cancellazione di un simbolo di ingresso.

Cominciamo coll’osservare che H(Y | X = 0) = H(Y | X = 1) = H(α) e perciò H(Y | X) = H(α).
Questo implica che I(X,Y ) = H(Y ) −H(α) e, come nell’esempio precedente, dobbiamo calcolare
il massimo di H(Y ) al variare di p(x).

Introduciamo la variabile casuale Bernoulliana

Z =

{
1 se Y = e
0 altrimenti.

e notiamo che

H(Y,Z) = H(Y ) +H(Z | Y )︸ ︷︷ ︸
=0

= H(Y )

H(Y,Z) = H(Z) +H(Y | Z)

quindi H(Y ) = H(Z) +H(Y | Z). Per calcolare H(Z) basta osservare che

P(Z = 1) = P(Z = 1 | X = 0)P(X = 0) + P(Z = 1 | X = 1)P(X = 1)

= αP(X = 0) + αP(X = 1) = α .

Allora, evidentemente, H(Z) = H(α).

Per calcolare H(Y | Z) osserviamo che P(Y = 1 | Z = 0) = P(X = 1). Quindi H(Y | Z = 0) =
H(X). Possiamo allora scrivere

H(Y | Z) = H(Y | Z = 0)P(Z = 0) +H(Y | Z = 1)︸ ︷︷ ︸
=0

P(Z = 1) = H(X)(1− α) .

Possiamo allora concludere come segue

C = max
p(x)

H(Y )−H(α)

= max
p(x)

(
H(α) +H(X)(1− α)

)
−H(α)

= (1− α) max
p(x)

H(X)

= 1− α .
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