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Si noti che mentre il codice di Shannon è quasi ottimo in media, può essere altamente inefficiente
per quanto riguarda la lunghezza delle singole parole di codice. Infatti, consideriamo una sorgente
X = {x1, x2} con p(x1) = 2−10 e p(x2) = 1 − 2−10. Allora, nel caso di codifica binaria, Shannon

produrrà un codice istantaneo c con lunghezze `c(x1) =
⌈
log2 210

⌉
= 10 e `c(x2) =

⌈
log2

210

210−1

⌉
= 1.

D’altra parte, un codice istantaneo più ovvio è c(x1) = 0 e c(x2) = 1 con lunghezze `c(x1) = 1 e
`c(x2) = 1.

Terminata l’analisi del codice di Shannon, passiamo al problema di trovare il codice istantaneo
“ottimo”. Ovvero, dato un modello di sorgente 〈X , p〉 con |X | = m, il codice istantaneo D-ario c∗

le cui lunghezze `∗1, . . . , `
∗
m, risolvono il problema di ottimizzazione

min
`1,...,`m∈N

m∑
i=1

pi`i tale che
m∑
i=1

D−`i ≤ 1 .

Il codice istantaneo ottimo è il codice di Huffman (si veda l’esempio in Figura 1). L’algoritmo per
la costruzione del codice nel caso generale D > 1 è il seguente:

1. i simboli sorgente vengono ordinati in base alle probabilità;

2. si crea un nuovo modello di sorgente in cui i D simboli meno frequenti sono rimpiazzati da
un nuovo simbolo con probabilità pari alla somma delle loro probabilità;

3. se la nuova sorgente contiene più di un simbolo si ricomincia dal passo 1.

L’albero di codifica viene costruito come segue: all’inizio, tutti i simboli sorgente sono foglie. Ogni
volta che D simboli vengono rimpiazzati da un nuovo simbolo si crea un albero avente il nuovo
simbolo come radice e le radici degli alberi corrispondenti ai simboli rimpiazzati come figli (in
ordine arbitrario, quindi il codice di Huffman non è unico). È facile vedere che l’intera procedura
richiede un tempo dell’ordine O(|X | log |X |).

Dato che ad ogni passo la nuova sorgente ha D − 1 simboli in meno della sorgente precedente,
perché l’algoritmo termini in modo corretto —cioè con una sorgente di esattamente un simbolo— è
necessario che |X | sia divisibile per D−1 col resto di 1. Ovvero, |X | = (D−1)k+ 1 per un qualche
intero positivo k. Se non esiste un tale k, allora aggiungiamo alla sorgente un numero sufficiente di
simboli “dummy” con probabilità pari a zero.

Procediamo ora a dimostrare l’ottimalità del codice di Huffman nell’ambito dei codici sorgente
istantanei. Prima di dimostrare il teorema, dobbiamo però fare una semplice osservazione prelimi-
nare. Ovvero: da un codice di Huffman D-ario per una sorgente di m − D + 1 simboli possiamo
ricavare un codice di Huffman D-ario per una sorgente di m simboli semplicemente sostituendo
un simbolo sorgente con D nuovi simboli cosicché le probabilità assegnate ad essi siano tutte più
piccole di quelle dei rimanenti m−D vecchi simboli.
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Figura 1: Albero del codice binario di Huffmann per la sorgente 〈X , p〉 con X = {1, . . . , 6} e
probabilità p1 = 0.45, p2 = 0.16, p3 = 0.13, p4 = 0.12, p5 = 0.09 e p6 = 0.05.

Fatto 1 Sia c′ un codice D-ario di Huffman per la sorgente X ′ = {x1, . . . , xm−D+1} con probabilità
p1 ≥ · · · ≥ pm−D+1. Sia X la sorgente di m simboli {x1, . . . , xk−1, xk+1, . . . , xm+1} ottenuta da X ′
togliendo xk e aggiungendo D nuovi simboli xm−D+2, . . . , xm+1 con probabilità pm−D+2, . . . , pm+1

tali che 0 < pm−D+2, . . . , pm+1 < pm−D+1 e pm−D+2 + · · ·+ pm+1 = pk. Allora il codice

c(x) =

{
c′(x) se x ∈ {x1, . . . , xk−1, xk+1, . . . , xm−D+1},
c′(xk)i se x = xm−D+i+2 per i = 0, . . . , D − 1.

(1)

è un codice di Huffman per la sorgente X .

Dimostrazione. La dimostrazione è ovvia considerando che il dopo il primo passo nella co-
struzione del codice di Huffman per X otteniamo X ′ come nuova sorgente. Quindi i due codici
differiscono solo per le codifiche ai D simboli xm−D+2, . . . , xm+1 che sono quelli meno probabili in
X . Per definizione dell’algoritmo di Huffman, le codifiche dei simboli meno probabili di X sono
definite in termini del codice di Huffman per X ′ esattamente come descritto da (1). �

Teorema 2 Data una sorgente 〈X , p〉 e dato D > 1, il codice D-ario c di Huffman minimizza E[`c]
fra tutti i codici D-ari istantanei per la medesima sorgente.

Dimostrazione. Per semplicità, dimostriamo solo il caso particolare D = 2. La dimostrazione
del caso generale D > 1 è lasciata come esercizio.

Procediamo per induzione su |X | = m. Nel caso base m = 2 Huffman è ottimo. Infatti, è facile
vedere che l’algoritmo di Huffman produce il codice c(x1) = 0 e c(x2) = 1 che è ottimo per ogni
distribuzione di probabilità p su {x1, x2}.
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Assumiamo quindi m > 2 con l’ipotesi induttiva che Huffman sia ottimo per k ≤ m− 1. Fissiamo
〈X , p〉 arbitraria. Siano u, v ∈ X tale che p(u) e p(v) sono minime. Definiamo la sorgente 〈X ′, p′〉
dove u, v ∈ X sono rimpiazzati da z ∈ X ′ e dove

p′(x) =

{
p(x) se x 6= z,

p(u) + p(v) se x = z.

Sia c′ il codice di Huffman per 〈X ′, p′〉. Dato che |X ′| = m − 1, c′ è ottimo per ipotesi induttiva.
Definiamo ora il codice c per X come

c(x) =


c′(x) se x 6∈ {u, v},
c′(z)0 se x = u,
c′(z)1 se x = v.

Per il Fatto 1, c è di Huffman per 〈X , p〉. Vogliamo ora dimostrare che c è anche ottimale.
Cominciamo col dimostrare la seguente relazione che ci servirà in seguito

E[`c] =
∑
x∈X

`c(x)p(x)

=
∑
x∈X ′

`c′(x)p′(x)− `c′(z)p′(z) + `c(u)p(u) + `c(v)p(v)

= E[`c′ ]− `c′(z)p′(z) +
(
`c′(z) + 1

)
p(u) +

(
`c′(z) + 1

)
p(v)

= E[`c′ ]− `c′(z)p′(z) + `c′(z)p′(z) + p′(z)

= E[`c′ ] + p′(z) . (2)

Per dimostrare l’ottimalità di c consideriamo un altro codice istantaneo c2 per 〈X , p〉 e verifichiamo
che E[`c] ≤ E[`c2 ]. Fissato c2, siano r, s ∈ X tali che `c2(r) e `c2(s) sono massime.

Esaminiamo ora le posizioni delle foglie r e s nell’albero di codifica per c2 (che esiste perché c2
è istantaneo). Se r e s sono fratelli, non facciamo nulla. Se r o s hanno un fratello (diciamo r
ha un fratello f), allora possiamo scegliere r e f tali che `c2(r) e `c2(f) sono massime invece di
r e s. Se invece né r né s hanno un fratello nell’albero, allora possiamo sostituire alla codifica di
ciascun nodo la codifica del padre finché ci riportiamo nella situazione in cui r e s hanno entrambi
un fratello. Cos̀ı facendo riduciamo E[`c2 ]. Quindi, senza perdita di generalità, possiamo assumere
che c2 sia tale che r e s sono fratelli.

Ora trasformiamo c2 in un codice c̃2 per la stessa sorgente scambiando la codifica di u con quella
di r e la codifica di v con quella di s. Ovvero,

c̃2(x) =


c2(x) se x 6∈ {u, v, r, s},
c2(u) se x = r,
c2(r) se x = u,
c2(v) se x = s,
c2(s) se x = v.
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Ora esaminiamo la differenza fra la lunghezza media di c̃2 e c2,

E[`c̃2 ]− E[`c2 ] =
∑
x∈X

p(x)
(
`c̃2(x)− `c2(x)

)
= p(r)`c2(u) + p(u)`c2(r) + p(s)`c2(v) + p(v)`c2(s)

− p(u)`c2(u)− p(r)`c2(r)− p(v)`c2(v)− p(s)`c2(s)

=
(
p(r)− p(u)

)
︸ ︷︷ ︸

≥0

(
`c2(u)− `c2(r)

)
︸ ︷︷ ︸

≤0

+
(
p(s)− p(v)

)
︸ ︷︷ ︸

≥0

(
`c2(v)− `c2(s)

)
︸ ︷︷ ︸

≤0

≤ 0 .

I segni delle differenze sono determinati dalla scelta di u, v, r, s in quanto

max
{
p(u), p(v)

}
≤ min

{
p(r), p(s)

}
min

{
`c2(r), `c2(s)

}
≥ max

{
`c2(u), `c2(v)

}
.

Quindi abbiamo dimostrato che E[`c̃2 ] ≤ E[`c2 ].

Notiamo ora che, dopo lo scambio con r e s, u e v sono diventati fratelli in c̃2. Quindi esiste w ∈
{0, 1}∗ tale che c̃2(u) = w0 e c̃2(v) = w1. Allo scopo di applicare l’ipotesi induttiva, introduciamo
un codice c′2 per 〈X ′, p′〉 definito come segue

c′2(x) =

{
c̃2(x) se x 6= z,
w se x = z.

Possiamo allora scrivere, ricordando che p′(z) = p(u) + p(v),

E[`c̃2 ] =
∑

x∈X ′ :x 6=z

p′(x)`c̃2(x) + p(u)
(
`c′2(z) + 1

)
+ p(v)

(
`c′2(z) + 1

)
=

∑
x∈X ′ :x 6=z

p′(x)`c̃2(x) + p′(z)`c′2(z) + p′(z)

= E[`c′2 ] + p′(z) .

Ricordando allora le disuguaglianze precedentemente ottenute, e utilizzando l’ipotesi induttiva per
stabilire E[`c′ ] ≤ E[`c′2 ], prossiamo quindi scrivere

E[`c] = E[`c′ ] + p′(z) ≤ E[`c′2 ] + p′(z) = E[`c̃2 ] ≤ E[`c2 ] .

Questo conclude la dimostrazione. �

4


