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Abstract

Multi-armed bandit problems are the most basic examples of sequential
decision problems with an exploration–exploitation trade-off. This is
the balance between staying with the option that gave highest payoffs
in the past and exploring new options that might give higher payoffs
in the future. Although the study of bandit problems dates back to
the 1930s, exploration–exploitation trade-offs arise in several modern
applications, such as ad placement, website optimization, and packet
routing. Mathematically, a multi-armed bandit is defined by the payoff
process associated with each option. In this monograph, we focus on two
extreme cases in which the analysis of regret is particularly simple and
elegant: i.i.d. payoffs and adversarial payoffs. Besides the basic setting
of finitely many actions, we also analyze some of the most important
variants and extensions, such as the contextual bandit model.



1
Introduction

A multi-armed bandit problem (or, simply, a bandit problem) is a
sequential allocation problem defined by a set of actions. At each time
step, a unit resource is allocated to an action and some observable
payoff is obtained. The goal is to maximize the total payoff obtained
in a sequence of allocations. The name bandit refers to the colloquial
term for a slot machine (“one-armed bandit” in American slang). In a
casino, a sequential allocation problem is obtained when the player is
facing many slot machines at once (a “multi-armed bandit”) and must
repeatedly choose where to insert the next coin.

Bandit problems are basic instances of sequential decision making
with limited information and naturally address the fundamental trade-
off between exploration and exploitation in sequential experiments.
Indeed, the player must balance the exploitation of actions that did
well in the past and the exploration of actions that might give higher
payoffs in the future.

Although the original motivation of Thompson [162] for studying
bandit problems came from clinical trials (when different treatments
are available for a certain disease and one must decide which treat-
ment to use on the next patient), modern technologies have created
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3

many opportunities for new applications, and bandit problems now
play an important role in several industrial domains. In particular,
online services are natural targets for bandit algorithms, because there
one can benefit from adapting the service to the individual sequence of
requests. We now describe a few concrete examples in various domains.

Ad placement is the problem of deciding which advertisement to
display on the web page delivered to the next visitor of a website.
Similarly, website optimization deals with the problem of sequentially
choosing design elements (font, images, layout) for the web page. Here
the payoff is associated with visitor’s actions, e.g., clickthroughs or
other desired behaviors. Of course there are important differences with
the basic bandit problem: in ad placement the pool of available ads
(bandit arms) may change over time, and there might be a limit on the
number of times each ad could be displayed.

In source routing a sequence of packets must be routed from a source
host to a destination host in a given network, and the protocol allows to
choose a specific source-destination path for each packet to be sent. The
(negative) payoff is the time it takes to deliver a packet, and depends
additively on the congestion of the edges in the chosen path.

In computer game-playing, each move is chosen by simulating
and evaluating many possible game continuations after the move.
Algorithms for bandits (more specifically, for a tree-based version of the
bandit problem) can be used to explore more efficiently the huge tree of
game continuations by focusing on the most promising subtrees. This
idea has been successfully implemented in the MoGo player of Gelly
et al. [85], which plays Go at world-class level. MoGo is based on the
UCT strategy for hierarchical bandits of Kocsis and Szepesvári [123],
which in turn is derived from the UCB bandit algorithm — see
Section 2.

There are three fundamental formalizations of the bandit problem
depending on the assumed nature of the reward process: stochastic,
adversarial, and Markovian. Three distinct playing strategies have been
shown to effectively address each specific bandit model: the UCB algo-
rithm in the stochastic case, the Exp3 randomized algorithm in the
adversarial case, and the so-called Gittins indices in the Markovian
case. In this monograph, we focus on stochastic and adversarial bandits,



4 Introduction

and refer the reader to the monograph by Mahajan and Teneketzis [130]
or to the recent monograph by Gittins et al. [86] for an extensive anal-
ysis of Markovian bandits.

In order to analyze the behavior of a player or forecaster (i.e.,
the agent implementing a bandit strategy), we may compare its per-
formance with that of an optimal strategy that, for any horizon of
n time steps, consistently plays the arm that is best in the first n
steps. In other terms, we may study the regret of the forecaster for
not playing always optimally. More specifically, given K ≥ 2 arms and
sequences Xi,1,Xi,2, . . . of unknown rewards associated with each arm
i = 1, . . . ,K, we study forecasters that at each time step t = 1,2, . . .
select an arm It and receive the associated reward XIt,t. The regret
after n plays I1, . . . , In is defined by

Rn = max
i=1,...,K

n∑
t=1

Xi,t −
n∑
t=1

XIt,t. (1.1)

If the time horizon is not known in advance we say that the forecaster
is anytime.

In general, both rewards Xi,t and forecaster’s choices It might be
stochastic. This allows to distinguish between the two following notions
of averaged regret: the expected regret

ERn = E

[
max

i=1,...,K

n∑
t=1

Xi,t −
n∑
t=1

XIt,t

]
(1.2)

and the pseudo-regret

Rn = max
i=1,...,K

E

[
n∑
t=1

Xi,t −
n∑
t=1

XIt,t

]
. (1.3)

In both definitions, the expectation is taken with respect to the random
draw of both rewards and forecaster’s actions. Note that pseudo-regret
is a weaker notion of regret, since one competes against the action which
is optimal only in expectation. The expected regret, instead, is the
expectation of the regret with respect to the action which is optimal on
the sequence of reward realizations. More formally one has Rn ≤ ERn.

In the original formalization of Robbins [146], which builds on the
work of Wald [164] — see also Arrow et al. [16], each arm i = 1, . . . ,K
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corresponds to an unknown probability distribution νi on [0,1], and
rewardsXi,t are independent draws from the distribution νi correspond-
ing to the selected arm.

The stochastic bandit problem

Known parameters: number of arms K and (possibly) number of rounds n ≥ K.
Unknown parameters: K probability distributions ν1, . . . ,νK on [0,1].

For each round t = 1,2, . . .

(1) the forecaster chooses It ∈ {1, . . . ,K};
(2) given It, the environment draws the reward XIt,t ∼ νIt indepen-

dently from the past and reveals it to the forecaster.

For i = 1, . . . ,K we denote by µi the mean of νi (mean reward of arm i).
Let

µ∗ = max
i=1,...,K

µi and i∗ ∈ argmax
i=1,...,K

µi.

In the stochastic setting, it is easy to see that the pseudo-regret can be
written as

Rn = nµ∗ −
n∑
t=1

E[µIt ]. (1.4)

The analysis of the stochastic bandit model was pioneered in the sem-
inal paper of Lai and Robbins [125], who introduced the technique
of upper confidence bounds for the asymptotic analysis of regret. In
Section 2 we describe this technique using the simpler formulation of
Agrawal [9], which naturally lends itself to a finite-time analysis.

In parallel to the research on stochastic bandits, a game-theoretic
formulation of the trade-off between exploration and exploitation
has been independently investigated, although for quite some time
this alternative formulation was not recognized as an instance of
the multi-armed bandit problem. In order to motivate these game-
theoretic bandits, consider again the initial example of gambling on
slot machines. We now assume that we are in a rigged casino, where
for each slot machine i = 1, . . . ,K and time step t ≥ 1 the owner sets
the gain Xi,t to some arbitrary (and possibly maliciously chosen) value
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gi,t ∈ [0,1]. Note that it is not in the interest of the owner to simply set
all the gains to zero (otherwise, no gamblers would go to that casino).
Now recall that a forecaster selects sequentially one arm It ∈ {1, . . . ,K}
at each time step t = 1,2, . . . and observes (and earns) the gain gIt,t. Is
it still possible to minimize regret in such a setting?

Following a standard terminology, we call adversary, or opponent,
the mechanism setting the sequence of gains for each arm. If this mecha-
nism is independent of the forecaster’s actions, then we call it an obliv-
ious adversary. In general, however, the adversary may adapt to the
forecaster’s past behavior, in which case we speak of a nonoblivious
adversary. For instance, in the rigged casino the owner may observe
the way a gambler plays in order to design even more evil sequences
of gains. Clearly, the distinction between oblivious and nonoblivious
adversary is only meaningful when the player is randomized (if the
player is deterministic, then the adversary can pick a bad sequence of
gains right at the beginning of the game by simulating the player’s
future actions). Note, however, that in the presence of a nonoblivious
adversary the interpretation of regret is ambiguous. Indeed, in this case
the assignment of gains gi,t to arms i = 1, . . . ,K made by the adver-
sary at each step t is allowed to depend on the player’s past random-
ized actions I1, . . . , It−1. In other words, gi,t = gi,t(I1, . . . , It−1) for each
i and t. Now, the regret compares the player’s cumulative gain to that
obtained by playing the single best arm for the first n rounds. However,
had the player consistently chosen the same arm i in each round, namely
It = i for t = 1, . . . ,n, the adversarial gains gi,t(I1, . . . , It−1) would
have been possibly different than those actually experienced by the
player.

The study of nonoblivious regret is mainly motivated by the con-
nection between regret minimization and equilibria in games — see,
e.g., [24, Section 9]. Here we just observe that game-theoretic equilibria
are indeed defined similarly to regret: in equilibrium, the player has nSo
incentive to behave differently, provided the opponent does not react
to changes in the player’s behavior. Interestingly, regret minimization
has been also studied against reactive opponents, see for instance the
works of Pucci de Farias and Megiddo [144] and Arora et al. [14].
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The adversarial bandit problem

Known parameters: number of arms K ≥ 2 and (possibly) number of rounds
n ≥ K.

For each round t = 1,2, . . .

(1) the forecaster chooses It ∈ {1, . . . ,K}, possibly with the help of
external randomization,

(2) simultaneously, the adversary selects a gain vector gt =
(g1,t, . . . ,gK,t) ∈ [0,1]K , possibly with the help of external random-
ization, and

(3) the forecaster receives (and observes) the reward gIt,t, while the
gains of the other arms are not observed.

In this adversarial setting the goal is to obtain regret bounds in high
probability or in expectation with respect to any possible randomiza-
tion in the strategies used by the forecaster or the opponent, and irre-
spective of the opponent. In the case of a nonoblivious adversary this
is not an easy task, and for this reason we usually start by bounding
the pseudo-regret

Rn = max
i=1,...,K

E

[
n∑
t=1

gi,t −
n∑
t=1

gIt,t

]
.

Note that the randomization of the adversary is not very important
here since we ask for bounds which hold for any opponent. On the other
hand, it is fundamental to allow randomization for the forecaster — see
Section 3 for details and basic results in the adversarial bandit model.
This adversarial, or nonstochastic, version of the bandit problem was
originally proposed as a way of playing an unknown game against an
opponent. The problem of playing a game repeatedly, now a classi-
cal topic in game theory, was initiated by the groundbreaking work
of James Hannan and David Blackwell. In Hannan’s seminal paper
Hannan [92], the game (i.e., the payoff matrix) is assumed to be known
by the player, who also observes the opponent’s moves in each play.
Later, Baños [28] considered the problem of a repeated unknown game,
where in each game round the player only observes its own payoff. This
problem turns out to be exactly equivalent to the adversarial bandit
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problem with a nonoblivious adversary. Simpler strategies for playing
unknown games were more recently proposed by Foster and Vohra [81]
and Hart and Mas-Colell [93, 94]. Approximately at the same time, the
problem was re-discovered in computer science by Auer et al. [24]. It
was them who made apparent the connection to stochastic bandits by
coining the term nonstochastic multi-armed bandit problem.

The third fundamental model of multi-armed bandits assumes that
the reward processes are neither i.i.d. (like in stochastic bandits) nor
adversarial. More precisely, arms are associated with K Markov pro-
cesses, each with its own state space. Each time an arm i is chosen in
state s, a stochastic reward is drawn from a probability distribution νi,s,
and the state of the reward process for arm i changes in a Markovian
fashion, based on an underlying stochastic transition matrix Mi. Both
reward and new state are revealed to the player. On the other hand,
the state of arms that are not chosen remains unchanged. Going back
to our initial interpretation of bandits as sequential resource allocation
processes, here we may think of K competing projects that are sequen-
tially allocated a unit resource of work. However, unlike the previous
bandit models, in this case the state of a project that gets the resource
may change. Moreover, the underlying stochastic transition matrices
Mi are typically assumed to be known, thus the optimal policy can be
computed via dynamic programming and the problem is essentially of
computational nature. The seminal result of Gittins [87] provides an
optimal greedy policy which can be computed efficiently.

A notable special case of Markovian bandits is that of Bayesian
bandits. These are parametric stochastic bandits, where the parame-
ters of the reward distributions are assumed to be drawn from known
priors, and the regret is computed by also averaging over the draw
of parameters from the prior. The Markovian state change associated
with the selection of an arm corresponds here to updating the posterior
distribution of rewards for that arm after observing a new reward.

Markovian bandits are a standard model in the areas of Operations
Research and Economics. However, the techniques used in their analysis
are significantly different from those used to analyze stochastic and
adversarial bandits. For this reason, in this monograph we do not cover
Markovian bandits and their many variants.



2
Stochastic Bandits: Fundamental Results

We start by recalling the basic definitions for the stochastic bandit
problem. Each arm i ∈ {1, . . . ,K} corresponds to an unknown probabil-
ity distribution νi. At each time step t = 1,2, . . . , the forecaster selects
some arm It ∈ {1, . . . ,K} and receives a reward XIt,t drawn from νIt
(independently from the past). Denote by µi the mean of arm i and
define

µ∗ = max
i=1,...,K

µi and i∗ ∈ argmax
i=1,...,K

µi.

We focus here on the pseudo-regret, which is defined as

Rn = nµ∗ − E

n∑
t=1

µIt . (2.1)

We choose the pseudo-regret as our main quantity of interest because
in a stochastic framework it is more natural to compete against the
optimal action in expectation, rather than the optimal action on the
sequence of realized rewards (as in the definition of the plain regret
in Equation (1.1)). Furthermore, because of the order of magnitude
of typical random fluctuations, in general one cannot hope to prove a
bound on the expected regret in Equation (1.2) better than Θ(

√
n).

9



10 Stochastic Bandits: Fundamental Results

On the contrary, the pseudo-regret can be controlled so well that we
are able to bound it by a logarithmic function of n.

In the following we also use a different formula for the pseudo-regret.
Let Ti(s) =

∑s
t=1 It=i denote the number of times the player selected

arm i on the first s rounds. Let ∆i = µ∗ − µi be the suboptimality
parameter of arm i. Then the pseudo-regret can be written as:

Rn =

(
K∑
i=1

ETi(n)

)
µ∗ − E

K∑
i=1

Ti(n)µi =
K∑
i=1

∆iETi(n).

2.1 Optimism in Face of Uncertainty

The difficulty of the stochastic multi-armed bandit problem lies in the
exploration–exploitation dilemma that the forecaster is facing. Indeed,
there is an intrinsic trade-off between exploiting the current knowledge
to focus on the arm that seems to yield the highest rewards and explor-
ing further the other arms to identify with better precision which arm
is actually the best. As we shall see, the key to obtain a good strategy
for this problem is, in a certain sense, to simultaneously perform explo-
ration and exploitation.

A simple heuristic principle for doing that is the so-called optimism
in face of uncertainty. The idea is very general and applies to
many sequential decision-making problems in uncertain environments.
Assume that the forecaster has accumulated some data on the envi-
ronment and must decide how to act next. First, a set of “plausible”
environments which are “consistent” with the data (typically, through
concentration inequalities) is constructed. Then, the most “favorable”
environment is identified in this set. Based on that, the heuristic pre-
scribes that the decision which is optimal in this most favorable and
plausible environment should be made. As we see below, this principle
gives simple and yet almost optimal algorithms for the stochastic multi-
armed bandit problem. More complex algorithms for various extensions
of the stochastic multi-armed bandit problem are also based on the
same idea which, along with the exponential weighting scheme pre-
sented in Section 3, is an algorithmic cornerstone of regret analysis in
bandits.
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2.2 Upper Confidence Bound (UCB) Strategies

In this section we assume that the distribution of rewards X satisfies
the following moment conditions. There exists a convex function1 ψ on
the reals such that, for all λ ≥ 0,

lnEeλ(X−E[X]) ≤ ψ(λ) and ln Eeλ(E[X]−X) ≤ ψ(λ). (2.2)

For example, whenX ∈ [0,1] one can take ψ(λ) = λ2

8 . In this case Equa-
tion (2.2) is known as Hoeffding’s lemma.

We attack the stochastic multi-armed bandit using the optimism
in face of uncertainty principle. In order do so, we use assumption
(Equation (2.2)) to construct an upper bound estimate on the mean of
each arm at some fixed confidence level and then choose the arm that
looks best under this estimate. We need a standard notion from convex
analysis: the Legendre–Fenchel transform of ψ, defined by

ψ∗(ε) = sup
λ∈R

(λε − ψ(λ)).

For instance, if ψ(x) = ex then ψ∗(x) = x lnx − x for x > 0. If
ψ(x) = 1

p |x|p then ψ∗(x) = 1
q |x|q for any pair 1 < p,q <∞ such that

1
p + 1

q = 1 — see also Section 5.2, where the same notion is used in a
different bandit model.

Let µ̂i,s be the sample mean of rewards obtained by pulling arm
i for s times. Note that since the rewards are i.i.d., we have that in
distribution µ̂i,s is equal to 1

s

∑s
t=1Xi,t.

Using Markov’s inequality, from Equation (2.2) one obtains that

P(µi − µ̂i,s > ε) ≤ e−sψ∗(ε). (2.3)

In other words, with probability at least 1 − δ,
µ̂i,s + (ψ∗)−1

(
1
s

ln
1
δ

)
> µi.

We thus consider the following strategy, called (α,ψ)-UCB, where α > 0
is an input parameter: At time t, select

It ∈ argmax
i=1,...,K

[
µ̂i,Ti(t−1) + (ψ∗)−1

(
α ln t

Ti(t − 1)

)]
.

We can prove the following simple bound.

1 One can easily generalize the discussion to functions ψ defined only on an interval [0, b].
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Theorem 2.1 (Pseudo-regret of (α,ψ)-UCB). Assume that the
reward distributions satisfy Equation (2.2). Then (α,ψ)-UCB with
α > 2 satisfies

Rn ≤
∑

i :∆i>0

(
α∆i

ψ∗(∆i/2)
lnn +

α

α − 2

)
.

In case of [0,1]-valued random variables, taking ψ(λ) = λ2

8 in Equa-
tion (2.2) — the Hoeffding’s Lemma — gives ψ∗(ε) = 2ε2, which in
turns gives the following pseudo-regret bound

Rn ≤
∑
i:∆i>0

(
2α
∆i

lnn +
α

α − 2

)
. (2.4)

In this important special case of bounded random variables we refer to
(α,ψ)-UCB simply as α-UCB.

Proof. First note that if It = i, then at least one of the three following
equations must be true:

µ̂i∗,Ti∗ (t−1) + (ψ∗)−1
(

α ln t
Ti∗(t − 1)

)
≤ µ∗ (2.5)

µ̂i,Ti(t−1) > µi + (ψ∗)−1
(

α ln t
Ti(t − 1)

)
(2.6)

Ti(t − 1) <
α lnn

ψ∗(∆i/2)
. (2.7)

Indeed, assume that the three equations are all false, then we have:

µ̂i∗,Ti∗ (t−1) + (ψ∗)−1
(

α ln t
Ti∗(t − 1)

)
> µ∗

= µi + ∆i

≥ µi + 2(ψ∗)−1
(

α ln t
Ti(t − 1)

)
≥ µ̂i,Ti(t−1) + (ψ∗)−1

(
α ln t

Ti(t − 1)

)
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which implies, in particular, that It �= i. In other words, letting

u =
⌈

α lnn
ψ∗(∆i/2)

⌉
we just proved

ETi(n) = E

n∑
t=1

It=i ≤ u + E

n∑
t=u+1

It=i and (2.7) is false

≤ u + E

n∑
t=u+1

(2.5) or (2.6) is true

= u +
n∑

t=u+1

P((2.5) is true) + P((2.6) is true).

Thus it suffices to bound the probability of the events (Equations (2.5)
and (2.6)). Using a union bound and Equation (2.3) one directly
obtains:

P((2.5) is true) ≤ P

(
∃s ∈ {1, . . . , t} : µ̂i∗,s + (ψ∗)−1

(
α ln t
s

)
≤ µ∗
)

≤
t∑

s=1

P

(
µ̂i∗,s + (ψ∗)−1

(
α ln t
s

)
≤ µ∗
)

≤
t∑

s=1

1
tα

=
1

tα−1 .

The same upper bound holds for Equation (2.6). Straightforward com-
putations conclude the proof.

2.3 Lower Bound

We now show that the result of the previous section is essentially unim-
provable when the reward distributions are Bernoulli. For p,q ∈ [0,1] we
denote by kl(p,q) the Kullback–Leibler divergence between a Bernoulli
of parameter p and a Bernoulli of parameter q, defined as

kl(p,q) = p ln
p

q
+ (1 − p) ln

1 − p
1 − q .
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Theorem 2.2 (Distribution-dependent lower bound). Consider
a strategy that satisfies ETi(n) = o(na) for any set of Bernoulli reward
distributions, any arm i with ∆i > 0, and any a > 0. Then, for any set
of Bernoulli reward distributions the following holds

liminf
n→+∞

Rn
lnn
≥
∑

i :∆i>0

∆i

kl(µi,µ∗)
.

In order to compare this result with Equation (2.4) we use the fol-
lowing standard inequalities (the left-hand side follows from Pinsker’s
inequality and the right-hand side simply uses lnx ≤ x − 1),

2(p − q)2 ≤ kl(p,q) ≤ (p − q)2
q(1 − q) . (2.8)

Proof. The proof is organized in three steps. For simplicity, we only
consider the case of two arms.

First step: Notations

Without loss of generality assume that arm 1 is optimal and arm 2
is suboptimal, that is, µ2 < µ1 < 1. Let ε > 0. Since x �→ kl(µ2,x) is
continuous one can find µ′

2 ∈ (µ1,1) such that

kl(µ2,µ
′
2) ≤ (1 + ε)kl(µ2,µ1). (2.9)

We use the notation E
′,P′ when we integrate with respect to the mod-

ified bandit where the parameter of arm 2 is replaced by µ′
2. We want

to compare the behavior of the forecaster on the initial and modified
bandits. In particular, we prove that with a big enough probability the
forecaster cannot distinguish between the two problems. Then, using
the fact that we have a good forecaster by hypothesis, we know that
the algorithm does not make too many mistakes on the modified ban-
dit where arm 2 is optimal. In other words, we have a lower bound on
the number of times the optimal arm is played. This reasoning implies
a lower bound on the number of times arm 2 is played in the initial
problem.
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We now slightly change the notation for rewards and denote by
X2,1, . . . ,X2,n the sequence of random variables obtained when pulling
arm 2 for n times (that is, X2,s is the reward obtained from the s-th
pull). For s ∈ {1, . . . ,n}, let

k̂ls =
s∑
t=1

ln
µ2X2,t + (1 − µ2)(1 − X2,t)
µ′

2X2,t + (1 − µ′
2)(1 − X2,t)

.

Note that, with respect to the initial bandit, k̂lT2(n) is the (nonre-
normalized) empirical estimate of kl(µ2,µ

′
2) at time n, since in that case

the process (X2,s) is i.i.d. from a Bernoulli of parameter µ2. Another
important property is the following: for any event A in the σ-algebra
generated by X2,1, . . . ,X2,n the following change-of-measure identity
holds:

P
′(A) = E[ A exp(−k̂lT2(n))]. (2.10)

In order to link the behavior of the forecaster on the initial and modified
bandits we introduce the event

Cn =
{
T2(n) <

1 − ε
kl(µ2,µ′

2)
ln(n) and k̂lT2(n) ≤

(
1 − ε

2

)
ln(n)

}
.

(2.11)

Second step: P(Cn) = o(1)

By Equations (2.10) and (2.11) one has

P
′(Cn) = E Cn exp(−k̂lT2(n)) ≥ e−(1−ε/2) ln(n)

P(Cn).

Introduce the shorthand

fn =
1 − ε

kl(µ2,µ′
2)

ln(n).

Using again Equation (2.11) and Markov’s inequality, the above implies

P(Cn) ≤ n(1−ε/2)
P

′(Cn) ≤ n(1−ε/2)
P

′(T2(n) < fn)

≤ n(1−ε/2) E
′[n − T2(n)]
n − fn .
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Now note that in the modified bandit arm 2 is the unique optimal arm.
Hence the assumption that for any bandit, any suboptimal arm i, and
any a > 0, the strategy satisfies ETi(n) = o(na), implies that

P(Cn) ≤ n(1−ε/2) E
′[n − T2(n)]
n − fn = o(1).

Third step: P(T2(n) < fn) = o(1).

Observe that

P(Cn) ≥ P

(
T2(n) < fn and max

s≤fn

k̂ls ≤
(
1 − ε

2

)
ln(n)

)
= P

(
T2(n) < fn and

kl(µ2,µ
′
2)

(1 − ε) ln(n)

×max
s≤fn

k̂ls ≤ 1 − ε/2
1 − ε kl(µ2,µ

′
2)
)
. (2.12)

Now we use the maximal version of the strong law of large numbers: for
any sequence (Xt) of independent real random variables with positive
mean µ > 0,

lim
n→∞

1
n

n∑
t=1

Xt = µ a.s. implies lim
n→∞

1
n

max
s=1,...,n

s∑
t=1

Xt = µ a.s.

See, e.g., [43, Lemma 10.5].
Since kl(µ2,µ

′
2) > 0 and 1−ε/2

1−ε > 1, we deduce that

lim
n→∞P

(
kl(µ2,µ

′
2)

(1 − ε) ln(n)
× max

s≤fn

k̂ls ≤ 1 − ε/2
1 − ε kl(µ2,µ

′
2)
)

= 1.

Thus, by the result of the second step and Equation (2.12), we get

P(T2(n) < fn) = o(1).

Now recalling that fn = 1−ε
kl(µ2,µ′

2) ln(n), and using Equation (2.9), we
obtain

ET2(n) ≥ (1 + o(1))
1 − ε
1 + ε

ln(n)
kl(µ2,µ1)

which concludes the proof.
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2.4 Refinements and Bibliographic Remarks

The UCB strategy presented in Section 2.2 was introduced by Auer
et al. [23] for bounded random variables. Theorem 2.2 is extracted
from Lai and Robbins [125]. Note that in this last paper the result is
more general than ours, which is restricted to Bernoulli distributions.
Although Burnetas and Katehakis [56] prove an even more general
lower bound, Theorem 2.2 and the UCB regret bound provide a rea-
sonably complete solution to the problem. We now discuss some of the
possible refinements. In the following, we restrict our attention to the
case of bounded rewards (except in Section 2.4.7).

2.4.1 Improved Constants

The regret bound proof for UCB can be improved in two ways. First,
the union bound over the different time steps can be replaced by a
“peeling” argument. This allows to show a logarithmic regret for any
α > 1, whereas the proof of Section 2.2 requires α > 2 — see [43,
Section 2.2] for more details. A second improvement, proposed by
Garivier and Cappé [83], is to use a more subtle set of conditions than
Equations (2.5)–(2.7). In fact, the authors take both improvements
into account, and show that α-UCB has a regret of order α

2 lnn for any
α > 1. In the limit when α tends to 1, this constant is unimprovable in
light of Theorem 2.2 and Equation (2.8).

2.4.2 Second-Order Bounds

Although α-UCB is essentially optimal, the gap between Equation (2.4)
and Theorem 2.2 can be important if kl(µi∗ ,µi) is significantly larger
than ∆2

i . Several improvements have been proposed toward closing this
gap. In particular, the UCB-V algorithm of Audibert et al. [21] takes
into account the variance of the distributions and replaces Hoeffding’s
inequality by Bernstein’s inequality in the derivation of UCB. A pre-
vious algorithm with similar ideas was developed by Auer et al. [23]
without theoretical guarantees. A second type of approach replaces L2-
neighborhoods in α-UCB by kl-neighborhoods. This line of work started
with Honda and Takemura [103] where only asymptotic guarantees were
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provided. Later, Garivier and Cappé [83] and Maillard et al. [132] (see
also Cappé et al., [58]) independently proposed a similar algorithm,
called KL-UCB, which is shown to attain the optimal rate in finite-
time. More precisely, Garivier and Cappé [83] showed that KL-UCB
attains a regret smaller than∑

i :∆i>0

∆i

kl(µi,µ∗)
α lnn + O(1)

where α > 1 is a parameter of the algorithm. Thus, KL-UCB is opti-
mal for Bernoulli distributions and strictly dominates α-UCB for any
bounded reward distributions.

2.4.3 Distribution-Free Bounds

In the limit when ∆i tends to 0, the upper bound in Equation (2.4)
becomes vacuous. On the other hand, it is clear that the regret incurred
from pulling arm i cannot be larger than n∆i. Using this idea, it is easy
to show that the regret of α-UCB is always smaller than

√
αnK lnn

(up to a numerical constant). However, as we shall see in the next
section, one can show a minimax lower bound on the regret of order√
nK. Audibert and Bubeck [17] proposed a modification of α-UCB

that gets rid of the extraneous logarithmic term in the upper bound.
More precisely, let ∆ = mini�=i∗ ∆i, Audibert and Bubeck [18] show
that MOSS (Minimax Optimal Strategy in the Stochastic case) attains
a regret smaller than

min
{√

nK,
K

∆
ln
n∆2

K

}
up to a numerical constant. The weakness of this result is that the
second term in the above equation only depends on the smallest gap ∆.
In Auer and Ortner [25] (see also Perchet and Rigollet, [143]) the
authors designed a strategy, called improved UCB, with a regret of
order ∑

i :∆i>0

1
∆i

ln(n∆2
i ).

This latter regret bound can be better than the one for MOSS in some
regimes, but it does not attain the minimax optimal rate of order

√
nK.
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It is an open problem to obtain a strategy with a regret always better
than those of MOSS and improved UCB. A plausible conjecture is that
a regret of order ∑

i :∆i>0

1
∆i

ln
n

H
with H =

∑
i :∆i>0

1
∆2
i

is attainable. Note that the quantity H appears in other variants of the
stochastic multi-armed bandit problem, see Audibert et al. [20].

2.4.4 High Probability Bounds

While bounds on the pseudo-regret Rn are important, one typically
wants to control the quantity R̂n = nµ∗ −∑n

t=1µIt with high proba-
bility. Showing that R̂n is close to its expectation Rn is a challenging
task, since naively one might expect the fluctuations of R̂n to be of
order

√
n, which would dominate the expectation Rn which is only of

order lnn. The concentration properties of R̂n for UCB are analyzed
in detail in Audibert et al. [21], where it is shown that R̂n concentrates
around its expectation, but that there is also a polynomial (in n) prob-
ability that R̂n is of order n. In fact the polynomial concentration of
R̂n around Rn can be directly derived from our proof of Theorem 2.1.
In Salomon and Audibert [149] it is proved that for anytime strategies
(i.e., strategies that do not use the time horizon n) it is basically impos-
sible to improve this polynomial concentration to a classical exponential
concentration. In particular this shows that, as far as high probability
bounds are concerned, anytime strategies are surprisingly weaker than
strategies using the time horizon information (for which exponential
concentration of R̂n around lnn are possible, see Audibert et al., [21]).

2.4.5 ε-Greedy

A simple and popular heuristic for bandit problems is the ε-greedy
strategy — see, e.g., [157]. The idea is very simple. First, pick a
parameter 0 < ε < 1. Then, at each step greedily play the arm with
highest empirical mean reward with probability 1 − ε and play a ran-
dom arm with probability ε. Auer et al. [23] proved that, if ε is
allowed to be a certain function εt of the current time step t, namely
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εt = K/(d2t), then the regret grows logarithmically like (K lnn)/d2,
provided 0 < d < mini�=i∗ ∆i. While this bound has a suboptimal depen-
dence on d, Auer et al. [23] show that this algorithm performs well in
practice, but the performance degrades quickly if d is not chosen as a
tight lower bound of mini�=i∗ ∆i.

2.4.6 Thompson Sampling

In the very first paper on the multi-armed bandit problem, Thomp-
son [162], a simple strategy was proposed for the case of Bernoulli
distributions. The so-called Thompson sampling algorithm proceeds as
follows. Assume a uniform prior on the parameters µi ∈ [0,1], let πi,t
be the posterior distribution for µi at the t-th round, and let θi,t ∼ πi,t
(independently from the past given πi,t). The strategy is then given
by It ∈ argmaxi=1,...,K θi,t. Recently there has been a surge of inter-
est for this simple policy, mainly because of its flexibility to incor-
porate prior knowledge on the arms, see for example Chapelle and
Li [65] and the references therein. While the theoretical behavior of
Thompson sampling has remained elusive for a long time, we have now
a fairly good understanding of its theoretical properties: in Agrawal
and Goyal [10] the first logarithmic regret bound was proved, and in
Kaufmann et al. [115] it was showed that in fact Thompson sampling
attains essentially the same regret than in Equation (2.4). Interestingly
note that while Thompson sampling comes from a Bayesian reasoning,
it is analyzed with a frequentist perspective. For more on the interplay
between Bayesian strategy and frequentist regret analysis we refer the
reader to Kaufmann et al. [114].

2.4.7 Heavy-Tailed Distributions

We showed in Section 2.2 how to obtain a UCB-type strategy through
a bound on the moment generating function. Moreover one can see
that the resulting bound in Theorem 2.1 deteriorates as the tail of the
distributions become heavier. In particular, we did not provide any
result for the case of distributions for which the moment generating
function is not finite. Surprisingly, it was shown in Bubeck et al. [46]
that in fact there exists a strategy with essentially the same regret
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than in Equation (2.4), as soon as the variance of the distributions are
finite. More precisely, using more refined robust estimators of the mean
than the basic empirical mean, one can construct a UCB-type strategy
such that for distributions with moment of order 1 + ε bounded by 1
it satisfies

Rn ≤
∑

i :∆i>0

(
8
(

4
∆i

) 1
ε

lnn + 5∆i

)
.

We refer the interested reader to Bubeck et al. [46] for more details on
these “robust” versions of UCB.



3
Adversarial Bandits: Fundamental Results

In this section we consider the important variant of the multi-armed
bandit problem where no stochastic assumption is made on the gen-
eration of rewards. Denote by gi,t the reward (or gain) of arm i at
time step t. We assume all rewards are bounded, say gi,t ∈ [0,1]. At
each time step t = 1,2, . . ., simultaneously with the player’s choice of
the arm It ∈ {1, . . . ,K}, an adversary assigns to each arm i = 1, . . . ,K
the reward gi,t. Similarly to the stochastic setting, we measure the per-
formance of the player compared with the performance of the best arm
through the regret

Rn = max
i=1,...,K

n∑
t=1

gi,t −
n∑
t=1

gIt,t.

Sometimes we consider losses rather than gains. In this case we denote
by 
i,t the loss of arm i at time step t, and the regret rewrites as

Rn =
n∑
t=1


It,t − min
i=1,...,K

n∑
t=1


i,t.

The loss and gain versions are symmetric, in the sense that one can
translate the analysis from one to the other setting via the equivalence

22
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i,t = 1 − gi,t. In the following we emphasize the loss version, but we
revert to the gain version whenever it makes proofs simpler.

The main goal is to achieve sublinear (in the number of rounds)
bounds on the regret uniformly over all possible adversarial assignments
of gains to arms. At first sight, this goal might seem hopeless. Indeed,
for any deterministic forecaster there exists a sequence of losses (
i,t)
such that Rn ≥ n/2. Concretely, it suffices to consider the following
sequence of losses:

if It = 1, then 
2,t = 0 and 
i,t = 1 for all i �= 2;
if It �= 1, then 
1,t = 0 and 
i,t = 1 for all i �= 1.

The key idea to get around this difficulty is to add randomization to
the selection of the action It to play. By doing so, the forecaster can
“surprise” the adversary, and this surprise effect suffices to get a regret
essentially as low as the minimax regret for the stochastic model. Since
the regret Rn becomes a random variable, the goal is thus to obtain
bounds in high probability or in expectation on Rn (with respect to
both eventual randomization of the forecaster and of the adversary).
This task is fairly difficult, and a convenient first step is to bound the
pseudo-regret

Rn = E

n∑
t=1


It,t − min
i=1,...,K

E

n∑
t=1


i,t. (3.1)

Clearly Rn ≤ ERn, and thus an upper bound on the pseudo-regret
does not imply a bound on the expected regret. As argued in the
Introduction, the pseudo-regret has no natural interpretation unless
the adversary is oblivious. In that case, the pseudo-regret coincides
with the standard regret, which is always the ultimate quantity of
interest.

3.1 Pseudo-regret Bounds

As we pointed out, in order to obtain nontrivial regret guarantees in
the adversarial framework it is necessary to consider randomized fore-
casters. Below we describe the randomized forecaster Exp3, which is
based on two fundamental ideas.
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Exp3 (Exponential weights for Exploration and Exploitation)
Parameter: a nonincreasing sequence of real numbers (ηt)t∈N.
Let p1 be the uniform distribution over {1, . . . ,K}.
For each round t = 1,2, . . . ,n

(1) Draw an arm It from the probability distribution pt.
(2) For each arm i = 1, . . . ,K compute the estimated loss 
̃i,t =

�i,t

pi,t
It=i and update the estimated cumulative loss L̃i,t =

L̃i,t−1 + 
̃i,s.
(3) Compute the new probability distribution over arms pt+1 =

(p1,t+1, . . . ,pK,t+1), where

pi,t+1 =
exp(−ηtL̃i,t)∑K

k=1 exp(−ηtL̃k,t)
.

First, despite the fact that only the loss of the played arm is observed,
with a simple trick it is still possible to build an unbiased estimator for
the loss of any other arm. Namely, if the next arm It to be played is
drawn from a probability distribution pt = (p1,t, . . . ,pK,t), then


̃i,t =

i,t
pi,t

It=i

is an unbiased estimator (with respect to the draw of It) of 
i,t. Indeed,
for each i = 1, . . . ,K we have

EIt∼pt [
̃i,t] =
K∑
j=1

pj,t

i,t
pi,t

j=i = 
i,t.

The second idea is to use an exponential reweighting of the cumulative
estimated losses to define the probability distribution pt from which
the forecaster will select the arm It. Exponential weighting schemes
are a standard tool in the study of sequential prediction schemes under
adversarial assumptions. The reader is referred to the monograph by
Cesa-Bianchi and Lugosi [61] for a general introduction to prediction of
individual sequences, and to the recent monograph by Arora et al. [15]
focused on computer science applications of exponential weighting.

We provide two different pseudo-regret bounds for this strategy. The
bound (Equation (3.3)) is obtained assuming that the forecaster does
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not know the number of rounds n. This is the anytime version of the
algorithm. The bound (Equation (3.2)), instead, shows that a better
constant can be achieved using the knowledge of the time horizon.

Theorem 3.1 (Pseudo-regret of Exp3). If Exp3 is run with ηt =

η =
√

2lnK
nK , then

Rn ≤
√

2nK lnK. (3.2)

Moreover, if Exp3 is run with ηt =
√

lnK
tK , then

Rn ≤ 2
√
nK lnK. (3.3)

Proof. We prove that for any nonincreasing sequence (ηt)t∈N Exp3
satisfies

Rn ≤ K

2

n∑
t=1

ηt +
lnK
ηn

. (3.4)

Equation (3.2) then trivially follows from Equation (3.4). For Equa-
tion (3.3) we use (3.4) and

∑n
t=1

1√
t
≤ ∫ n0 1√

t
dt = 2

√
n. The proof of

Equation (3.4) is divided into five steps.

First step: Useful equalities

The following equalities can be easily verified:

Ei∼pt 
̃i,t = 
It,t, EIt∼pt 
̃i,t = 
i,t, Ei∼pt 
̃
2
i,t =


2It,t
pIt,t

, EIt∼pt

1
pIt,t

= K.

(3.5)
In particular, they imply

n∑
t=1


It,t −
n∑
t=1


k,t =
n∑
t=1

Ei∼pt 
̃i,t −
n∑
t=1

EIt∼pt 
̃k,t. (3.6)

The key idea of the proof is to rewrite Ei∼pt 
̃i,t as follows

Ei∼pt 
̃i,t =
1
ηt

lnEi∼pt exp(−ηt(
̃i,t − Ek∼pt 
̃k,t))

− 1
ηt

lnEi∼pt exp(−ηt
̃i,t). (3.7)
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The reader may recognize lnEi∼pt exp(−ηt
̃i,t) as the cumulant-
generating function (or the log of the moment-generating function) of
the random variable 
̃It,t. This quantity naturally arises in the analysis
of forecasters based on exponential weights. In the next two steps we
study the two terms in the right-hand side of Equation (3.7).

Second step: Study of the first term in Equation (3.7)

We use the inequalities lnx ≤ x − 1 and exp(−x) − 1 + x ≤ x2/2, for
all x ≥ 0, to obtain:

lnEi∼pt exp(−ηt(
̃i,t − Ek∼pt 
̃k,t))

= lnEi∼pt exp(−ηt
̃i,t) + ηtEk∼pt 
̃k,t

≤ Ei∼pt(exp(−ηt
̃i,t) − 1 + ηt
̃i,t)

≤ Ei∼pt

η2
t 
̃

2
i,t

2

≤ η2
t

2pIt,t
(3.8)

where the last step comes from the third equality in Equation (3.5).

Third step: Study of the second term in Equation (3.7)

Let L̃i,0 = 0, Φ0(η) = 0 and Φt(η) = 1
η ln 1

K

∑K
i=1 exp(−ηL̃i,t). Then, by

definition of pt we have

− 1
ηt

lnEi∼pt exp(−ηt
̃i,t) = − 1
ηt

ln
∑K

i=1 exp(−ηtL̃i,t)∑K
i=1 exp(−ηtL̃i,t−1)

= Φt−1(ηt) − Φt(ηt). (3.9)

Fourth step: Summing

Putting together Equations (3.6), (3.7), (3.8), and (3.9) we obtain

n∑
t=1

gk,t −
n∑
t=1

gIt,t ≤
n∑
t=1

ηt
2pIt,t

+
n∑
t=1

Φt−1(ηt) − Φt(ηt) −
n∑
t=1

EIt∼pt 
̃k,t.
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The first term is easy to bound in expectation since by the rule of
conditional expectations and the last equality in Equation (3.5) we
have

E

n∑
t=1

ηt
2pIt,t

= E

n∑
t=1

EIt∼pt

ηt
2pIt,t

=
K

2

n∑
t=1

ηt.

For the second term we start with an Abel transformation,
n∑
t=1

(Φt−1(ηt) − Φt(ηt)) =
n−1∑
t=1

(Φt(ηt+1) − Φt(ηt)) − Φn(ηn)

since Φ0(η1) = 0. Note that

−Φn(ηn) =
lnK
ηn
− 1
ηn

ln

(
K∑
i=1

exp(−ηnL̃i,n)
)

≤ lnK
ηn
− 1
ηn

ln(exp(−ηnL̃k,n))

=
lnK
ηn

+
n∑
t=1


̃k,t

and thus we have

E

[
n∑
t=1

gk,t −
n∑
t=1

gIt,t

]
≤ K

2

n∑
t=1

ηt +
lnK
ηn

+ E

n−1∑
t=1

Φt(ηt+1) − Φt(ηt).

To conclude the proof, we show that Φ′
t(η) ≥ 0. Since ηt+1 ≤ ηt, we then

obtain Φt(ηt+1) − Φt(ηt) ≤ 0. Let

pηi,t =
exp(−ηL̃i,t)∑K
k=1 exp(−ηL̃k,t)

.

Then

Φ′
t(η) = − 1

η2 ln

(
1
K

K∑
i=1

exp(−ηL̃i,t)
)
− 1
η

∑K
i=1 L̃i,t exp(−ηL̃i,t)∑K
i=1 exp(−ηL̃i,t)

=
1
η2

1∑K
i=1 exp(−ηL̃i,t)

K∑
i=1

exp(−ηL̃i,t)

×
(
−ηL̃i,t − ln

(
1
K

K∑
i=1

exp(−ηL̃i,t)
))

.
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Simplifying, we get (since p1 is the uniform distribution over
{1, . . . ,K}),

Φ′
t(η) =

1
η2

K∑
i=1

pηi,t ln(Kpηi,t) =
1
η2 KL(pηt ,p1) ≥ 0.

3.2 High Probability and Expected Regret Bounds

In this section we prove a high probability bound on the regret. Unfor-
tunately, the Exp3 strategy defined in the previous section is not
adequate for this task. Indeed, the variance of the estimate 
̃i,t is of
order 1/pi,t, which can be arbitrarily large. In order to ensure that
the probabilities pi,t are bounded from below, the original version of
Exp3 mixes the exponential weights with a uniform distribution over
the arms. In order to avoid increasing the regret, the mixing coefficient
γ associated with the uniform distribution cannot be larger than n−1/2.
Since this implies that the variance of the cumulative loss estimate L̃i,n
can be of order n3/2, very little can be said about the concentration of
the regret also for this variant of Exp3.

This issue can be solved by combining the mixing idea with a differ-
ent estimate for losses. In fact, the core idea is more transparent when
expressed in terms of gains, and so we turn to the gain version of the
problem. The trick is to introduce a bias in the gain estimate which
allows to derive a high probability statement on this estimate.

Lemma 3.2. For β ≤ 1, let

g̃i,t =
gi,t It=i + β

pi,t
.

Then, with probability at least 1 − δ,
n∑
t=1

gi,t ≤
n∑
t=1

g̃i,t +
ln(δ−1)
β

.
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Proof. Let Et be the expectation conditioned on I1, . . . , It−1. Since
exp(x) ≤ 1 + x + x2 for x ≤ 1, for β ≤ 1 we have

Et exp
(
βgi,t − β gi,t It=i + β

pi,t

)

≤
(

1 + Et

[
βgi,t − β gi,t It=i

pi,t

]
+ Et

[
βgi,t − β gi,t It=i

pi,t

]2)

×exp
(
− β

2

pi,t

)

≤
(

1 + β2 g
2
i,t

pi,t

)
exp
(
− β

2

pi,t

)
≤ 1

where the last inequality uses 1 + u ≤ exp(u). As a consequence, we
have

Eexp

(
β

n∑
t=1

gi,t − β
n∑
t=1

gi,t It=i + β

pi,t

)
≤ 1.

Moreover, Markov’s inequality implies P
(
X > ln(δ−1)

) ≤ δEeX and
thus, with probability at least 1 − δ,

β

n∑
t=1

gi,t − β
n∑
t=1

gi,t It=i + β

pi,t
≤ ln(δ−1).

The strategy associated with these new estimates, called Exp3.P, is
described in Figure 3.1. Note that, for the sake of simplicity, the strat-
egy is described in the setting with known time horizon (η is constant).
Anytime results can easily be derived with the same techniques as in
the proof of Theorem 3.1.

In the next theorem we propose two different high probability
bounds. In Equation (3.10) the algorithm needs the confidence level
δ as an input parameter. In Equation (3.11) the algorithm satisfies a
high probability bound for any confidence level. This latter property is
particularly important to derive good bounds on the expected regret.
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Exp3.P
Parameters: η ∈ R

+ and γ,β ∈ [0,1].
Let p1 be the uniform distribution over {1, . . . ,K}.
For each round t = 1,2, . . . ,n

(1) Draw an arm It from the probability distribution pt.
(2) Compute the estimated gain for each arm:

g̃i,t =
gi,t It=i + β

pi,t

and update the estimated cumulative gain: G̃i,t =
∑t

s=1 g̃i,s.
(3) Compute the new probability distribution over the arms

pt+1 = (p1,t+1, . . . ,pK,t+1) where:

pi,t+1 = (1 − γ) exp(ηG̃i,t)∑K
k=1 exp(ηG̃k,t)

+
γ

K
.

Fig. 3.1 Exp3.P forecaster.

Theorem 3.3 (High probability bound for Exp3.P). For any
given δ ∈ (0,1), if Exp3.P is run with

β =

√
ln(Kδ−1)
nK

, η = 0.95

√
ln(K)
nK

, γ = 1.05

√
K ln(K)

n
then, with probability at least 1 − δ,

Rn ≤ 5.15
√
nK ln(Kδ−1). (3.10)

Moreover, if Exp3.P is run with β =
√

ln(K)
nK , while η and γ are chosen

as before, then, with probability at least 1 − δ,

Rn ≤
√

nK

ln(K)
ln(δ−1) + 5.15

√
nK ln(K). (3.11)

Proof. We first prove (in three steps) that if γ ≤ 1/2 and (1 + β)
Kη ≤ γ, then Exp3.P satisfies, with probability at least 1 − δ,

Rn ≤ βnK + γn + (1 + β)ηKn +
ln(Kδ−1)

β
+

lnK
η

. (3.12)
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First step: Notation and simple equalities

One can immediately see that Ei∼pt g̃i,t = gIt,t + βK, and thus
n∑
t=1

gk,t −
n∑
t=1

gIt,t = βnK +
n∑
t=1

gk,t −
n∑
t=1

Ei∼pt g̃i,t. (3.13)

The key step is, again, to consider the cumulant-generating function
of g̃i,t. However, because of the mixing, we need to introduce a few
more notations. Let u = ( 1

K , . . . ,
1
K ) be the uniform distribution over

the arms, let and wt = pt−u
1−γ be the distribution induced by Exp3.P at

time t without the mixing. Then we have:

−Ei∼pt g̃i,t = −(1 − γ)Ei∼wt g̃i,t − γEi∼ug̃i,t

= (1 − γ)
(

1
η

lnEi∼wt exp(η(g̃i,t − Ek∼wt g̃k,t))

− 1
η

lnEi∼wt exp(ηg̃i,t)
)
− γEi∼ug̃i,t. (3.14)

Second step: Study of the first term in Equation (3.14)

We use the inequalities lnx ≤ x − 1 and exp(x) ≤ 1 + x + x2, for all
x ≤ 1, as well as the fact that ηg̃i,t ≤ 1 since (1 + β)ηK ≤ γ:

lnEi∼wt exp(η(g̃i,t − Ek∼pt g̃k,t)) = lnEi∼wt exp(ηg̃i,t) − ηEk∼pt g̃k,t

≤ Ei∼wt [exp(ηg̃i,t) − 1 − ηg̃i,t]
≤ Ei∼wtη

2g̃2
i,t

≤ 1 + β

1 − γ η
2
K∑
i=1

g̃i,t (3.15)

where we used wi,t

pi,t
≤ 1

1−γ in the last step.

Third step: Summing

Set G̃i,0 = 0. Recall that wt = (w1,t, . . . ,wK,t) with

wi,t =
exp(−ηG̃i,t−1)∑K
k=1 exp(−ηG̃k,t−1)

. (3.16)
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Then substituting Equation (3.15) into Equation (3.14) and summing
using Equation (3.16), we obtain

−
n∑
t=1

Ei∼pt g̃i,t

≤ (1 + β)η
n∑
t=1

K∑
i=1

g̃i,t − 1 − γ
η

n∑
t=1

ln

(
K∑
i=1

wi,t exp(ηg̃i,t)

)

= (1 + β)η
n∑
t=1

K∑
i=1

g̃i,t − 1 − γ
η

ln

(
n∏
t=1

∑K
i=1 exp(ηG̃i,t)∑K
i=1 exp(ηG̃i,t−1)

)

≤ (1 + β)ηKmax
j
G̃j,n +

lnK
η
− 1 − γ

η
ln

(
n∑
t=1

exp(ηG̃i,n)

)

≤ −(1 − γ − (1 + β)ηK)max
j
G̃j,n +

ln(K)
η

≤ −(1 − γ − (1 + β)ηK)max
j

n∑
t=1

gj,t +
ln(Kδ−1)

β
+

ln(K)
η

.

The last inequality comes from Lemma 3.2, the union bound, and
γ − (1 + β)ηK ≤ 1 which is a consequence of (1 + β)ηK ≤ γ ≤ 1/2.
Combining this last inequality with Equation (3.13) we obtain

Rn ≤ βnK + γn + (1 + β)ηKn +
ln(Kδ−1)

β
+

ln(K)
η

which is the desired result.
Equation (3.10) is then proved as follows. First, it is trivial if n ≥

5.15
√
nK ln(Kδ−1) and thus we can assume that this is not the case.

This implies that γ ≤ 0.21 and β ≤ 0.1, and thus we have (1 + β)ηK ≤
γ ≤ 1/2. Using Equation (3.12) directly yields the claimed bound. The
same argument can be used to derive Equation (3.11).

We now discuss the expected regret bounds. As the cautious reader
may already have observed, if the adversary is oblivious, namely when
(
1,t, . . . , 
K,t) is independent of I1, . . . , It−1 for each t, a pseudo-regret
bound implies the same bound on the expected regret. This follows from
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noting that the expected regret against an oblivious adversary is smaller
than the maximal pseudo-regret against deterministic adversaries, see
[18, Proposition 33] for a proof of this fact. In the general case of a
nonoblivious adversary, the loss vector (
1,t, . . . , 
K,t) at time t depends
on the past actions of the forecaster. This makes the analysis of the
expected regret more intricate. One way around this difficulty is to first
prove high probability bounds and then integrate the resulting bound.
Following this method, we derive a bound on the expected regret of
Exp3.P using Equation (3.11).

Theorem 3.4(Expected regret of Exp3.P). If Exp3.P is run with

β =

√
lnK
nK

, η = 0.95

√
lnK
nK

, γ = 1.05

√
K lnK
n

then

ERn ≤ 5.15
√
nK lnK +

√
nK

lnK
. (3.17)

Proof. We integrate the deviations in Equation (3.11) using the formula

EW ≤
∫ 1

0

1
δ

P

(
W > ln

1
δ

)
dδ

for a real-valued random variable W . In particular, taking

W =

√
lnK
nK

(Rn − 5.15
√
nK lnK)

yields EW ≤ 1, which is equivalent to Equation (3.17).

3.3 Lower Bound

The next theorem shows that the results of the previous sections are
essentially unimprovable, up to logarithmic factors. The result is proven
via the probabilistic method: we show that there exists a distribution of
rewards for the arms such that the pseudo-regret of any forecaster must
be high when averaged over this distribution. Owing to this probabilis-
tic construction, the lower bound proof is based on the same Kullback–
Leibler divergence as the one used in the proof of the lower bound
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for stochastic bandits — see Section 2.3. We are not aware of other
techniques for proving bandit lower bounds.

We find it more convenient to prove the results for rewards rather
than losses. In order to emphasize that our rewards are stochastic (in
particular, Bernoulli random variables), we use Yi,t ∈ {0,1} to denote
the reward obtained by pulling arm i at time t.

Theorem 3.5 (Minimax lower bound). Let sup be the supremum
over all distribution of rewards such that, for i = 1, . . . ,K, the rewards
Yi,1,Yi,2, . . . ∈ {0,1} are i.i.d., and let inf be the infimum over all fore-
casters. Then

inf sup

(
max

i=1,...,K
E

n∑
t=1

Yi,t − E

n∑
t=1

YIt,t

)
≥ 1

20

√
nK (3.18)

where expectations are with respect to both the random generation of
rewards and the internal randomization of the forecaster.

Since maxi=1,...,K E
∑n

t=1Yi,t − E
∑n

t=1YIt,t = Rn ≤ ERn, Theo-
rem 3.5 immediately entails a lower bound on the regret of any forecaster.

The general idea of the proof goes as follows. Since at least one arm
is pulled less than n/K times, for this arm one cannot differentiate
between a Bernoulli of parameter 1/2 and a Bernoulli of parameter
1/2 +

√
K/n. Thus, if all arms are Bernoulli of parameter 1/2, but

one whose parameter is 1/2 +
√
K/n, then the forecaster should incur

a regret of order n
√
K/n =

√
nK. In order to formalize this idea, we use

the Kullback–Leibler divergence, and in particular Pinsker’s inequality,
to compare the behavior of a given forecaster against: (1) the distribu-
tion where all arms are Bernoulli of parameter 1/2, and (2) the same
distribution where the parameter of one arm is increased by ε.

We start by proving a more general lemma, which could also be
used to derive lower bounds in other contexts. The proof of Theorem
3.5 then follows by a simple optimization over ε.

Lemma 3.6. Let ε ∈ [0,1). For any i ∈ {1, . . . ,K} let Ei be the expec-
tation against the joint distribution of rewards where all arms are i.i.d.
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Bernoulli of parameter 1−ε
2 but arm i, which is i.i.d. Bernoulli of param-

eter 1+ε
2 . Then, for any forecaster,

max
i=1,...,K

Ei

n∑
t=1

(Yi,t − YIt,t) ≥ nε
(

1 − 1
K
−
√
ε ln

1 + ε

1 − ε
√

n

2K

)
.

Proof. We provide a proof in five steps by lower bounding 1
K

∑K
i=1

Ei
∑n

t=1(Yi,t − YIt,t). This implies the statement of the lemma because
a max is larger than a mean.

First step: Empirical distribution of plays

We start by considering a deterministic forecaster. Let qn =
(q1,n, . . . , qK,n) be the empirical distribution of plays over the arms
defined by qi,n = Ti(n)

n — recall from Section 2 that Ti(n) denotes the
number of times arm i was selected in the first n rounds. Let Jn be
drawn according to qn. We denote by Pi the law of Jn against the
distribution where all arms are i.i.d. Bernoulli of parameter 1−ε

2 but
arm i, which is i.i.d. Bernoulli of parameter 1+ε

2 (we call this the i-th
stochastic adversary). Recall that Pi(Jn = j) = Ei

Tj(n)
n , hence

Ei

n∑
t=1

(Yi,t − YIt,t) = εn
∑
j �=i

Pi(Jn = j) = εn(1 − Pi(Jn = i))

which implies

1
K

K∑
i=1

Ei

n∑
t=1

(Yi,t − YIt,t) = εn

(
1 − 1

K

K∑
i=1

Pi(Jn = i)

)
. (3.19)

Second step: Pinsker’s inequality

Let P0 be the law of Jn for the distribution where all arms are i.i.d.
Bernoulli of parameter 1−ε

2 . Then Pinsker’s inequality immediately

gives Pi(Jn = i) ≤ P0(Jn = i) +
√

1
2KL(P0,Pi), and so

1
K

K∑
i=1

Pi(Jn = i) ≤ 1
K

+
1
K

K∑
i=1

√
1
2
KL(P0,Pi). (3.20)



36 Adversarial Bandits: Fundamental Results

Third step: Computation of KL(P0,Pi)

Since the forecaster is deterministic, the sequence of rewards Y n =
(Y1, . . . ,Yn) ∈ {0,1}n received by the forecaster uniquely determines the
empirical distribution of plays qn. In particular, the law of Jn condi-
tionally to Y n is the same for any i-th stochastic adversary. For each
i = 0, . . . ,K, let P

n
i be the law of Y n against the i-th adversary. Then

one can easily show that KL(P0,Pi) ≤ KL(Pn0 ,P
n
i ). Now we use the

chain rule for Kullback–Leibler divergence — see for example [61, Sec-
tion A.2] — iteratively to introduce the laws P

t
i of Y t = (Y1, . . . ,Yt).

More precisely, we have

KL(Pn0 ,P
n
i )

= KL(P1
0,P

1
i ) +

n∑
t=2

∑
yt−1

P
t−1
0 (yt−1)KL(Pt0(· | yt−1),Pti(· | yt−1))

= KL(P1
0,P

1
i ) +

n∑
t=2

 ∑
yt−1 :It=i

P
t−1
0 (yt−1)KL

(
1 − ε

2
,
1 + ε

2

)

+
∑

yt−1 :It �=i
P
t−1
0 (yt−1)KL

(
1 + ε

2
,
1 + ε

2

)
= KL

(
1 − ε

2
,
1 + ε

2

)
E0Ti(n). (3.21)

Fourth step: Conclusion for deterministic forecasters

By using that the square root is concave and combining KL(P0,Pi) ≤
KL(Pn0 ,P

n
i ) with Equation (3.21), we deduce that

1
K

K∑
i=1

√
KL(P0,Pi) ≤

√√√√ 1
K

K∑
i=1

KL(P0,Pi)

≤
√√√√ 1
K

K∑
i=1

KL
(

1 − ε
2

,
1 + ε

2

)
E0Ti(n)

=

√
n

K
KL
(

1 − ε
2

,
1 + ε

2

)
. (3.22)
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We conclude the proof for deterministic forecasters by applying
Equations (3.20) and (3.22) to Equation (3.19), and observing that
KL(1−ε

2 , 1+ε
2 ) = ε ln 1+ε

1−ε .

Fifth step: Randomized forecasters via Fubini’s Theorem

Extending previous results to randomized forecasters is easy. Denote
by Er the expectation with respect to the forecaster’s internal random-
ization. Then Fubini’s Theorem implies

1
K

K∑
i=1

Ei

n∑
t=1

Er(Yi,t − YIt,t) = Er
1
K

K∑
i=1

Ei

n∑
t=1

(Yi,t − YIt,t).

Now the proof is concluded by applying the lower bound on
1
K

∑K
i=1 Ei

∑n
t=1(Yi,t − YIt,t), which we proved in previous steps, to each

realization of the forecaster’s random bits.

3.4 Refinements and Bibliographic Remarks

The adversarial framework studied in this section was originally inves-
tigated in a full information setting, where at the end of each round
the forecaster observes the complete loss vector (
1,t, . . . , 
K,t). We refer
the reader to [61] for the history of this problem. The Exp3 and Exp3.P
strategies were introduced1 and analyzed by Auer et al. [24], where the
lower bound of Theorem 3.5 is also proven. The proofs presented in
this section are taken from Ref. [43]. We now give an overview of some
of the many improvements and refinements that have been proposed
since these initial analyses.

3.4.1 Log-Free Upper Bounds

One can see that there is a logarithmic gap between the pseudo-regret
of Exp3, presented in Theorem 3.1, and the minimax lower bound of
Theorem 3.5. This gap was closed by Audibert and Bubeck [17], who
constructed a new class of strategies and showed that some of them

1 In its original formulation the Exp3 strategy was defined as a mixture of exponential
weights with the uniform distribution on the set of arms. It was noted in Stoltz [156] that
this mixing is not necessary, see footnote 2 on page 26 in Bubeck [43] for more details on
this.
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have a pseudo-regret of order
√
nK. This new class of strategies, called

INF (Implicitly Normalized Forecaster), is based on the following idea.
First, note that one can generalize the exponential weighting scheme
of Exp3 as follows: given a potential function ψ, assign the probability

pi,t+1 =
ψ(L̃i,t)∑K
j=1ψ(L̃j,t)

.

This type of strategy is called a weighted average forecaster, see [61,
Section 2]. In INF the normalization is done implicitly, by a translation
of the losses. More precisely, INF with potential ψ assigns the probabil-
ity pi,t+1 = ψ(Ct − L̃i,t), where Ct is the constant such that pt+1 sum
to 1. The key to obtain a minimax optimal pseudo-regret is to take
ψ of the form ψ(x) = (−ηx)−q with q > 1, while Exp3 corresponds to
ψ(x) = exp(ηx). Audibert et al. [19] realized that the INF strategy can
be formulated as a Mirror Descent algorithm. This point of view sig-
nificantly simplifies the proofs. We refer the reader to Section 5 (and
in particular Theorem 5.10) for more details.

While it is possible to get log-free pseudo-regret bounds, the sit-
uation becomes significantly more complicated when one considers
high probability regret and expected regret. Audibert and Bubeck [18]
proved that one can get a log-free expected regret if the adversary is
oblivious, i.e., the sequence of loss vectors is independent of the fore-
caster’s actions. Moreover, it is also possible to get a log-free high prob-
ability regret if the adversary is fully oblivious (i.e., the loss vectors are
independently drawn, but not identically distributed — this includes
the oblivious adversary). It is conjectured [18] that it is not possible to
obtain a log-free expected regret bound against a general nonoblivious
adversary.

3.4.2 Adaptive Bounds

One of the strengths of the bounds proposed in this section is also one
of its weaknesses: the bounds hold against any adversary. It is clear
that in some cases it is possible to obtain a much smaller regret than
the worst case regret. For example, when the sequence of losses is an
i.i.d. sequence, we proved in Section 2 that it is possible to obtain a
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logarithmic pseudo-regret (provided that the gap ∆ is considered as a
constant). Thus, it is natural to ask if it is possible to have strategies
with minimax optimal regret, but also with much smaller regret when
the loss sequence is not worst case.

The first bound in this direction was proved by Auer et al.[24], who
showed that, for the gain version of the problem and against an obliv-
ious adversary, Exp3 has a pseudo-regret of order

√
KG∗

n (omitting
log factors), where G∗

n ≤ n is the maximal cumulative reward of the
optimal arm after n rounds. This result was improved by Audibert and
Bubeck [18], who showed that using the gain estimate

g̃i,t = − It=i

β
ln
(

1 − βgi,t
pi,t

)
one can bound the regret with high probability by essentially the same
quantity as before, and against any adversary.

Another direction was explored by Hazan and Kale [96] building
on previous works in the full information setting — [64]. In this work

the authors proved that one can attain a regret of order
√∑K

i=1Vi,n
excluding log factors, where

Vi,n =
n∑
t=1

(

i,t − 1

n

n∑
s=1


i,s

)2

is the total variation of the loss for arm i. In fact their result is more
general, as it applies to the linear bandit framework — see Section 5.
The main new ingredient in their analysis is a “reservoir sampling”
procedure. We refer the reader to [96] for details. See also the works of
Slivkins and Upfal [153] and Slivkins [152] for related results on slowly
changing bandits.

In Section 3.4.4 below we describe another type of adaptive bound,
where one combines minimax optimal regret for the adversarial model
with logarithmic pseudo-regret for the stochastic model.

3.4.3 Competing with the Best Switching Strategy

While competing against the policy consistently playing the best fixed
arm is a natural way of defining regret, in some applications it might be
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interesting to consider regret with respect to a bigger class of policies.
Though this problem is the focus of Section 4, there is a class of natural
policies that can be directly dealt with by the methods of this section.
Namely, consider the problem of competing against any policy con-
strained to make at most S ≤ n switches (a switch is when the arm
played at time t is different from the arm played at time t + 1). This
problem was studied by Auer [22], where it was first shown that a
simple variant of Exp3 attains a low switching regret against oblivi-
ous adversaries. Later, Audibert and Bubeck [18] proved that Exp3.P
attains an expected regret (and a high probability regret) of order√
nKS ln(nK/S) for this problem.

3.4.4 Stochastic versus Adversarial Bandits

From a practical viewpoint, Exp3 should be a safe choice when
we have reasons to believe that the sequence of rewards is not
well matched by any i.i.d. process. Indeed, it is easy to prove that
UCB can have linear regret, i.e., Rn = Ω(n), on certain determin-
istic sequences. In [53] a new strategy was described, called SAO
(Stochastic and Adversarial Optimal), which enjoys (up to logarith-
mic factors) both the guarantee of Exp3 for the adversarial model
and the guarantee of UCB for the stochastic model. More precisely
SAO satisfies Rn = O(K∆ log2(n) log(K)) in the stochastic model and
Rn = O(

√
nK log3/2(n) log(K)) in the adversarial model. Note that

while this result is a step toward more flexible strategies, the very notion
of regret Rn can become vacuous with nonstationarities in the reward
sequence, since the total reward of the best fixed action might be very
small. In that case the notion of switching regret — see Section 3.4.3 —
is more relevant, and it would be interesting to derive a strategy with
logarithmic regret in the stochastic model, and a switching regret of
order

√
nKS in the adversarial model.

3.4.5 Alternative Feedback Structures

As mentioned at the beginning of this section, the adversarial multi-
armed bandit is a variation of the full information setting, with a weaker
feedback signal (only the incurred loss versus the full vector of losses is
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observed). Many other feedback structures can be considered, and we
conclude the section by describing a few of them.

In the label efficient setting, originally proposed by Helmbold and
Panizza [99], at the end of each round the forecaster has to decide
whether to ask for the losses of the current round, knowing that this
can be done for at most m ≤ n times. In this setting, Cesa-Bianchi

et al. [63] proved that the minimax pseudo-regret is of order n
√

lnK
m .

A bandit label efficient version was proposed by Allenberg et al. [11].
Audibert and Bubeck [18] proved that the minimax pseudo-regret for

the bandit label efficient version is of order n
√

K
m . These results do not

require any fundamentally new algorithmic idea, besides the fact the
forecaster has to randomize to select the rounds in which the losses are
revealed. Roughly speaking, a simple coin toss with parameter ε = m/n

is sufficient to obtain an optimal regret.
Mannor and Shamir [133] study a model that interpolates between

the full information and the bandit setting. The basic idea is that there
is an undirected graph G with K vertices (one vertex for each arm)
that encodes the feedback structure. When one pulls arm i the losses
of all neighboring arms j ∈ N(i) in the graph are observed. Thus, a
graph with no edges is equivalent to the bandit problem, while the
complete graph is equivalent to the full information setting. Given the
feedback structure G, it is natural to consider the following unbiased
loss estimate


̃i,t =

i,t i∈N(It)∑
j∈N(i) pj,t

.

Using Exp3 with this loss estimate, the authors show that the mini-
max pseudo-regret (up to logarithmic factors) is of order of

√
α(G)n,

where α(G) is the independence number of graph G. Note that this
interpolated setting naturally arises in applications like ad placement
on websites. Indeed, if a user clicks on an advertisement, it is plausible
to assume that the same user would have clicked on similar advertise-
ments, had they been displayed.

The above problems are all specific examples of the more general
partial monitoring setting. In this model, at the end of each round the
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player does not observe the incurred loss 
It,t but rather a stochastic
“signal” SIt,t. A prototypical example of this scenario is the following:
a website is repeatedly selling the same item to a sequence of cus-
tomers. The selling price is dynamically adjusted, and each customer
buys the item only if the current price is smaller or equal than his own
hidden value for the item. The pricing algorithm (i.e., the player in our
terminology) does not see each user’s value, but only whether the user
bought the item or not.

The relationship between the signals and the incurred losses defines
the instance of a partial monitoring problem. We refer the interested
reader to [61] for more details, including an historical account. Recent
progress on this problem has been made by Bartok et al. [34, 35] and
Foster and Rakhlin [80].



4
Contextual Bandits

A natural extension of the multi-armed problem is obtained by associ-
ating side information with each arm. Based on this side information, or
context, a notion of “contextual regret” is introduced where optimality
is defined with respect to the best policy (i.e., mapping from contexts
to arms) rather than the best arm. The space of policies, within which
the optimum is sought, is typically chosen in order to have some desired
structure. A different viewpoint is obtained when the contexts are pri-
vately accessed by the policies (which are then appropriately called
“experts”). In this case the contextual information is hidden from the
forecaster, and arms must be chosen based only on the past estimated
performance of the experts.

Contextual bandits naturally arise in many applications. For exam-
ple, in personalized news article recommendation the task is to select,
from a pool of candidates, a news article to display whenever a new
user visits a website. The articles correspond to arms, and a reward
is obtained whenever the user clicks on the selected article. Side infor-
mation, in the form of features, can be extracted from both user and
articles. For the user this may include historical activities, demographic
information, and geolocation; for the articles, we may have content

43
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information and categories. See [128] for more details on this applica-
tion of contextual bandits.

In general, the presence of contexts creates a wide spectrum of possi-
ble variations obtained by combining assumptions on the rewards with
assumptions on the nature of contexts and policies. In this section we
describe just a few of the results available in the literature and use the
bibliographic remarks to mention all those that we are aware of.

4.1 Bandits with Side Information

The most basic example of contextual bandits is obtained when game
rounds t = 1,2, . . . are marked by contexts s1,s2, . . . from a given context
set S. The forecaster must learn the best mapping g : S → {1, . . . ,K} of
contexts to arms. We analyze this simple side information setting in the
case of adversarial rewards, and we further assume that the sequence of
contexts st is arbitrary but fixed. The approach we take is the simplest:
run a separate instance of Exp3 on each distinct context.

We introduce the following notion of pseudo-regret

R
S
n = max

g :S→{1,...,K}
E

[
n∑
t=1


It,t −
n∑
t=1


g(st),t

]
.

Here st ∈ S denotes the context marking the t-th game round. A bound
on this pseudoregret is almost immediately obtained using the adver-
sarial bandit results from Section 3.

Theorem 4.1. There exists a randomized forecaster for bandits with
side information (the S-Exp3 forecaster, defined in the proof) that
satisfies

R
S
n ≤
√

2n|S|K lnK

for any set S of contexts.

Proof. Let S = |S|. The S-Exp3 forecaster runs an instance of Exp3
on each context s ∈ S. Let ns the number of times when st = s within
the first n time steps. Using the bound (Equation (3.2)) established in
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Theorem 3.1 we get

max
g :S→{1,...,K}

E

[
n∑
t=1

(
It,t − 
g(st),t)

]
=
∑
s∈S

max
k=1,...,K

E

[ ∑
t :st=s

(
It,t − 
k,t)
]

≤
∑
s∈S

√
2nsK lnK

≤
√

2nSK lnK

where in the last step we used Jensen’s inequality and the identity∑
sns = n.

In Section 4.2.1, we extend this construction by considering several
context sets simultaneously.

A lower bound Ω(
√
nSK) is an immediate consequence of the adver-

sarial bandit lower bound (Theorem 3.5) under the assumption that a
constant fraction of the contexts in S marks at least constant fraction
of the n game rounds.

4.2 The Expert Case

We now consider the contextual variant of the basic adversarial bandit
model of Section 3. In this variant there is a finite set of N random-
ized policies. Following the setting of prediction with expert advice, no
assumptions are made on the way policies compute their randomized
predictions, and the forecaster experiences the contexts only through
the advice provided by the policies. For this reason, in what follows we
use the word expert to denote a policy. Calling this a model of con-
textual bandits may sound a little strange, as the structure of contexts
does not seem to play a role here. However, we have decided to include
this setting in this section because bandit with experts have been used
in practical contextual bandit problems — see, e.g., the news recom-
mendation experiment in Ref. [40].

Formally, at each step t = 1,2, . . . the forecaster obtains the expert
advice (ξ1t , . . . , ξ

N
t ), where each ξjt is a probability distribution over

arms representing the randomized play of expert j at time t. If

t = (
1,t, . . . , 
K,t) ∈ [0,1]K is the vector of losses incurred by the K
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arms at time t, then E
i∼ξj

t

i,t denotes the expected loss of expert j at

time t. We allow the expert advice to depend on the realization of the
forecaster’s past random plays. This fact is explicitly used in the proof
of Theorem 4.5.

Similarly to the pseudo-regret (Equation (3.1)) for adversarial ban-
dits, we now introduce the pseudo-regret Rctx

n for the adversarial con-
textual bandit problem,

R
ctx
n = max

i=1,...,N
E

[
n∑
t=1


It,t −
n∑
t=1

Ek∼ξi
t

k,t

]
.

In order to bound the contextual pseudo-regret Rctx
n , one could

naively use Exp3 strategy of Section 3 on the set of experts. This
would give a bound of order

√
nN logN . In Figure 4.1 we introduce

the contextual forecaster Exp4 for which we show a bound of order√
nK lnN . Thus, in this framework we can be competitive even with

an exponentially large (with respect to n) number of experts.
Exp4 is a simple adaptation of Exp3 to the contextual setting. Exp4

runs Exp3 over the N experts using estimates of the experts’ losses
E
i∼ξj

t

i,t. In order to draw arms, Exp4 mixes the expert advice with the

probability distribution over experts maintained by Exp3. The resulting
bound on the pseudo-regret is of order

√
nK lnN , where the term

√
lnN

comes from running Exp3 over the N experts, while
√
K is a bound on

the second moment of the estimated expert losses under the distribution
qt computed by Exp3. Equation (4.6) shows that Ej∼qt ỹ2

j,t ≤ Ei∼pt 
̃
2
i,t.

That is, this second moment is at most that of the estimated arm losses
under the distribution pt computed by Exp4, which in turn is bounded
by
√
K using techniques from Section 3.

Theorem 4.2(Pseudo-regret of Exp4). Exp4 without mixing and

with ηt = η =
√

2lnN
nK satisfies

R
ctx
n ≤

√
2nN lnK. (4.1)

On the other hand, with ηt =
√

lnN
tK it satisfies

R
ctx
n ≤ 2

√
nN lnK. (4.2)
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Exp4 (Exponential weights algorithm for Exploration and Exploitation
with Experts) without mixing:

Parameter: a nonincreasing sequence of real numbers (ηt)t∈N.

Let q1 be the uniform distribution over {1, . . . ,N}.
For each round t = 1,2, . . . ,n

(1) Get expert advice ξ1t , . . . , ξ
N
t , where each ξj

t is a probability
distribution over arms.

(2) Draw an arm It from the probability distribution pt =
(p1,t, . . . ,pK,t), where pi,t = Ej∼qt

ξj
i,t.

(3) Compute the estimated loss for each arm


̃i,t =

i,t
pi,t

It=i i = 1, . . . ,K.

(4) Compute the estimated loss for each expert

ỹj,t = Ei∼ξj
t

̃i,t j = 1, . . . ,N.

(5) Update the estimated cumulative loss for each expert Ỹj,t =∑t
s=1 ỹj,s for j = 1, . . . ,N .

(6) Compute the new probability distribution over the experts
qt+1 = (q1,t+1, . . . , qN,t+1), where

qj,t+1 =
exp(−ηtỸj,t)∑N

k=1 exp(−ηtỸk,t)
.

Fig. 4.1 Exp4 forecaster.

Proof. We apply the analysis of Exp3 (Theorem 3.1) to a forecaster
using distributions qt over N experts, whose pseudo-losses are ỹj,t for
j = 1, . . . ,N . This immediately gives the inequality

n∑
t=1

Ej∼qt ỹj,t ≤ Ỹk,n +
logN
ηn

+
1
2

n∑
t=1

ηtEj∼qt ỹ
2
j,t. (4.3)

Now, similarly to Equation (3.5) in the proof of Theorem 3.1, we estab-
lish the following inequalities

EIt∼pt ỹk,t = EIt∼ptEi∼ξk
t

̃i,t = Ei∼ξk

t

i,t = yk,t (4.4)
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Ej∼qt ỹj,t = Ej∼qtEi∼ξj
t

̃i,t = Ei∼pt 
̃i,t = 
It,t (4.5)

Ej∼qt ỹ
2
j,t = Ej∼qt(Ei∼ξj

t

̃i,t)2 ≤ Ej∼qtEi∼ξj

t

̃2i,t = Ei∼pt 
̃

2
i,t =


2It,t
pIt,t

(4.6)

where we used Jensen’s inequality to prove Equation (4.6). By applying
Equations (4.5) and (4.6) to Equation (4.3) we get

n∑
t=1


It,t =
n∑
t=1

Ej∼qt ỹj,t ≤ Ỹk,n +
logN
ηn

+
1
2

n∑
t=1

ηt

2It,t
pIt,t

.

Now note that, if we take expectation over the draw of I1, . . . , In, using
Equation (4.4) we obtain

E Ỹk,n = E

[
n∑
t=1

E[ỹj,n|I1, . . . , It−1]

]
= E

[
n∑
t=1

Ei∼ξk
t

i,t

]
= EYk,n.

Hence,

R
ctx
n = max

k=1,...,N
E

[
n∑
t=1


It,t − Yk,n
]
≤ logN

ηn
+
K

2

n∑
t=1

ηt.

Choosing ηt as in the statement of the theorem, and using the inequality∑n
t=1 t

−1/2 ≤ 2
√
n, concludes the proof.

Besides pseudo-regret, the contextual regret

Rctx
n = max

k=1,...,N

(
n∑
t=1


It,t −
n∑
t=1

Ei∼ξJ
t

i,t

)

can be also bounded, at least with high probability. Indeed, similarly to
the variant Exp3.P of Exp3 (see Section 3.2), an analogous modification
of Exp4, called Exp4.P, satisfies

Rctx
n ≤ c

√
nK ln(Nδ−1)

for some constant c > 0 and with probability at least 1 − δ, where
δ ∈ (0,1) is a parameter of the algorithm.
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4.2.1 Competing Against the Best Context Set

We revisit the basic contextual scenario introduced in Section 4.1,
where the goal is to compete against the best mapping from contexts
to arms. Consider now a class {Sθ : θ ∈ Θ} of context sets. In this new
game, each time step t = 1,2, . . . is marked by the vector (sθ,t)θ∈Θ of
contexts, one for each set in Θ. Introduce the pseudoregret

R
Θ
n = max

θ∈Θ
max

g :Sθ→{1,...,K}
E

[
n∑
t=1


It,t −
n∑
t=1


g(sθ,t),t

]
.

When |Θ| = 1 we recover the contextual pseudoregret RS
n . In general,

when Θ contains more than one set, the forecaster must learn both the
best set Sθ and the best function g : Sθ → {1, . . . ,K} from that set to
the set of arms.

We find this variant of contextual bandits interesting because its
solution involves a nontrivial combination of two of the main algo-
rithms examined in this section: Exp4 and S-Exp3. In particular, we
consider a scenario in which Exp4 uses instances of S-Exp3 as experts.
The interesting aspect is that these experts are learning themselves,
and thus the analysis of the combined algorithm requires taking into
account the learning process at both levels.

Note that in order to solve this problem we could simply lump all
contexts in a big set and use the proof of Theorem 4.1. However, this
would give a regret bound that depends exponentially in |Θ|. On the
other hand, by using Exp4 directly on the set of all policies g (which is of
cardinality exponential in |Θ| × |S|), we could improve this to a bound
that scales with

√|Θ|. The idea we explore here is to use Exp4 over
the class Θ of “experts” and combine this with the S-Exp3 algorithm
of Theorem 4.1. This gets us down to a logarithmic dependency on |Θ|,
albeit at the price of a worse dependency on n.

Intuitively, Exp4 provides competitiveness against the best context
set Sθ, while the instances of the S-Exp3 algorithm, acting as experts
for Exp4, ensure that we are competitive against the best function g :
Sθ → {1, . . . ,K} for each θ ∈ Θ. However, by doing so we immediately
run into a problem: the pt used by Exp4 is not the same as the pt’s
used by each expert. In order to address this issue, we now show that
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the analysis of Exp3 holds even when the sequence of plays I1, I2, . . . is
drawn from a sequence of distributions q1, q2, . . . possibly different from
the one chosen by the forecaster. The only requirement we need is that
each probability in qt be bounded away from zero.

Theorem 4.3. Consider a K-armed bandit game in which at each step
t = 1,2, . . . the played arm It is drawn from an arbitrary distribution
qt over arms. Each qt may depend in an arbitrary way on the pairs
(I1, 
I1,1), . . . ,(It−1, 
It−1,t−1). Moreover, qt,i ≥ ε > 0 for all i = 1, . . . ,K
and t ≥ 1.

If Exp3 without mixing is run with 
̃i,t = 	i,t
qi,t It=i and ηt = η =√

2lnK
nK then

max
k=1,...,K

EIn∼qn

[
n∑
t=1

Ei∼pt
i,t −
n∑
t=1


k,t

]
≤
√

2n
ε

lnK (4.7)

where In ∼ qn means that each It is drawn from qt for t = 1, . . . ,n, and
pt is the distribution used by Exp3 at time t.

Proof. The proof is an easy adaptation of Exp3 analysis (Theorem 3.1
in Section 3) and we just highlight the differences. The key step is the
analysis of the log moment of 
̃i,t:

Ei∼pt 
̃i,t =
1
η

logEi∼pt exp(−η(
̃i,t − Ek∼pt 
̃k,t))

−1
η

logEi∼pt exp(−η
̃i,t).

The first term is bounded in a manner slightly different from the proof
of Theorem 3.1,

logEi∼pt exp(−η(
̃i,t − Ek∼pt 
̃k,t)) ≤
η2

2
Ei∼pt 
̃

2
i,t ≤

η2

2
pIt,t
q2It,t

.

The analysis of the second term is unchanged: Let L̃i,0 = 0, Φ0(η) = 0
and Φt(η) = 1

η log 1
K

∑K
i=1 exp(−ηL̃i,t). Then by definition of pt we have:

−1
η

logEi∼pt exp(−η
̃i,t) = Φt−1(η) − Φt(η).
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Proceeding again as in the proof of Theorem 3.1 we obtain

EIn∼qn

[
n∑
t=1

Ei∼pt 
̃i,t

]
≤ EIn∼qn

[
n∑
t=1


̃k,t +
η

2
pIt,t
q2It,t

]
+

lnK
η

.

Now observe that

EIt∼qt 
̃k,t = 
k,t and EIt∼qt
pIt,t
q2It,t

=
K∑
i=1

pi,t
qi,t
≤ 1
ε
.

Therefore,

EIn∼qn

[
n∑
t=1

(Ei∼pt
i,t − 
k,t)
]

= EIn∼qn

[
n∑
t=1

(Ei∼pt 
̃i,t − 
̃k,t)
]

≤ ηn

2ε
+

lnK
η

.

Choosing η as in the statement of the theorem concludes the proof.

It is left to the reader to verify that the analysis of S-Exp in Theo-
rem 4.1 can be combined with the above analysis to give the bound

max
g :S→{1,...,K}

EIn∼qn

[
n∑
t=1

Ei∼pt
i,t −
n∑
t=1


g(st),t

]
≤
√

2n
ε
|S| lnK.

(4.8)

Next, we state a bound on the contextual pseudoregret of a variant
of Exp4 whose probabilities pi,t satisfy the property pi,t ≥ γ

K for all
i = 1, . . . ,K and t ≥ 1, where γ > 0 is a parameter. This is obtained by
replacing in Exp4 the assignment pi,t = Ej∼qtξ

j
i,t (line 2 in Figure 4.1)

with the assignment

pi,t = (1 − γ)Ej∼qtξji,t +
γ

K

where γ > 0 is the mixing coefficient. This mixing clearly achieves the
desired property for each pi,t.

Theorem 4.4 (Pseudo-regret of Exp4 with mixing). Exp4 with
mixing coefficient γ and with ηt = η = γ/K satisfies

R
ctx
n ≤

γn

2
+
K lnN
γ

. (4.9)
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Proof. The proof goes along the same lines of Exp4 original proof [24,
Theorem 7.1] with the following modifications: since the weights are
negative exponentials, we can use the bound exp(−x) ≤ 1 − x + x2

2
for all x ≥ 0 rather than exp(x) ≤ 1 + x + (e − 2)x2 for all 0 ≤ x ≤ 1;
the term (1 − γ)∑t 
k,t is upper bounded directly by

∑
t 
k,t; the term

γ
K

∑
t

∑
i 
i,t is upper bounded by γn without requiring the assumption

that the expert set contains the “uniform expert”. Finally, the fact
that experts’ distributions ξjt depend on the realization of past fore-
caster’s random arms is dealt with in the same way as in the proof of
Theorem 4.2.

Theorem 4.5. There exists a randomized forecaster achieving

R
Θ
n = O

(
n2/3
(

max
θ∈Θ
|Sθ|K lnK

)1/3√
ln |Θ|

)
for any class {Sθ : θ ∈ Θ} of context sets.

Proof. We run the Exp4 forecaster with mixing coefficient γ using
instances of the S-Exp3 algorithm (defined in the proof of Theorem 4.1)
as experts. Each S-Exp3 instance is run on a different context set Sθ
for θ ∈ Θ. Let ξθt be the distribution used at time t by the S-Exp3
instance running on context set Sθ and let pn be the joint distribution
of In = (I1, . . . , In) used by Exp4. Since pi,t ≥ γ

K for all i = 1, . . . ,K and
t ≥ 1, we can use Equation (4.8) with ε = γ/K. Thus, Theorem 4.4
implies

EIn∼pn

[
n∑
t=1


It,t

]
≤ min

θ∈Θ
EIn∼pn

[
n∑
t=1

Ek∼ξθ
t

k,t

]
+
γn

2
+
K ln |Θ|

γ

≤ min
θ∈Θ

min
g :Sθ→{1,...,K}

E

[
n∑
t=1


g(st),t

]

+
√

2n
ε

max
θ∈Θ
|Sθ| lnK +

γn

2
+
K ln |Θ|

γ
.

Substituting ε = γ/K in the above expression and choosing γ of the
order of n−1/3(maxθ∈Θ |Sθ|K lnK)1/3

√
ln |Θ| gives the desired result.
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Note that in Theorem 4.5 the rate is n2/3, in contrast to the more
usual n1/2 bandit rate. This worsening is inherent in the Exp4-over-
Exp3 construction. It is not known whether the rate could be improved
while keeping the same logarithmic dependence on |Θ| guaranteed by
this construction.

4.3 Stochastic Contextual Bandits

We now move on to consider the case in which policies have a known
structure. More specifically, each policy is a function f mapping the
context space to the arm space {1, . . . ,K} and the set F of policies is
given as an input parameter to the forecaster.

Under this assumption on the policies, the problem can be viewed
as a bandit variant of supervised learning. For this reason, here and in
the next section we follow the standard notation of supervised learning
and use x rather than s to denote contexts.

In supervised learning, we observe data of the form (xt, 
t). In the
contextual bandit setting, the observed data are (xt, 
It,t) where It is the
arm chosen by the forecaster at time t given context xt ∈ X . This con-
nection to supervised learning has steered the focus of research toward
stochastic data generation models, which are widespread in the analysis
of supervised learning. In the stochastic variant of contextual bandits,
contexts xt and arm losses 
t = (
1,t, . . . , 
K,t) are realizations of i.i.d.
draws from a fixed and unknown distribution D over X × [0,1]K . In
tight analogy with statistical learning theory, a policy f is evaluated in
terms of its statistical risk 
D(f) = E(x,	)∼D
f(x). Let

f∗ = arginf
f∈F


D(f)

the risk-minimizing policy in the class. The regret with respect to the
class F of a forecaster choosing arms I1, I2, . . . is then defined by

n∑
t=1


It,t − n
D(f∗).

This can be viewed as the stochastic counterpart of the adversarial
contextual regret Rctx

n introduced in Section 4.2. The main question is
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now to characterize the “price of bandit information” using the sample
complexity of supervised learning as yardstick.

In the rest of this section we focus on the case of K = 2 arms and
parameterize classes F of policies f : X → {1,2} by their VC-dimension
d — see [41] for a modern introduction to VC theory. For this setting,
we consider the following forecaster.

VE (VC dimension by Exponentiation):

Parameters: number n of rounds, n′ satisfying 1 ≤ n′ ≤ n.

(1) For the first n′ rounds, choose arms uniformly at random.
(2) Build F ′ ⊆ F such that for any f ∈ F there is exactly

one f ′ ∈ F ′ satisfying f(xt) = f ′(xt) for all t = 1, . . . ,n′.
(3) For t = n′ + 1, . . . ,n play by simulating Exp4.P using the

policies of F ′ as experts.

We now show that the per round regret of VE is of order
√
d/n, exclud-

ing logarithmic factors. This rate is equal to the optimal rate for super-
vised learning of VC-classes, showing that — in this case — the price
of bandit information is essentially zero.

Theorem 4.6. For any class F of binary policies f : X → {0,1} of
VC-dimension d and for all n > d, the forecaster VE run with n′ =√
n
(
2d ln en

d + ln 3
δ

)
satisfies

n∑
t=1


It,t − n inf
f∈F


D(f) ≤ c
√
n

(
d ln

en

d
+ ln

3
δ

)
(4.10)

for some constant c > 0 and with probability at least 1 − δ with respect
to both the random data generation and VE’s internal randomization.

Proof. Given a sample realization (x1, 
1), . . . ,(xn, 
n), let f ′ be the
unique element of F ′ such that f ′(xt) = f∗(xt) for all t = 1, . . . ,n′,
where f∗ is the risk-minimizing function in F . Given a sample, without
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loss of generality we may assume that F contains functions restricted
on the finite domain {x1, . . . ,xn}. Recall Sauer–Shelah lemma — see,
e.g., [41] — stating that any class F of binary functions defined on
a finite domain of size n satisfies |F| ≤ ( end )d, where d is the VC-
dimension of F . Then, with probability at least 1 − δ

3 with respect
to VE’s internal randomization,
n∑
t=1


It,t ≤ n′ +
n∑

t=n′+1


f ′(xt),t + c

√
2(n − n′) ln

3|F ′|
δ

≤ n′ +
n∑

t=n′+1

(
f∗(xt),t + 
f ′(xt),t − 
f∗(xt),t)

+c

√
2(n − n′) ln

3|F ′|
δ

≤ n′ +
n∑

t=n′+1

(
f∗(xt),t + f ′(xt) �=f∗(xt)) + c

√
2(n − n′) ln

3|F ′|
δ

≤ n′ +
n∑

t=n′+1

(
f∗(xt),t + f ′(xt) �=f∗(xt))

+c

√
2n
(
d ln

en

d
+ ln

3
δ

)
where we used 
i,t ∈ [0,1] in the penultimate step and the Sauer–Shelah
lemma in the last step. Now, the term

∑
t 
f∗(xt),t is controlled in prob-

ability w.r.t. the random draw of the sample via Chernoff bounds,

P

(
n∑

t=n′+1


f∗(xt),t > (n − n′)
D(f∗) +

√
n − n′

2
ln

3
δ

)
≤ δ.

Hence,
n∑
t=1


It,t ≤ n′ + n
D(f∗)

+
n∑

t=n′+1
f ′(xt) �=f∗(xt) + c

√
2n
(
d ln

en

d
+ ln

3
δ

)
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with probability at least 2δ
3 with respect to both the random sample

draw and VE’s internal randomization.
The term

∑
t f ′(xt) �=f∗(xt) quantifies the fact that the unique func-

tion f ′ ∈ F ′ that agrees with f∗ on the first n′ data points is generally
different from f∗ on the remaining n − n′ points. Since each data point
(xt, 
t) is drawn i.i.d., the distribution of a sequence of n pairs remains
the same if we randomly permute their positions after drawing them.
Hence we can bound

∑
t f ′(xt) �=f∗(xt) in probability w.r.t. a random

permutation σ of {1, . . . ,n}. Let ‖f − g‖ =
∑n

t=1 f ′(xt) �=f∗(xt). Then

Pσ

(
n∑

t=n′+1
f ′(xσ(t)) �=f∗(xσ(t)) > k

)
≤ Pσ

(∃f,g ∈ F , ‖f − g‖ > k : f(xσ(t)) = g(xσ(t)), t = 1, . . . ,n′)
≤ |F|2

(
1 − k

n

)n′

≤
(en
d

)2d
exp
(
−kn

′

n

)
≤ δ

3
for

k ≥ n

n′

(
2d ln

en

d
+ ln

3
δ

)
.

Now, since we just proved that
n∑

t=n′+1
f ′(xσ(t)) �=f∗(xσ(t)) ≤

n

n′

(
2d ln

en

d
+ ln

3
δ

)
holds with probability at least δ

3 for any sample realization, it holds
with the same probability for a random sample. Hence, by choosing n′

as in the statement of the theorem and overapproximating, we get the
desired result.

4.4 The Multiclass Case

A different viewpoint on contextual bandits is provided by the so-called
bandit multiclass problem. This is a bandit variant of the online
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protocol for multiclass classification, where the goal is to sequentially
learn a mapping from the context space R

d to the label space {1, . . . ,K},
with K ≥ 2. In this protocol the learner keeps a classifier parameterized
by aK × dmatrixW . At each time step t = 1,2, . . . the side information
xt ∈ R

d is observed (following standard notations in online classifica-
tion, here we use x instead of s to denote contexts), and the learner
predicts the label ŷt maximizing (Wxt)i over all labels i = 1, . . . ,K.
In the standard online protocol, the learner observes the true label yt
associated with xt after each prediction and uses this information to
adjust W . In the bandit version, the learner only observes ŷt �=yt

, that
is, whether the prediction at time t was correct or not.

A simple but effective learning strategy for (non-bandit) online
classification is the multiclass Perceptron algorithm. This algorithm
updates W at time t using the rule W ←W + Xt, where Xt is a
K × d matrix with components (Xt)i,j = xt,j( yt=i − ŷt=i). Therefore,
the update rule can be rewritten as

wyt ← wyt + xt

wŷt
← wŷt

− xt
wi← wi for all i �= yt and i �= ŷt

where wi denotes the i-th row of matrix W . Note, in particular, that no
update takes place (i.e., Xt is the all zero matrix) when ŷt = yt, which
means that yt is predicted correctly.

A straightforward generalization of the Perceptron analysis gives
that, on any sequence of (x1,y1),(x2,y2), . . . ∈ R

d × {1, . . . ,K} such
that ‖xt‖ = 1, the number of classification mistakes satisfies the fol-
lowing notion of regret,

n∑
t=1

ŷt �=yt
≤ inf

U
(Ln(U) + 2‖U‖2 + ‖U‖

√
2nL̄n(U))

uniformly over n ≥ 1, where the infimum is over all K × d matrices U
and ‖·‖ denotes the Frobenius norm. Here Ln(U) denotes the cumula-
tive hinge loss of policy U ,

Ln(U) =
n∑
t=1


t(U) =
n∑
t=1

[
1 − (Uxt)yt + max

i�=yt

(Uxt)i

]
+
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where [ · ]+ = max{0, ·} is the hinge function. Finally, L̄n(U) = 1
nLn(U)

is the average hinge loss of U .
Note that 
t(U) = 0 if and only if (Uxt)yt ≥ 1 + maxi�=yt(Uxt)i,

which can only happen when yt = ŷt = argmaxi(Uxt)i. Moreover,

t(U) ≥ 1 if and only if ŷt �= yt. This means that 
t is a convex upper
bound on the mistake indicator function ŷt �=yt

for the multiclass clas-
sifier represented by U .

We now introduce a bandit variant of the multiclass Perceptron
called Banditron.

Banditron

Parameter: number γ ∈ (0, 1
2 ).

Initialize: Set W1 to the zero K × d matrix.
For each round t = 1,2, . . . ,n

(1) Observe xt ∈ R
d.

(2) Set ŷt = argmax
i=1,...,K

(Wtxt)i.

(3) Predict Yt ∈ {1, . . . ,K} drawn from distribution pt = (p1,t, . . .,
pK,t) such that pi,t = (1 − γ) ŷt=i + γ

K .
(4) Observe Yt=yt .
(5) Update Wt+1 = Wt + X̃t where

(X̃t)i,j = xt,j

(
Yt=yt Yt=i

pi,t
− ŷt=i

)
.

The Banditron operates in the bandit variant of the online proto-
col for multiclass classification. As Xt depends on the true label yt,
which is only available when the classification is correct, the Ban-
ditron computes an estimate X̃t of Xt via a randomized technique
inspired by the nonstochastic multi-armed bandit problem. The label
ŷt = argmaxi(W xt)i is used to make the prediction at time t only with
probability 1 − γ, whereas with probability γ a random label is pre-
dicted at each time t.

We now analyze the expected number of prediction mistakes made
by the Banditron algorithm on any sequence of examples (xt,yt). Unlike
the non-bandit case, where the number of mistakes Mn after n steps of
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the multiclass Perceptron provides a “multiclass regret” bound Mn −
Ln(U) = O(

√
n), in the bandit case the regret achieved by the variant

of the Perceptron is only bounded by O(n2/3).

Theorem 4.7. If the Banditron algorithm is run with parameter
γ = (K/n)1/3 on any sequence (x1,y1), . . . ,(xn,yn) ∈ R

d × {−1,+1} of
examples such that n ≥ 8K and ‖xt‖ = 1, then the number Mn of pre-
diction mistakes satisfies

EMn ≤ inf
U

(Ln(U) + (1 + ‖U‖
√

2L̄n(U))K1/3n2/3

+2‖U‖2K2/3n1/3 +
√

2‖U‖K1/6n1/3)

where the infimum is over all K × d matrices U and L̄n(U) = 1
nLn(U)

is the average hinge loss of U .

Proof. We need to bound M =
∑

t Yt �=yt . Let Et be the expectation
conditioned on the first t − 1 predictions. We start by bounding the
first and second moments of X̃t,

Et[(X̃t)i,j ] = xt,j

K∑
k=1

pk,t

(
k=yt k=i

pk,t
− ŷt=i

)
= xt,j( yt=i − ŷt=i) = (Xt)i,j .

For the second moment, note that

‖X̃t‖2 =
K∑
i=1

d∑
j=1

x2
t,j

(
Yt=yt Yt=i

pi,t
− ŷt=i

)2

=
K∑
i=1

(
Yt=yt Yt=i

pi,t
− ŷt=i

)2

where

K∑
i=1

(
Yt=yt Yt=i

pi,t
− ŷt=i

)2

=



(
1
p2
yt,t

+ 1

)
if Yt = yt �= ŷt(

1
pyt,t

− 1
)2

if Yt = yt = ŷt

1 otherwise.
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Therefore, if yt �= ŷt,

Et‖X̃t‖2 = pyt,t

(
1
p2
yt,t

+ 1

)
+ (1 − pyt,t)

= 1 +
1
py,t

= 1 +
K

γ
≤ 2K

γ

because pi,t = γ when yt �= ŷt. Otherwise, if yt = ŷt

Et‖X̃t‖2 = pyt,t

(
1
pyt,t

− 1
)2

+ (1 − pyt,t)

=
1
pyt,t

− 1 =
1

1 − γ − 1 ≤ 2γ

because pi,t = 1 − γ when yt = ŷt and γ ≤ 1
2 . Hence,

Et‖X̃t‖2 ≤ 2
(
K

γ
yt �=ŷt

+ γ yt=ŷt

)
.

We are now ready to prove a bound on the expected number of mis-
takes. Following the standard analysis for the Perceptron algorithm,
we derive upper and lower bounds on the expectation of the quantity〈
U,Wn+1

〉
= tr(UW�

n+1), for an arbitrary K × d matrix U . First, using
Cauchy–Schwartz and Jensen inequalities we obtain

E
〈
U,Wn+1

〉 ≤√‖U‖2 E‖Wn+1‖2.

Now

En[‖Wn+1‖2] = En[‖Wn‖2 + 2
〈
Wn, X̃n

〉
+ ‖X̃n‖2]

≤ ‖Wn‖2 + En‖X̃n‖2.

In order to see why the inequality holds, note that

En

〈
Wn, X̃n

〉
=
〈
Wn,Xn

〉
=

K∑
i=1

(Wnxt)i( yn=i − ŷn=i)

= (Wnxn)yn − (Wnxn)ŷn
≤ 0
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because ŷn = argmaxi=1,...,K(Wnxn)i by definition. Therefore, since W1

is the zero matrix,

E‖Wn+1‖2 ≤
n∑
t=1

E‖X̃n‖2

≤ 2
n∑
t=1

(
K

γ
P(yt �= ŷt) + γP(yt = ŷt)

)

≤ 2K
γ

n∑
t=1

P(yt �= ŷt) + 2γn.

Thus we have

E
〈
U,Wn+1

〉 ≤ ‖U‖
√√√√2K

γ

n∑
t=1

P(yt �= ŷt) + 2γn.

Now we lower bound
〈
U,Wn+1

〉
as follows,

En

〈
U,Wn+1

〉
= En

〈
U,Wn + X̃n

〉
=
〈
U,Wn

〉
+
〈
U,Xn

〉
≥ 〈U,Wn

〉
+ yt �=ŷt

− 
t(U)

because, by definition of 
t,


t(U) =
[
1 − (Uxt)yt + max

i�=yt

(Uxt)i

]
+

≥ 1 − (Uxt)yt + (Uxt)ŷt

≥ yt �=ŷt
− (Uxt)yt + (Uxt)ŷt

= yt �=ŷt
− 〈U,Xt

〉
.

Therefore, using again the fact that W1 is the zero matrix,

E
〈
U,Wn+1

〉 ≥ n∑
t=1

P(yt �= ŷt) −
n∑
t=1


t(U).

Combining the upper and lower bounds on
〈
U,Wn+1

〉
we get

n∑
t=1

P(yt �= ŷt) − Ln(U) ≤ ‖U‖
√√√√2K

γ

n∑
t=1

P(yt �= ŷt) + 2γn.
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Solving for
∑

tP(yt �= ŷt) and overapproximating yields

n∑
t=1

P(yt �= ŷt) ≤ Ln(U) +
2K
γ
‖U‖2 + ‖U‖

√
2K
γ
Ln(U) + 2γn

= Ln(U) +
2K
γ
‖U‖2 + ‖U‖

√(
2K
γ
L̄n(U) + 2γ

)
n.

Now, since P(yt �= Yt) = (1 − γ)P(yt �= ŷt) + γ,

n∑
t=1

P(yt �= Yt) ≤ Ln(U) + γn +
2K
γ
‖U‖2

+ ‖U‖
√(

2K
γ
L̄n(U) + 2γ

)
n.

Choosing γ as in the statement of the theorem yields the desired result.
Note that γ ≤ 1

2 because we assume n ≥ 8K.

4.5 Bibliographic Remarks

A model of contextual stochastic bandits close to those studied here is
introduced by Wang et al. [166]. The context is provided by an i.i.d.
sequence of random variables and the rewards for each arm depend
on the context through an unknown parametric model belonging to a
known class. This result has been generalized to the non-i.i.d. case by
Wang et al. [165], to the multivariate linear case by Rusmevichientong
and Tsitsiklis [148], and to the multivariate and nonparametric case by
Perchet and Rigollet [143]. In Ref. [152], contexts and rewards belong
to arbitrary metric spaces, and the unknown function mapping con-
texts to rewards satisfies a Lipschitz assumption (remarkably, the same
algorithm also applies to slowly changing expected rewards and sleep-
ing bandit settings). The case of deterministic covariates (fixed design),
finitely many arms, and a linear stochastic dependence between covari-
ates and rewards has been studied in [22, 66] — see also [2]. The work
of Filippi et al. [78] extends the analysis of fixed design by assuming
a generalized linear model to capture the dependence of rewards on
covariates.
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Munos [131]. The Exp4 algorithm for the adversarial case was intro-
duced in Auer et al. [24]. Subsequent improvements were proposed
in the two papers, i.e., Beygelzimer et al. [39] (Exp4.P with high-
probability bounds) and McMahan and Streeter [136] (exploitation of
correlations in expert advice). The VE algorithm and its analysis in
Section 4.3 are also taken from Beygelzimer et al. [39].

A stochastic model for contextual bandits with finitely many arms
and finitely many states has been investigated by Seldin et al. [150]
using new sophisticated tools of PAC-Bayesian analysis.

The general stochastic model of Section 4.3 for contextual bandits
with finitely many arms is due to Langford and Zhang [126]. An efficient
algorithm for this model has been recently proposed in [74].

The bandit multiclass model of Section 4.4 is due to Langford and
Zhang [126]. The Banditron algorithm and its analysis are from Kakade
et al. [109]. See also [70, 97] for recent variants and improvements.



5
Linear Bandits

We now consider the important generalization of adversarial bandits
where the set of arms {1, . . . ,K} is replaced by a compact set K ⊂ R

d.
In this case, the loss at each step is some function defined on K, and
the task is to pick an arm as close as possible to the minimum of the
loss function at hand. In order to allow sublinear regret bounds, even
in the presence of infinitely many arms, we must assume some struc-
ture for the loss function. In particular, in this section we assume that
the loss at each time step is a linear function of arms. Linearity is a
standard assumption (think, for instance, of linear regression) and nat-
urally occurs in many bandit applications. The source routing problem
mentioned in the Introduction is a good example, since the cost of
choosing a routing path is linear in the cost of the edges that make up
the path. This defines the so-called online linear optimization setting:
at each time step t = 1,2, . . . the forecaster chooses xt ∈ K while, simul-
taneously, the adversary chooses 
t from some fixed and known subset
L of R

d. The loss incurred by the forecaster is the inner product x�
t 
t.

64
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In this section we focus on the analysis of the pseudo-regret

Rn = E

n∑
t=1

x�
t 
t − min

x∈K
E

n∑
t=1

x�
t

where the expectation is with respect to the forecaster’s internal ran-
domization. The adversarial bandit setting of Section 3 is obtained by
choosing K = {e1, . . . ,ed}, where e1, . . . ,ed is the canonical basis of R

d,
and L = [0,1]d. Similarly to Section 3, we focus on the bandit feedback
where the forecaster only observes the incurred loss x�

t 
t at the end
round t. However, we also discuss the full information setting, where
the complete loss vector 
t is revealed at the end of each round t, as
well as other feedback models.

It is important to note that, without any loss of generality (as far
as regret bounds are concerned), one can always assume that K has
size O(nd). Indeed, since K is a compact set and the loss is linear (and
therefore Lipschitz), one can cover K with O(nd) points such that one
incurs a vanishing extra cumulative regret by playing on the discretiza-
tion rather than on the original set. Of course, the downside of this
approach is that a strategy resulting from such a cover is often not
computationally efficient. On the other hand, this assumption allows
us to apply ideas from Section 3 to this more general setting. We ana-
lyze the pseudo-regret for finite classes in Section 5.1. Without loss of
generality, it is also possible to assume that K is a convex set. Indeed,
the pseudo-regret is the same if one plays xt, or if one plays a point
at random in K such that the expectation of the played point is xt.
This remark is critical and allows us to develop a powerful technology
known as the Mirror Descent algorithm. We describe this approach in
Section 5.2 and explore it further in subsequent sections.

5.1 Exp2 (Expanded Exp) with John’s Exploration

In this section we work under the bounded scalar loss assumption. That
is, we assume that K and L are such that |x�
| ≤ 1 for any (x,
) ∈
K × L. Moreover, we restrict our attention to finite sets K, with |K| =
N . Without loss of generality we assume that K spans R

d. If it is not the
case, then one can rewrite the elements of K in some lower dimensional
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vector space, and work there. Note that a trivial application of Exp3
to the set K of arms gives a bound that scales as

√
nN lnN . If K is a

discretized set (in the sense described earlier), then N is exponential
in d. We show here that, by appropriately modifying Exp3, one can
obtain a polynomial regret of order

√
nd lnN .

To describe the strategy, we first need a useful result from convex
geometry: John’s theorem. This result concerns the ellipsoid E of mini-
mal volume enclosing a given convex set K (which we call John’s ellip-
soid of K). Basically, the theorem states that E has many contact points
with K, and these contact points are “nicely” distributed, in the sense
that they almost form an orthonormal basis — see [32] for a proof.

Theorem 5.1(John’s theorem). Let K ⊂ R
d be a convex set. If the

ellipsoid E of minimal volume enclosing K is the unit ball in some
norm derived from a scalar product 〈·, ·〉, then there exist M ≤ 1

2d(d +
1) + 1 contact points u1, . . . ,uM between E and K, and a probability
distribution (µ1, . . . ,µM ) over these contact points, such that

x = d

M∑
i=1

µi〈x,ui〉ui ∀x ∈ R
d.

In fact John’s theorem is an if and only if, but here we only need
the direction stated in the theorem. We are now in position to describe
the strategy. Let Conv(S) be the convex hull of a set S ∈ R

d. First,
we perform a preprocessing step in which the set K is rewritten so
that John’s ellipsoid of Conv(K) is the unit ball for some inner product
〈·, ·〉. The loss of playing x ∈ K against 
 ∈ L is then given by 〈x,
〉.
See [45] for the details of this transformation. Let u1, . . . ,uM ∈ K and
(µ1, . . . ,µM ) satisfy Theorem 5.1 for the convex set Conv(K).

Recall from Section 3 that the key idea to play against an adversary
is to select xt at random from some probability distribution pt over K.
We first describe how to build an unbiased estimate of 
t, given such a
point xt played at random from pt (such that pt(x) > 0 for any x ∈ K).
Recall that the outer product x ⊗ x is defined as the linear mapping
from R

d to R
d such that x ⊗ x(y) = 〈x,y〉x. Note that one can also view
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x ⊗ x as a d × d matrix, so that the evaluation of x ⊗ x is equivalent
to a multiplication by the corresponding matrix. Now let

Pt =
∑
x∈K

pt(x)x ⊗ x.

Note that this matrix is invertible, since K is full rank and pt(x) > 0
for all x ∈ K. The estimate for 
t is given by 
̃t = P−1

t (xt ⊗ xt)
t. Note
that this is a valid estimate since (xt ⊗ xt)
t = 〈xt, 
t〉xt and P−1

t are
observed quantities. Also, it is clearly an unbiased estimate.

Now the Exp2 algorithm with John’s exploration corresponds to
playing according to the following probability distribution

pt(x) = (1 − γ)
exp
(
−η∑t−1

s=1〈x, 
̃t〉
)

∑
y∈K exp

(
−η∑t−1

s=1〈y, 
̃t〉
) + γ

M∑
i=1

µi x=ui (5.1)

where η,γ > 0 are input parameters. Note that this corresponds to
a variant of Exp3 using 〈x, 
̃t〉 as loss estimate for x ∈ K, and an
exploration distribution supported by the contact points.

Theorem 5.2(Pseudo-regret of Exp2 with John’s exploration).
For any η,γ > 0 such that ηd ≤ γ, Exp2 with John’s exploration
satisfies

Rn ≤ 2γn +
lnN
η

+ ηnd.

In particular, with η =
√

lnN
3nd and γ = ηd,

Rn ≤ 2
√

3nd lnN.

Proof. Since K is finite, we can easily adapt the analysis of Exp3 in
Theorem 3.1 to take into account the exploration term. This gives

Rn ≤ 2γn +
lnN
η

+ ηE

n∑
t=1

∑
x∈K

pt(x)〈x, 
̃t〉2
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whenever η 〈x, 
̃t〉 ≤ 1 for all x ∈ K. We now bound the last term in
the right-hand side of the above inequality. Using the definition of the
estimated loss 
̃t = P−1

t (xt ⊗ xt)
t, we can write∑
x∈K

pt(x)〈x, 
̃t〉2 =
∑
x∈K

pt(x)〈
̃t,(x ⊗ x) 
̃t〉

= 〈
̃t,Pt 
̃t〉
= 〈xt, 
t〉2〈P−1

t xt,PtP
−1
t xt〉

≤ 〈P−1
t xt,xt〉.

Now we use a spectral decomposition of Pt in an orthonormal basis
for 〈·, ·〉 and write Pt =

∑d
i=1λivi ⊗ vi. In particular, we have P−1

t =∑d
i=1

1
λi
vi ⊗ vi and thus

E〈P−1
t xt,xt〉 =

d∑
i=1

1
λi

E〈(vi ⊗ vi)xt,xt〉

=
d∑
i=1

1
λi

E〈(xt ⊗ xt)vi,vi〉

=
d∑
i=1

1
λi
〈Pt vi,vi〉

=
d∑
i=1

1
λi
〈λivi,vi〉 = d.

Finally, to show η 〈x, 
̃t〉 ≤ 1 observe that

〈x, 
̃t〉 = 〈xt, 
t〉〈x,P−1
t xt〉 ≤ 〈x,P−1

t xt〉 ≤ 1
min1≤i≤dλi

,

where the last inequality follows from the fact that 〈x,x〉 ≤ 1 for any
x ∈ K, since K is included in the unit ball. To conclude the proof, we
need to lower bound the smallest eigenvalue of Pt. Using Theorem 5.1,
one can see that Pt � γ

dId, and thus λi ≥ γ
d . Since ηd ≤ γ, the proof is

concluded.



5.2 Online Mirror Descent (OMD) 69

5.2 Online Mirror Descent (OMD)

We now introduce the Online Mirror Descent (OMD) algorithm, a
powerful generalization of gradient descent for sequential decision
problems. We start by describing OMD for convex losses in the full
information setting. That is, L is a set of convex functions, and at the
end of round t the forecaster observes 
t ∈ L rather than only 
t(xt).

The rest of this section is organized as follows. Next, we briefly recall
a few key concepts from convex analysis. Then we describe the OMD
strategy and prove a general regret bound. In Section 5.3 we introduce
Online Stochastic Mirror Descent (OMSD), which is a variant of OMD
based on a stochastic estimate of the gradient. We apply this strategy
to linear losses in two different bandit settings. Finally, in Section 5.5
we show how OMSD obtains improved bounds in certain special cases.
The case of convex losses with bandit feedback is treated in Section 6.

We introduce the following definitions.

Definition 5.1. Let X ⊆ R
d. A function f : X → R is subdifferentiable

if for all x ∈ X there exists g ∈ R
d such that

f(x) − f(y) ≤ g�(x − y) ∀y ∈ X .
Such a g is called a subgradient of f at x.

Abusing notation, we use ∇f(x) to denote both the gradient of f
at x when f is differentiable and any subgradient of f at x when f is
subdifferentiable (a sufficient condition for subdifferentiability of f is
that f is convex and X is open).

Definition 5.2. Let f : X → R be a convex function defined on a con-
vex set X ⊆ R

d. The Legendre–Fenchel transform of f is defined by:

f∗(u) = sup
x∈X

(x�u − f(x)).

This definition directly implies the Fenchel–Young inequality for
convex functions, u�x ≤ f(x) + f∗(u).

Let D ⊂ R
d be an open convex set, and let D be the closure of D.



70 Linear Bandits

Definition 5.3. A continuous function F : D → R is Legendre if

(i) F is strictly convex and admits continuous first partial
derivatives on D;

(ii) lim
x→D\D

‖∇F (x)‖ = +∞.1

The Bregman divergence DF : D × D → R associated with a
Legendre function F is defined by DF (x,y) = F (x) − F (y) − (x − y)�

∇F (y). Moreover, we say thatD∗ =∇F (D) is the dual space ofD under
F . Note that, by definition, DF (x,y) > 0 if x �= y, and DF (x,x) = 0.
The following lemma is the key to understand how a Legendre function
acts on the space. See [61, Proposition 11.1] for a proof.

Lemma 5.3. Let F be a Legendre function. Then F ∗∗ = F , and
∇F ∗ = (∇F )−1 restricted on the set D∗. Moreover, for all x,y ∈ D,

DF (x,y) = DF ∗(∇F (y),∇F (x)). (5.2)

The gradient ∇F maps D to the dual space D∗, and ∇F ∗ is the
inverse mapping from the dual space to the original (primal) space.
Note also that Equation (5.2) shows that the Bregman divergence in the
primal exactly corresponds to the Bregman divergence of the Legendre
transform in the dual.

The next lemma shows that the geometry induced by a Bregman
divergence resembles to the geometry of the squared Euclidean dis-
tance. See [61, Lemma 11.3] for a proof.

Lemma 5.4 (Generalized Pythagorean inequality). Let K ⊆ D
be a closed convex set such that K ∩ D �= ∅. Then, for all x ∈ D, the
Bregman projection

z = argmin
y∈K

DF (y,x)

1 By the equivalence of norms in Rd, this definition does not depend on the choice of the
norm.
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exists and is unique. Moreover, for all z ∈ K ∩ D and y ∈ K,

DF (y,x) ≥ DF (y,z) + DF (z,x).

The idea of OMD is very simple: first, select a Legendre function F
on D ⊃ K (such that K ∩ D �= ∅); second, perform a gradient descent
step, where the update with the gradient is performed in the dual space
D∗ rather than in the primal D; and third, project back to K according
to the Bregman divergence defined by F .

OMD (Online Mirror Descent):

Parameters: compact and convex set K ⊆ R
d, learning rate η > 0,

Legendre function F on D ⊃ K.
Initialize: x1 ∈ argmin

x∈K
F (x) (note that x1 ∈ K ∩ D).

For each round t = 1,2, . . . ,n

(1) Play xt and observe loss vector 
t.
(2) wt+1 =∇F ∗(∇F (xt) − η∇
t(xt)).
(3) xt+1 = argmin

y∈K
DF (y,wt+1).

Note that step (2) is well defined if the following consistency condi-
tion is satisfied:

∇F (x) − η∇
(x) ∈ D∗ ∀(x,
) ∈ (K ∩ D) × L. (5.3)

Note also that step (2) can be rewritten as

∇F (wt+1) =∇F (xt) − η∇
t(xt). (5.4)

Finally, note that the Bregman projection in step (3) is a convex pro-
gram, in the sense that x �→ DF (x,y) is always a convex function. This
does not necessarily imply that step (3) can be performed efficiently,
since in some cases the feasible set K might only be described with an
exponential number of constraints (we encounter examples like this in
Section 5.4).

In the description above we emphasized that F has to be a Legendre
function. In fact, as we see in Theorem 5.6, if F has effective domain
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K (that is, F takes value +∞ outside of K), then it suffices that the
Legendre–Fenchel dual F ∗ is differentiable on R

d to obtain a good regret
bound. See the end of this section for more details on this.

When K is the simplex and F (x) =
∑d

i=1xi lnxi −
∑d

i=1xi, OMD
reduces to an exponentially weighted average forecaster, similar to
those studied in Section 3. The well-known online gradient descent
strategy corresponds to taking F (x) = 1

2 ‖x‖22. In the following we shall
see other possibilities for the Legendre function F .

We prove now a very general and powerful theorem concerning the
regret of OMD.

Theorem 5.5 (Regret of OMD with a Legendre function). Let
K be a compact and convex set of arms, L be a set of subdifferentiable
functions, and F a Legendre function defined on D ⊃ K, such that
Equation (5.3) is satisfied. Then OMD satisfies for any x ∈ K,

n∑
t=1


t(xt) −
n∑
t=1


t(x) ≤ F (x) − F (x1)
η

+
1
η

n∑
t=1

DF ∗(∇F (xt) − η∇
t(xt),∇F (xt)).

Proof. Let x ∈ K. Since L is a set of subdifferentiable functions, we
have:

n∑
t=1

(
t(xt) − 
t(x)) ≤
n∑
t=1

∇
t(xt)�(xt − x).

Using Equation (5.4), and applying the definition of DF , one obtains

η∇
t(xt)�(xt − x) = (x − xt)�(∇F (wt+1) − ∇F (xt))

= DF (x,xt) + DF (xt,wt+1) − DF (x,wt+1).

By Lemma 5.4, one gets DF (x,wt+1) ≥ DF (x,xt+1) + DF (xt+1,wt+1),
hence

η∇
t(xt)�(xt − x) ≤ DF (x,xt) + DF (xt,wt+1)

−DF (x,xt+1) − DF (xt+1,wt+1).
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Summing over t then gives
n∑
t=1

η∇
t(xt)�(xt − x) ≤ DF (x,x1) − DF (x,xn+1)

+
n∑
t=1

(DF (xt,wt+1) − DF (xt+1,wt+1)).

By the nonnegativity of the Bregman divergences, we get
n∑
t=1

η∇
t(xt)�(xt − x) ≤ DF (x,x1) +
n∑
t=1

DF (xt,wt+1).

From Equation (5.2), one has DF (xt,wt+1) = DF ∗(∇F (xt) −
η∇
t(xt),∇F (at)) and, moreover, by first-order optimality, one
has DF (x,x1) ≤ F (x) − F (x1), which concludes the proof.

We show now how to prove a regret bound if F has effective domain
K and F ∗ is differentiable on R

d, but not necessarily Legendre. In this
case, it is easy to see that step (1) and step (2) in OMD reduce to

xt+1 =∇F ∗
(
−η

t−1∑
s=1

∇
s(xs)
)
.

Theorem 5.6 (Regret of OMD with non-Legendre function).
Let K be a compact set of actions, L be a set of subdifferentiable
functions, and F a function with effective domain K such that F ∗ is
differentiable on R

d. Then for any x ∈ K OMD satisfies
n∑
t=1


t(xt) −
n∑
t=1


t(x) ≤ F (x) − F (x1)
η

+
1
η

n∑
t=1

DF ∗

(
−η

t∑
s=1

∇
s(xs),−η
t−1∑
s=1

∇
s(xs)
)
.

Proof. Let x ∈ K. Since L is a set of subdifferentiable functions, we
have

n∑
t=1

(
t(xt) − 
t(x)) ≤
n∑
t=1

∇
t(xt)�(xt − x).
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Using the Fenchel–Young inequality, one obtains

−η
n∑
t=1

∇
t(xt)�x

≤ F (x) + F ∗
(
−η

n∑
t=1

∇
t(xt)
)

= F (a) + F ∗(0)

+
n∑
t=1

(
F ∗
(
−η

t∑
s=1

∇
s(xs)
)
− F ∗

(
−η

t−1∑
s=1

∇
s(xs)
))

.

Observe that F ∗(0) = −F (x1) and, for each term in the above sum,

∇F ∗
(
−η

t−1∑
s=1

∇
s(xs)
)�

(−η∇
t(xt))

+DF ∗

(
−η

t∑
s=1

∇
s(xs),−η
t−1∑
s=1

∇
s(xs)
)

= −ηx�
t ∇
t(xt) + DF ∗

(
−η

t∑
s=1

∇
s(xs),−η
t−1∑
s=1

∇
s(xs)
)
.

5.3 Online Stochastic Mirror Descent (OSMD)

We now turn to the analysis of the bandit setting, where the gradient
information ∇
t(xt) is not available, and thus one cannot run OMD.
This scenario has been extensively in gradient-free optimization, and
the basic idea is to play a perturbed version x̃t of the current point xt.
This should be done in such a way that, upon observing 
t(x̃t), one can
build an unbiased estimate g̃t of ∇
t(xt). Whereas such estimators are
presented in Section 6, here we restrict our attention to linear losses.
For this simpler case we consider specialized estimators with optimal
performances. Given a perturbation scheme, one can run OMD with
the gradient estimates instead of the true gradients. We call Online
Stochastic Mirror Descent (OSMD) the resulting algorithm.
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OSMD (Online Stochastic Mirror Descent):
Parameters: compact and convex set K ⊆ R

d, learning rate η > 0, Legen-
dre function F on D ⊃ K.
Initialize: x1 ∈ argmin

x∈K
F (x) (note that x1 ∈ K ∩ D).

For each round t = 1,2, . . . ,n

(1) Play a random perturbation x̃t of xt and observe 
t(x̃t)
(2) Compute random estimate g̃t of ∇
t(xt)
(3) wt+1 =∇F ∗(∇F (xt) − ηg̃t)
(4) xt+1 = argmin

y∈K
DF (y,wt+1)

In order to relate this linear bandit strategy to the Exp2 forecaster
(Equation (5.1)), it is important to observe that running the Exp2
forecaster over a finite set K of arms, with exploration distribution
µ and mixing coefficient γ > 0, is equivalent to running OSMD over
the |K|-dimensional simplex with F (x) = 1

η

∑
x∈Kx lnx (the negative

entropy), x̃t drawn from (1 − γ)xt + γµ, and estimated linear loss g̃t =
(〈x, 
̃t〉)x∈K. Indeed, the projection step (4), when F is the negative
entropy, corresponds to the standard normalization of a probability
distribution.

The following theorem establishes a general regret bound for OSMD.
Note that here the pseudo-regret is defined as

Rn = E

n∑
t=1


t(x̃t) − min
x∈K

E

n∑
t=1


t(x).

Note also that we state the theorem for a Legendre function F , but a
similar result can be obtained under the same assumptions as those of
Theorem 5.6.

Theorem 5.7(Pseudo-regret of OSMD). Let K be a compact and
convex set, L a set of subdifferentiable functions, and F a Legendre
function defined on D ⊃ K. If OSMD is run with a loss estimate g̃t
such that Equation (5.3) is satisfied (with ∇
(x) replaced by g̃t), and
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with E[g̃t | xt] =∇
t(xt), then

Rn ≤ supx∈KF (x) − F (x1)
η

+
1
η

n∑
t=1

EDF ∗(∇F (xt) − ηg̃t,∇F (xt))

+
n∑
t=1

E[‖xt − x̃t‖‖g̃t‖∗]

for any norm ‖·‖. Moreover if the loss is linear, that is 
(x) = 
�x, then

Rn ≤ supx∈KF (x) − F (x1)
η

+
1
η

n∑
t=1

EDF ∗(∇F (xt) − ηg̃t,∇F (xt))

+
n∑
t=1

E[‖xt − E[x̃t | xt]‖‖g̃t‖∗].

Proof. Using Theorem 5.5 one directly obtains:
n∑
t=1

g̃�
t (xt − x) ≤ F (x) − F (x1)

η
+

1
η

n∑
t=1

EDF ∗(∇F (xt) − ηg̃t,∇F (xt)).

Moreover since E[g̃t | xt] =∇
t(xt), one has:

E

n∑
t=1

(
t(x̃t) − 
t(x)) = E

n∑
t=1

(
t(x̃t) − 
t(xt) + 
t(xt) − 
t(x))

≤ E

n∑
t=1

‖xt − x̃t‖‖g̃t‖∗ + E

n∑
t=1

∇
t(xt)�(xt − x)

= E

n∑
t=1

‖xt − x̃t‖‖g̃t‖∗ + E

n∑
t=1

g̃�
t (xt − x)

which concludes the proof of the first regret bound. The case of a linear
loss follows very easily from the same computations.

5.4 Online Combinatorial Optimization

In this section we consider an interesting special case of online linear
optimization. In the online combinatorial optimization setting the set of
arms is C ⊆ {0,1}d and the set of linear loss functions is L = [0,1]d. We
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assume ‖v‖1 = m for all v ∈ C and for some integer m ≤ d. Many inter-
esting problems fall into this framework, including ranking/selection of
m items, or path planning.

Here we focus on the version of the problem with semi-bandit feed-
back, which is defined as follows: after playing vt ∈ C, one observes
(
t(1)vt(1), . . . , 
t(d)vt(d)). Namely, one only observes the coordinates
of the loss that were active in the arm vt that we chose. This setting
has thus a much weaker feedback than the full information case, but
still stronger than the bandit case. Note that the semi-bandit setting
includes the basic multi-armed bandit problem of Section 3, which
simply corresponds to C = {e1, . . . ,ed} where e1, . . . ,ed is the canonical
basis of R

d.
Again, the key to tackle this kind of problem is to select vt at random

from some probability distribution pt over C. Note that such a probabil-
ity corresponds to an average point xt ∈ Conv(C). Turning the tables,
one can view vt as a random perturbation of xt such that E[vt | xt] = xt.
This suggests a strategy: play OSMD on K = Conv(C), with x̃t = vt.
Surprisingly, we show that this randomization is enough to obtain a
good unbiased estimate of the loss, and that it is not necessary to add
further perturbations to xt. Note that E[x̃t | xt] = xt by definition. We
now need to describe how to obtain an unbiased estimate of the gradi-
ent (which is the loss vector itself, since losses are linear). The following
simple formula gives an unbiased estimate of the loss:


̃t(i) =

t(i)vt(i)
xt(i)

∀ i ∈ {1, . . . ,d}. (5.5)

Note that this is a valid estimate since it only makes the use of
(
t(1)vt(1), . . . , 
t(d)vt(d)). Moreover, it is unbiased with respect to the
random drawing of vt from pt. Indeed,

E[
̃t(i) | xt] =

t(i)
xt(i)

E[vt(i) | xt] = 
t(i).

Using Theorem 5.7 one directly obtains:

Rn ≤ supx∈KF (x) − F (x1)
η

+
1
η

n∑
t=1

EDF ∗(∇F (xt) − η
̃t,∇F (xt)). (5.6)
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We show now how to use this bound to obtain concrete performances
for OSMD using the negative entropy as Legendre function. Later, we
show that one can improve the results by logarithmic factors, using a
more subtle Legendre function.

We start with OSMD and the negative entropy.

Theorem 5.8 (OSMD with negative entropy). For any set C ⊆
{0,1}d, if OSMD is run on K = Conv(C) with F (x) =

∑d
i=1xi lnxi −∑d

i=1xi, perturbed points x̃t such that E[x̃t | xt] = xt, and loss esti-
mates 
̃t, then

Rn ≤ m

η
ln
d

m
+
η

2

n∑
t=1

d∑
i=1

E[xt(i) 
̃t(i)2].

In particular, with the estimate (Equation (5.5)) and η =
√

2m
nd ln d

m ,

Rn ≤
√

2mdn ln
d

m
.

Proof. First note that:

F (x) − F (x1) ≤
d∑
i=1

x1(i) ln
1

x1(i)
≤m ln

(
d∑
i=1

x1(i)
m

1
x1(i)

)
= m ln

d

m
.

Moreover, straightforward computations give

DF ∗(∇F (xt) − η
̃t,∇F (xt)) =
d∑
i=1

xt(i)Θ(−η
̃t(i))

where Θ : x ∈ R �→ exp(x) − 1 − x. Using that Θ(x) ≤ x2

2 for all x ≤ 0,
concludes the proof of the first inequality (since 
̃t(i) ≥ 0). The second
inequality follows from

xt(i)E[
̃t(i)2 | xt] = xt(i)

t(i)2

xt(i)2
E[vt(i) | xt] ≤ 1

where we used 
t(i) ∈ [0,1] and vt(i) ∈ {0,1}.
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We now greatly generalize the negative entropy with the following
definition. When used with OSMD, this more general entropy allows
us to obtain a bound tighter than that of Theorem 5.8.

Definition 5.4. Let ω ≥ 0. A function ψ : (−∞,a)→ R
∗
+ for some

a ∈ R ∪ {+∞} is called an ω-potential if it is convex, continuously dif-
ferentiable, and satisfies

lim
x→−∞ψ(x) = ω lim

x→a
ψ(x) = +∞

ψ′ > 0
∫ ω+1

ω
|ψ−1(s)|ds < +∞.

With a potential ψ we associate the function Fψ defined on D =
(ω,+∞)d by

Fψ(x) =
d∑
i=1

∫ xi

ω
ψ−1(s)ds.

We restrict our attention to 0-potentials. A nonzero ω might be
used to derive high probability regret bounds (instead of pseudo-regret
bounds). Note that with ψ(x) = ex we have that Fψ reduces to the
negative entropy.

Lemma 5.9. Let ψ be a 0-potential. Then Fψ is Legendre and for all
u,v ∈ D∗ = (−∞,a)d such that ui ≤ vi for i = 1, . . . ,d,

DF ∗(u,v) ≤ 1
2

d∑
i=1

ψ′(vi)(ui − vi)2.

Proof. It is easy to check that F is a Legendre function. Moreover,
since ∇F ∗(u) = (∇F )−1(u) = (ψ(u1), . . . ,ψ(ud)) we obtain

DF ∗(u,v) =
d∑
i=1

(∫ ui

vi

ψ(s)ds − (ui − vi)ψ(vi)
)
.
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From a Taylor expansion, we have

DF ∗(u,v) ≤
d∑
i=1

max
s∈[ui,vi]

1
2
ψ′(s)(ui − vi)2.

Since the function ψ is convex, and ui ≤ vi, we have

max
s∈[ui,vi]

ψ′(s) ≤ ψ′(max{ui,vi}) ≤ ψ′(vi)

which gives the desired result.

We are now ready to bound the pseudo-regret of OSMD run with an
arbitrary 0-potential. For a specific choice of the potential we obtain
an improvement of Theorem 5.8. In particular for m = 1 this result
gives the log-free bound for the adversarial multi-armed bandit that
was discussed in Section 3.4.1.

Theorem 5.10 (OSMD with a 0-potential). For any set subset
C of {0,1}d, if OSMD is run on K = Conv(C) with Fψ defined by a
0-potential ψ, and nonnegative loss estimates 
̃t, then

Rn ≤ supx∈KFψ(x) − Fψ(x1)
η

+
η

2

n∑
t=1

d∑
i=1

E

[

̃t(i)2

(ψ−1)′(xt(i))

]
.

In particular, choosing the 0-potential ψ(x) = (−x)−q, the estimate

(Equation (5.5)), and η =
√

2
q−1

m1−2/q

d1−2/q ,

Rn ≤ q
√

2
q − 1

mdn.

With q = 2 this gives

Rn ≤ 2
√

2mdn.

Proof. First note that since D∗ = (−∞,a)d and 
̃t has nonnegative
coordinates, then Equation (5.3) is satisfied and thus OSMD is well
defined.
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The first inequality trivially follows from Equation (5.6),
Lemma 5.9, and the fact that ψ′(ψ−1(s)) = 1

(ψ−1)′(s) .

Let ψ(x) = (−x)−q. Then we have that ψ−1(x) = −x−1/q and
F (x) = − q

q−1
∑d

i=1x
1−1/q
i . In particular, by Hölder’s inequality, since∑d

i=1x1(i) = m,

F (x) − F (x1) ≤ q

q − 1

d∑
i=1

x1(i)1−1/q ≤ q

q − 1
m(q−1)/qd1/q.

Moreover, note that (ψ−1)′(x) = 1
qx

−1−1/q, and

d∑
i=1

E

[

̃t(i)2

(ψ−1)′(xt(i))

∣∣∣∣∣xt
]
≤ q

d∑
i=1

xt(i)1/q ≤ qm1/qd1−1/q

which ends the proof.

5.5 Improved Regret Bounds for Bandit Feedback

We go back to the setting of linear losses with bandit feedback consid-
ered in Section 5.1. Namely, actions belong to a compact and convex set
K ⊆ R

d, losses belong to a subset L ⊆ R
d, and the loss of playing xt ∈ K

at time t is x�
t 
t, which is also the feedback received by the player. As

we proved in Section 5.1, under the bounded scalar loss assumption,
|x�
| ≤ 1 for all (x,
) ∈ K × L, one can obtain a regret bound of order
d
√
n (up to logarithmic factors) for any compact and convex set K.

It can be shown that this rate is not improvable in general. However,
results from Section 5.4 (or from Section 3) show that for the simplex,
one can obtain a regret bound of order

√
dn, and we showed in Sec-

tion 3 that this rate is also unimprovable. The problem of obtaining
a characterization of the sets for which such improved regret bounds
are possible is an open problem. Improved rates can be obtained for
another convex body: the Euclidean ball. We now describe a strategy
that attains a pseudo-regret of order

√
dn (up to a logarithmic factor)

in this case. The strategy is based on OSMD with a carefully chosen
Legendre function.

In the following, let ‖·‖ be the Euclidean norm. We consider
the online linear optimization problem with bandit feedback on the
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Euclidean unit ball K = {x ∈ R
d : ‖x‖ ≤ 1}. We perform the following

perturbation of a point xt in the interior of K,

x̃t =
{
xt/‖xt‖ if ξt = 1,
εt eIt otherwise

where ξt is a Bernoulli random variable of parameter ‖xt‖, It is drawn
uniformly at random in {1, . . . ,d}, and εt is a Rademacher random
variable with parameter 1

2 .
It is easy to check that this perturbation is unbiased, in the sense

that E[x̃t | xt] = xt. An unbiased estimate of the loss vector is given by


̃t = d(1 − ξt) x̃�
t 
t

1 − ‖xt‖ x̃t. (5.7)

Again, it is easy to check that E[
̃t | xt] = xt. We are now ready to prove
the following result, showing that OSMD with a suitable F achieves a
pseudo-regret of order

√
dn lnn on the Euclidean ball.

Theorem 5.11(OSMD for the Euclidean ball). LetK = L = {x ∈
R
d : ‖x‖ ≤ 1} define an online linear optimization problem with ban-

dit feedback. If OSMD is run on K′ = (1 − γ)K with F (x) = − ln(1 −
‖x‖) − ‖x‖ and the estimate (Equation (5.7)), then for any η > 0 such
that ηd ≤ 1

2 ,

Rn ≤ γn +
lnγ−1

η
+ η

n∑
t=1

E[(1 − ‖xt‖)‖
̃t‖2]. (5.8)

In particular, with γ = 1√
n

and η =
√

lnn
2nd ,

Rn ≤ 3
√
dn lnn. (5.9)

Proof. First, it is clear that by playing on K′ = (1 − γ)K instead of K,
OSMD incurs an extra γn regret. Second, note that F is stricly convex
(it is the composition of a convex and nondecreasing function with the
Euclidean norm) and

∇F (x) =
x

1 − ‖x‖ . (5.10)
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In particular, F is Legendre on the open unit ball D = {x ∈ R
d :

‖x‖ < 1}, and one has D∗ = R
d. Hence Equation (5.3) is always sat-

isfied and OSMD is well defined. Now the regret with respect to K′ can
be bounded as follows: using Theorem 5.7 and the unbiasedness of x̃t
and 
̃t we get

supx∈KF (x) − F (x1)
η

+
1
η

n∑
t=1

EDF ∗(∇F (xt) − η
̃t,∇F (xt)).

The first term is clearly bounded by 1
η ln 1

γ (since x1 = 0). For the second
term, we need to do a few computations. The first one follows from
Equation (5.10), the others follow from simple algebra

∇F ∗(u) =
u

1 + ‖u‖
F ∗(u) = − ln(1 + ‖u‖) + ‖u‖

DF ∗(u,v) =
1

1 + ‖v‖
(
‖u‖ − ‖v‖ + ‖u‖ · ‖v‖ − vTu

−(1 + ‖v‖) ln
(

1 +
‖u‖ − ‖v‖
1 + ‖v‖

))
.

Let Θ(u,v) such that DF ∗(u,v) = 1
1+‖v‖Θ(u,v). First note that

1
1 + ‖∇F (xt)‖ = 1 − ‖xt‖ . (5.11)

Thus, in order to prove Equation (5.8) it remains to show that Θ(u,v) ≤
‖u − v‖2, for u =∇F (xt) − η
̃t and v =∇F (xt). In fact, we prove that
this inequality holds as soon as ‖u‖−‖v‖

1+‖v‖ ≥ −1
2 . This is the case for the

pair (u,v) under consideration, since by the triangle inequality, Equa-
tions (5.7) and (5.11), and the assumption on η,

‖u‖ − ‖v‖
1 + ‖v‖ ≥ −

η‖
̃t‖
1 + ‖v‖ ≥ −ηd ≥ −

1
2
.

Now using that ln(1 + x) ≥ x − x2 for all x ≥ −1
2 , we obtain that for

u,v such that ‖u‖−‖v‖
1+‖v‖ ≥ −1

2 ,

Θ(u,v) ≤ (‖u‖ − ‖v‖)2
1 + ‖v‖ + ‖u‖ · ‖v‖ − v�u

≤ (‖u‖ − ‖v‖)2 + ‖u‖ · ‖v‖ − v�u
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= ‖u‖2 + ‖v‖2 − ‖u‖ · ‖v‖ − v�u

= ‖u − v‖2 + 2v�u − ‖u‖ · ‖v‖ − v�u

≤ ‖u − v‖2

which concludes the proof of Equation (5.8). For the proof of Equa-
tion (5.9) it suffices to note that

E[1 − ‖xt‖‖
̃t‖2] = (1 − ‖xt‖)
d∑
i=1

1 − ‖xt‖
d

d2

(1 − ‖xt‖)2 (
�t ei)
2

= d‖
t‖2
≤ d

and perform with straightforward computations.

5.6 Refinements and Bibliographic Remarks

Online convex optimization in the full information settingwas introduced
by Zinkevich [175]. Online linear optimization with bandit feedback was
pioneered in [27, 135]. For this problem, Dani et al. [71] were the first
to obtain optimal O(

√
n) bounds in terms of the number n of rounds.

This was done using the Exp2 strategy with an exploration uniform over
a barycentric spanner for K. The exploration part was first improved
by Cesa-Bianchi and Lugosi [62] for combinatorial sets K. Finally, the
optimal exploration based on John’s theorem was introduced by Bubeck
et al. [45]. Theorem 5.2 is extracted from this last paper.

Simultaneously with the line of research on Exp2, algorithms based
on Online Mirror Descent were also investigated. Mirror Descent was
originally introduced in the seminal work of Nemirovski [137] and
Nemirovski and Yudin [139] as a standard (offline) convex optimiza-
tion method. A somewhat similar class of algorithms was rediscovered
in the online learning community, see [88, 101, 119, 151]. The connec-
tion between existing online learning algorithms (such as Exponential
weights or Online Gradient Descent) and Mirror Descent was first made
explicit in [61] — see also [145] and [95]. Earlier applications of Mirror
Descent in the learning community can be found in [106]. The first
application of Mirror Descent to online linear optimization with bandit
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feedback was given by Abernethy et al. [3]. In this pioneering paper, the
authors describe the first computationally efficient strategy (i.e., with
complexity polynomial in d) with O(

√
n) regret. The main idea is to use

Mirror Descent with a self-concordant barrier F for the set K. Unfor-
tunately, the drawback is a suboptimal dependency on d in the regret.
More precisely. they obtain a O(d2√n) regret under the bounded scalar
loss assumption, while Exp2 with John’s exploration attains O(d

√
n).

However, Mirror Descent can also deliver optimal regret bounds in the
bandit case, as we showed in Section 5.5, which is extracted from [45].

The presentation of the Online Mirror Descent algorithm in
Section 5.2 is inspired by Bubeck [44]. The definition of Legendre
functions comes from [61, Section 11] — further developments on convex
analysis can be found in [42, 102]. Theorem 5.5 is taken from Audibert
et al. [19], but the proof technique goes back at least to Ben-Tal and
Nemirovski [37]. The proof of Theorem 5.6 is adapted from Kakade
et al. [107]. Section 5.3 is inspired by gradient-free optimization, a topic
extensively studied since [118, 147] — see [31, 67, 138, 140] for recent
accounts on this theory. Alternative views have been proposed on the
Online Mirror Descent strategy. In particular, it is equivalent to a Follow
The Regularized Leader, and to proximal algorithms, see Rakhlin [145].
This viewpoint was pioneered by Beck and Teboulle [36] — see also [35]
formore details. Finally, a notion of universality ofOnlineMirrorDescent
in the online prediction setting was proposed by Srebro et al. [154].

The online combinatorial optimization problem studied in
Section 5.4 was introduced by Kalai and Vempala [110] for the full infor-
mation setting. Several works have studied this problem for specific sets
C, see in particular [62, 98, 100, 124, 159, 168, 169]. The semi-bandit
feedback was studied in the series of papers [19, 91, 111, 163]. The pre-
sentation adopted in this section is based on the last paper. OSMD with
negative entropy was first studied by Helmbold and Warmuth [100] for
the full information setting and for a specific set C. It was then studied
more generally in [124] for any set C. The generalization to semi-bandit
feedback was done by Audibert et al. [19]. OSMD with a Legendre
derived from a potential was introduced by Audibert et al. [19]. In the
case of the simplex, this strategy corresponds to the INF strategy of
Audibert and Bubeck [17] discussed in Section 3.4.1.
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Online linear optimization is still far from being completely under-
stood. For instance, see [44, Section 9] for a list of open problems. In
this section we also omitted a few important topics related to online
linear optimization. We briefly review some of them below.

5.6.1 Lower Bounds

Under the bounded scalar loss assumption, it was proved by Dani
et al. [71] that for K = [−1,1]d the minimax regret in the full infor-
mation setting is at least of order

√
dn, while under bandit feedback

it is of order d
√
n. In both cases Exp2 is matching these lower bounds

(using John’s exploration in the bandit case).
In the combinatorial setting, where K ⊂ {0,1}d and L = [0,1]d,

Audibert et al. [19] show that the minimax regret in the full informa-
tion and semi-bandit cases is at least of order d

√
n, while in the bandit

case it is of order d3/2√n. OSMD with the negative entropy matches
the bounds in the full information and semi-bandit cases. However,
in the bandit case the best-known bound is obtained by Exp2 (with
John’s exploration) and gives a regret of order d2√n. It is important
to remark that Audibert et al. [19] show that Exp2 is a provably sub-
optimal strategy in the combinatorial setting.

Finally, lower bounds for the full information case, and for a few
specific sets K of interest, were derived by Koolen et al. [124].

5.6.2 High Probability Bounds

In this section we focused on the pseudo-regret Rn. However, just like
in Section 3, a much more important and interesting statement con-
cerns high probability bounds for the regret Rn. Partial results in this
direction can be found in [33] for the Exp2 strategy, and in [4] for the
OSMD algorithm.

5.6.3 Stochastic Online Linear Optimization

Similarly to the stochastic bandit case (see Section 2), a natural restric-
tion to consider for the adversary is that the sequence of losses 
1, 
2, . . .



5.6 Refinements and Bibliographic Remarks 87

is an i.i.d. sequence. This stochastic setting was introduced by Auer [22],
and further studied by Dani et al. [72]. In particular, in the latter paper
it was proved that regrets logarithmic in n and polynomial in d are pos-
sible, as long as K is a polytope. Recent progress on this problem can
be found in [1, 78, 148].
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We now extend the analysis of the previous section to the following
scenario: arms are still points in a convex set K ⊂ R

d, but now losses
are not necessarily linear functions of the arms. More precisely the
adversary selects loss functions from some set L of real-valued functions
defined on K. The pseudo-regret is then defined as:

Rn = E

n∑
t=1


t(xt) − min
x∈K

E

n∑
t=1


t(x).

This modification has important consequences. For instance with
strictly convex losses one has to do local perturbations in order to
estimate the loss gradient, this is in contrast to the global perturba-
tions studied in the previous section. In agreement with the setting
of Section 5, we initially focus on the nonstochastic setting, where
the forecaster faces an unknown sequence of convex Lipschitz and
differentiable losses (in the nonlinear case the regret scales with the
Lipschitz constant of losses). Problems of this kind can be viewed
as dynamic variants of convex optimization problems, in which the

88
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convex function to optimize evolves over time. The bandit constraint
can be simply interpreted as the impossibility of computing gradients
(because, for instance, we do not have an explicit representation of the
function, but it can only be accessed by querying for values at desired
points).

We look at two feedback models. In the first one, at each step the
forecaster evaluates the loss function at two points: the played point
plus an additional point of its choice. In the second one, only the value of
the loss evaluated at the played point is made available to the forecaster.
We show that while the two-point model allows for a O(

√
n) bound on

pseudo-regret, in the one-point model a pseudo-regret bound of only
O(n3/4) is achieved. The stochastic setting is investigated in Section 6.3
where, similarly to Section 2, we assume that each play of an arm
returns a stochastic loss with fixed but unknown mean. Unlike the
nonstochastic case, the mean loss function is assumed to be Lipschitz
and unimodal, but not necessarily convex. For keeping things simple,
the stochastic setting is studied in one-dimensional case, when arms
are points in the unit interval. For this case we show a bound on the
pseudo-regret of O(

√
n(logn)).

6.1 Two-Point Bandit Feedback

We start by analyzing the nonstochastic case in the two-point feed-
back model: at each time step t, the forecaster observes the value of
a convex and differentiable loss function 
t at the played point xt and
at an extra point x′

t of its choice. If the second point is chosen at ran-
dom in a neighborhood of the first one, one can use it to compute
an estimate of the gradient of 
t at xt. Hence, running OSMD on the
estimated gradients we obtain a regret bound controlled by the second
moments of these estimates. The algorithm we present in this section
follows this intuition, although — for technical reasons — the gradient
is estimated at a point which is close but distinct from the point actually
played.

We focus our analysis on OSMD with Legendre function F = 1
2 ‖·‖2,

where ‖·‖ is the Euclidean norm. The resulting strategy, OSGD (Online
Stochastic Gradient Descent), is sketched below here.
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OSGD (Online Stochastic Gradient Descent):
Parameters: Closed and convex set K ⊆ R

d, learning rate η > 0.
Initialize: x1 = (0, . . . ,0).
For each round t = 1,2, . . . ,n

(1) Observe stochastic estimate g̃t(xt) of ∇
t(xt);
(2) x′

t+1 = xt − η g̃t(xt);
(3) xt+1 = argmin

y∈K

∥∥y − x′
t+1

∥∥;

We now introduce our main technical tool: the two-point gradient
estimate. The two points on which the loss value is queried at time t are
denoted by X+

t and X−
t . OSGD always plays one of these two points

at random.
Let B =

{
x ∈ R

d : ‖x‖ ≤ 1
}

be the unit ball in R
d and S ={

x ∈ R
d : ‖x‖ = 1

}
be the unit sphere. Fix δ > 0 and introduce the

notations X+
t = xt + δS and X−

t = xt − δS, where xt ∈ K and S is a
random variable with uniform distribution in S. Then, for any convex
loss 
t, the two-point gradient estimate g̃t is defined by

g̃t(xt) =
d

2δ
(
t(X+

t ) − 
t(X−
t ))S. (6.1)

In order to compute the expectation of g̃t, first note that by symmetry

E g̃t(x) =
d

δ
E[
t(x + δS)S].

In order to compute the expectation in the right-hand side we need the
following preliminary lemma.

Lemma 6.1. For any differentiable function 
 : R
d→ R

∇
∫

B


(x + δb)db =
∫

S


(x + δs)sdσ(s)

where σ is the unnormalized spherical measure.
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Proof. The proof of this result is an easy consequence of the Divergence
Theorem,

∇
∫

B


(x + δb)db =
∫

B

∇
(x + δb)db

=
∫

S

1
δ

(x + δs)sdσ(s)

=
1
δ

∫
S


(x + δs)sdσ(s).

We are now fully equipped to compute the expectation of g̃t.

Lemma 6.2. If B is a random variable with uniform distribution in B

and S is a random variable with uniform distribution in S, then for all
differentiable functions 
t : R

d→ R,
d

δ
E[
(x + δS)S] =∇E
(x + δB).

Proof. First consider the easy one-dimensional case. Namely, K = [a,b]
for some reals a < b. Note that, in this case, S is uniform in {−1,+1}
whereas B is uniform in [−1,+1]. Then

E
(x + δB) =
1
2δ

∫ δ

−δ

(x + ε)dε =

L(x + δ) − L(x − δ)
2δ

by the fundamental theorem of calculus, where L is the antiderivative
of 
 satisfying L′ = 
. This gives

d

dx
E
(x + δB) =


(x + δ) − 
(x − δ)
2δ

.

On the other hand,
1
δ

E[
(x + δS)S] =

(x + δ) − 
(x − δ)

2δ
.

Hence 1
δE[
(x + δS)S] = d

dxE
(x + δB) and the one-dimensional case
is established. Note that the equivalence we just proved relates an inte-
gral over the unit sphere S to an integral over the unit ball B. In d

dimensions, Lemma 6.1 delivers the corresponding generalized identity
1
δ

∫
S


(x + δs)sdσ(s) =∇
∫

B


(x + δb)db.
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Now, since Vol(S) = dVol(B) we immediately obtain

d

δ
E[
(x + δS)S] =∇E
(x + δB)

concluding the proof.

We have thus established E g̃t(x) =∇E
t(x + δB), showing that g̃t
provides an unbiased estimate of a smoothed version 
̃t(x) = E
t(x +
δB) of the loss function 
t.

We can measure how well 
̃t approximates 
t by exploiting the Lip-
schitz assumption,

|
t(x) − 
̃t(x)| = |
t(x) − E
t(x + δB)|
≤ E|
t(x) − 
t(x + δB)|
≤ δGE‖B‖
≤ δG. (6.2)

The next lemma relates the regret under the losses 
t to the regret under
their smoothed versions 
̃t. An additional issue taken into account by
the lemma is that OSGD might play a point close to the boundary of
the set K. In this case the perturbed point on which the gradient is
estimated could potentially be outside of K. In order to prevent this
from happening we need to run OSGD on a shrunken set (1 − ξ)K.

Lemma 6.3. Let K ⊆ R
d be a convex set such that K ⊆ RB for some

R ≥ 0, and fix 0 ≤ ξ ≤ 1. For any sequence 
1, 
2, . . . of G-Lipschitz
differentiable and convex losses, and for any sequence x1,x2, . . . ∈
(1 − ξ)K ⊆ R

d, the following holds

1
2

n∑
t=1

(
t(X+
t ) + 
t(X−

t )) −
n∑
t=1


t(x)

≤
n∑
t=1


̃t(xt) −
n∑
t=1


̃t((1 − ξ)x) + 3δGn + ξGRn

for all realizations of the random process (X+
t ,X

−
t )t≥1.
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Proof. Using the Lipschitzness of 
t and Equation (6.2) we obtain

1
2
(
t(X+

t ) + 
t(X−
t )) + 
̃t((1 − ξ)x)

≤ 1
2
(
t(xt) + δG‖S‖ + 
t(xt) + δG‖S‖) + 
t((1 − ξ)x) + δG

≤ 
t(xt) + 
t(x) + 2δG + ξGR

≤ 
̃t(xt) + 
t(x) + 3δG + ξGR.

In the second step we used 
̃t((1 − ξ)x) ≤ ξG‖x‖ ≤ ξGR which results
from the Lipschitzness of 
t and the assumption K ⊆ RB.

Next, we show that the second moment of g̃t can be controlled by
exploiting the Lipschitzness of 
t. In particular,

‖g̃t(x)‖ =
d

2δ
|
t(x + δS) − 
t(x − δS)|‖S‖ ≤ Gd

2δ
‖2δS‖ = Gd.

We are now ready to prove the main result of this section. Namely, that
the pseudo-regret of OSGD run using the gradient estimate (Equa-
tion (6.1)) is of order

√
n. We assume that the point X̃t played by

OSGD at each time t is randomly drawn between the two points X+
t

and X−
t , where the loss function is queried.

Theorem 6.4 (Regret of OSGD with two-point feedback). Let
K ⊆ R

d be a closed convex set such that rB ⊆ K ⊆ RB for some r,R >

0. Let L be a set of G-Lipschitz differentiable and convex losses. Fix
δ > 0 and assume OSGD is run on (1 − δ

r )K with learning rate η > 0
and gradient estimates (Equation (6.1)),

g̃t(xt) =
d

2δ
(
t(X+

t ) − 
t(X−
t ))St

where S1,S2, . . . ∈ S are independent. For each t = 1,2, . . . let X̃t be
drawn at random between X+

t and X−
t . Then the following holds

Rn ≤ R2

η
+ η(Gd)2n + δ

(
3 +

R

r

)
Gn.

Moreover, if η = R
GD

√
n

then for δ→ 0 we have that

Rn ≤ 2RGd
√
n.
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Proof. First of all, we must check that the points X+
t = xt + δS and

X−
t = xt − δS on which 
t is queried belong to K. To see this, recall that

xt ∈ (1 − δ
r )K. Now, setting α = δ

r we have that X+
t ,X

−
t ∈ (1 − α)K +

αrS. Since rS ⊆ K and K is convex, we obtain (1 − α)K + αrS ⊆
(1 − α)K + αK ⊆ K. Hence, using Lemma 6.3 with the choice ξ = δ

r

we immediately get that for all x ∈ K,
n∑
t=1

E(
t(X̃t)|X+
t ,X

−
t ) −

n∑
t=1


t(x)

≤ 1
2

n∑
t=1

(
t(X+
t ) + 
t(X−

t )) −
n∑
t=1


t(x)

≤
n∑
t=1


̃t(xt) −
n∑
t=1


̃t

((
1 − δ

r

)
x

)
+ δ

(
3 +

R

r

)
Gn.

Since we already related the loss of X̃t to the loss of xt, we can now
apply Theorem 5.7 in the special case of x̃t = xt and with the sequence
of losses (
̃t). This gives

E

n∑
t=1


̃t(xt) − E

n∑
t=1


̃t

((
1 − δ

r

)
x

)
≤ R2

η
+ η

n∑
t=1

E‖g̃t(xt)‖2

≤ R2

η
+ η(Gd)2n

where we overapproximated
∥∥(1 − δ

r )K
∥∥ ≤ ‖K‖ = R. This concludes

the proof.

6.2 One-Point Bandit Feedback

Building on the analysis of the previous section, it is not hard to show
that the pseudo-regret can be bounded even when the loss function at
each time t is queried in only one point. However, we pay this reduced
bandit feedback with a worse rate of n3/4 in the pseudo-regret bound.
It is not known if this rate is optimal, or if it is possible to get a

√
n

regret as in the two-point setting.
The one-point estimate at time t is defined by

g̃t(x) =
d

δ

t(x + δS)S (6.3)
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where S is drawn at random from S. Obviously, Lemma 6.2 can be
applied to get E g̃t(x) =∇
̃t(x) where, we recall, 
̃t(x) = E
t(x + δB).
Differences with the two-point case arise when we bound the second
moment of this new g̃t. Indeed, if x + δS ∈ K and the maximum value
of each 
t in K is bounded by L, then

‖g̃t(x)‖ =
d

δ
|
t(x + δS)|‖S‖ ≤ dL

δ
.

Note the inverse dependence on δ. This dependence plays a key role in
the final bound, as the next result shows.

Theorem 6.5 (Regret of OSGD with one-point feedback). Let
K ⊆ R

d be a closed convex set such that rB ⊆ K ⊆ RB for some
r,R > 0. Let L be a set of G-Lipschitz differentiable and convex losses,
uniformly bounded by L (that is, ‖
‖∞ ≤ L,∀
 ∈ L). Fix δ > 0 and
assume OSGD is run on (1 − δ

r )K with learning rate η > 0 and gradi-
ent estimates (Equation (6.3)),

g̃t(xt) =
d

δ

t(X̃t)St

where X̃t = xt + δSt and S1,S2, . . . ∈ S are independent. Then the fol-
lowing holds

Rn ≤ R2

η
+

(dL)2

δ2
ηn + δ

(
3 +

R

r

)
Gn.

Moreover, if

δ =
1

(2n)1/4

√
RdL

(3 + R
r )G

and η =
1

(2n)3/4

√
R3

dL(3 + R
r )G

then

Rn ≤ 4n3/4

√
RdL

(
3 +

R

r

)
G.

Proof. The proof follows along the same lines as the proof of Theo-
rem 6.4. Indeed, we can show that the points X̃t = xt + δS on which 
t
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is queried belong to K. Then, using an easy modification of Lemma 6.3
we get that for all x ∈ K,

n∑
t=1

E(
t(X̃t)|X+
t ,X

−
t ) −

n∑
t=1


t(x)

≤
n∑
t=1


̃t(xt) −
n∑
t=1


̃t

((
1 − δ

r

)
x

)
+ δ

(
3 +

R

r

)
Gn.

Applying Theorem 5.7 as in the proof of Theorem 6.4 gives

E

n∑
t=1


̃t(xt) − E

n∑
t=1


̃t

((
1 − δ

r

)
x

)
≤ R2

η
+ η

n∑
t=1

E‖g̃t(xt)‖2

≤ R2

η
+

(dL)2

δ2
ηn.

6.3 Nonlinear Stochastic Bandits

We conclude with a simple example of nonlinear bandits in the stochas-
tic setting. Unlike the gain-based analysis of stochastic bandits of Sec-
tion 2, here we keep in with the convention used throughout this section
and work exclusively with losses.

We consider a simple unidimensional setting where arms are points
in the unit interval [0,1]. If at time t a point xt ∈ [0,1] is played, the
loss is the realization of an independent random variable Yt ∈ [0,1] with
expected value E[Yt|xt] = µ(xt), where µ : [0,1]→ [0,1] is a fixed but
unknown mean loss function. Similarly to Section 2, here the pseudo-
regret after n plays of a given strategy can be rewritten as

Rn =
n∑
t=1

µ(xt) − n max
x∈[0,1]

µ(x)

where x1, . . . ,xn ∈ [0,1] denote the points played by the strategy.
Throughout this section, we assume that µ : [0,1]→ [0,1] is uni-

modal, but not necessarily convex. This means that there exists a
unique x∗ = argminx∈[0,1]µ(x) such that µ(x) is monotone decreasing
for x ∈ [0,x∗] and monotone increasing for x ∈ [x∗,1]. For example, if µ
can be written as µ(x) = xf(x), where f : [0,1]→ [0,1] is differentiable,
monotone decreasing, and such that xf ′(x) is strictly decreasing with
f(0) > 0, then µ is unimodal.
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The bandit strategy we analyze in this section is based on the golden
section search due to Kiefer [117], which is a general algorithm for find-
ing the extremum of a unimodal function. Similarly to binary search,
each step of golden section search narrows the interval in which the
extremum is found by querying the function value at certain points that
are chosen depending on the outcome of previous queries. Each query
shrinks the interval by a factor of 1

ϕ = 0.618 . . . , where ϕ = 1
2(1 +

√
5)

is the golden ratio.
In our case, queries (i.e., plays) at x return a perturbed version of

µ(x). Since µ is bounded, Hoeffding bounds ensure that we can find the
minimum of µ by repeatedly querying each point x requested by the
golden search algorithm. However, in order to have a lower bound on
the accuracy with which each µ needs to be estimated, we must assume
the following condition: there exists CL > 0 such that

|µ(x) − µ(x′)| ≥ CL|x − x′| (6.4)

for each x,x′ that belong either to [0,x∗ − 1/CL] or to [x∗ + 1/CL,1].
Finally, irrespective to the uncertainty in the evaluation of µ, in

order to bound the regret incurred by golden section search we need a
Lipschitz condition on µ. Namely, there exists CH > 0 such that |µ(x) −
µ(x′)| ≤ CH |x − x′| for all x,x′ ∈ [0,1].

We are now ready to introduce our stochastic version of the golden
section search algorithm.

SGS (Stochastic Golden Search):
Parameters: ε1,ε2, . . . > 0.
Initialize: xA = 0 xB = 1

ϕ2 xC = 1.
For each stage s = 1, . . . ,n

(1) Let x′
B =

{
xB − 1

ϕ2 (xB − xA) xB − xA > xC − xB

xB + 1
ϕ2 (xC − xB) otherwise

and

rename points xB ,x
′
B so that xA < xB < x′

B < xC .
(2) Play each point in {xA,xB ,x

′
B ,xC} for 2

ε2
s
ln(6n) times and let

x̂ be the point with lowest total loss in this stage.
(3) If x̂ ∈ {xA,xB} then eliminate interval (x′

B ,xC ] and let xC =
x′

B ,
(4) else eliminate interval [xA,xB) and let xA = xB .
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Recall that golden section search proceeds as follows: given three
queried points xA < xB < xC where the distance of xB to the other
two points is in the golden ratio (xB might be closer to xA or to xC
depending on past queries), the next point x′

B is queried in the largest
interval between xB − xA and xC − xB so that the distance of x′

B to the
extrema of that largest interval is in the golden ratio. Assume the result-
ing ordering is xA < xB < x′

B < xC . Then we drop either [xA,xB) or
(x′
B,xC ] according to whether the smallest value of µ is found in, respec-

tively, {x′
B,xC} or {x′

B,xC}. The remaining triplet is such that the
distance of the middle point to the other two is again in the golden ratio.

Using elementary algebraic identities for ϕ, one can show that
setting xC − xA = 1 the following equalities hold at any step of SGS:

xB − xA =
1
ϕ2 x′

B − xB =
1
ϕ3 xC − x′

B =
1
ϕ2 . (6.5)

Since either xB − xA or xC − x′
B are eliminated at each stage, at each

stage SGS shrinks the search interval by a factor of 1 − ϕ−2 = 1
ϕ .

Let [xA,s,xB,s] be the search interval at the beginning of stage s + 1,
where xA,0 = 0 and xC,0 = 1.

Lemma 6.6. If εs = CLϕ
−(s+3) then

P(x∗ �∈ [xA,s,xC,s]) ≤ s

n
holds uniformly over all stages s ≥ 1.

Proof. Once the interval containing x∗ is eliminated it is never recov-
ered, thus we have

P(x∗ �∈ [xA,s,xC,s]) ≤ P(x∗ �∈ [xA,s−1,xC,s−1])

+P(x∗ �∈ [xA,s,xC,s] |x∗ ∈ [xA,s−1,xC,s−1]).

(6.6)

Let Xs = {xA,s−1,xB,s−1,x
′
B,s−1,xC,s−1} where xB,s−1 < x′

B,s−1 are
computed in step 1 of stage s. Let µ̂s(x) be the sample loss of point
x ∈ Xs in stage s and let x̂s = argminx∈Xs

µ̂(x). Since at stage s every
point in Xs is played 2

ε2s
ln(6n) times,1 Hoeffding bounds imply that

1 For simplicity, we assume these numbers are integers.
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|µ(x) − µ̂s(x)| ≤ 1
2εs with probability at least 1 − 1

6n for all x ∈ Xs

simultaneously. Let

x∗
s = argmin

x∈Xs

µ(x).

Now assume x∗ ∈ [xA,s−1,xB,s−1]. Then x∗ �∈ [xA,s,xC,s] implies
µ̂s(xB′,s−1) < µ̂(xB,s−1) or µ̂s(xC,s−1) < µ̂(xB,s−1). Similarly, assume
x∗ ∈ [xB′,s−1,xC,s−1]. Then x∗ �∈ [xA,s,xC,s] implies µ̂s(xA,s−1) <
µ̂(xB′,s−1) or µ̂s(xB,s−1) < µ̂(xB′,s−1). In both cases, we need to com-
pare three values of µ on the same side with respect to x∗. (When x∗ ∈
[xB,s−1,xB′,s−1] we always have x∗ ∈ [xA,s,xC,s].) Hence, we can apply
our assumption involving CL. More precisely, Equation (6.5) implies
that after s stages the search interval has size ϕ−s and min{xB,s −
xA,s,x

′
B,s − xB,s,xC,s − x′

B,s} = ϕ−(s+3). Hence, introducing

∆s = min{|µ(xB,s) − µ(xA,s)|, |µ(x′
B,s) − µ(xB,s)|, |µ(xC,s) − µ(x′

B,s)|}
we have

∆s ≥ CLmin{xB,s − xA,s,x′
B,s − xB,s,xC,s − x′

B,s} ≥ CLϕ−(s+3) = εs.

Let Ts = 8
ε2s

ln(6n) the length of stage s. We can write

P(x∗ �∈ [xA,s,xC,s] |x∗ ∈ [xA,s−1,xC,s−1])

= P(µ̂s(x̂s) < µ̂(x∗
s))

≤
∑

x∈Xs\{x∗
s}

P(µ̂s(x) < µ̂(x∗
s))

≤
∑

x∈Xs\{x∗
s}

(
P

(
µ̂s(x) < µ(x) − ∆s

2

)

+P

(
µ(x∗

s) < µ̂(x∗
s) −

∆s

2

))
≤ 6e−Ts∆2

s/8

≤ 6e−Tsε2s/8 ≤ 1
n
.

Substituting this in Equation (6.6) and recurring gives the desired
result.
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Theorem 6.7(Regret of SGS). For any unimodal and CH -Lipschitz
mean loss function µ : [0,1]→ [0,1] that satisfies Equation (6.4), if the
SGS algorithm is run with εs = CLϕ

−(s+3) then

Rn ≤ CH
C2
L

8ϕ6 ln(6n)
[

2ϕ
ϕ − 1

√
1 + C2

Ln +
1
4

log2
ϕ(1 + C2

Ln)
]
.

Proof. We start by decomposing the pseudo-regret as follows,

Rn ≤
S∑
s=1

Ts(min
x∈As

µ(x) − µ(x∗)) +
S∑
s=1

(∑
t∈Ts

µ(xt) − Ts min
x∈As

µ(x)

)
.

Using the Lipschitz assumption

max
x,x′∈As

|µ(x) − µ(x′)| ≤ CH |xC,s − xA,s|

and recalling that |xC,s − xA,s| ≤ ϕ−s, we bound the first term in this
decomposition as follows

S∑
s=1

Ts

(
min
x∈As

µ(x) − µ(x∗)
)
≤ TsCH |xC,s − xA,s|P(x∗ ∈ [xA,s,xC,s])

+TsCHP(x∗ �∈ [xA,s,xC,s])

≤ TsCH
ϕs

+ TsCH
s

n
.

The second term is controlled similarly,

S∑
s=1

(∑
t∈Ts

µ(xt) − Ts min
x∈As

µ(x)

)
≤ TsCH |xC,s − xA,s| ≤ TsCH

ϕs
.

Hence we get an easy expression for the regret,

Rn ≤ CH

S∑
s=1

Ts

(
2
ϕs

+
s

n

)

≤ CH
C2
L

8ϕ6 ln(6n)
S∑
s=1

ϕ2s
(

2
ϕs

+
s

n

)
. (6.7)
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We now compute an upper bound on the number S of stages,

n ≤
S∑
s=1

Ts =
8ϕ6

C2
L

ln(6n)
S∑
s=1

ϕ2s ≤ 8ϕ6

C2
L

ln(6n)
ϕ2S+2

ϕ2 − 1
.

Solving for n and overapproximating we get

S ≤ 1
2

logϕ(1 + C2
Ln).

Therefore, the sum in Equation (6.7) is bounded as follows

2
S∑
s=1

ϕs + S2 ≤ 2ϕ
ϕ − 1

ϕS + S2

≤ 2ϕ
ϕ − 1

√
1 + C2

Ln +
1
4

log2
ϕ(1 + C2

Ln).

Substituting the above in Equation (6.7) concludes the proof.

6.4 Bibliographic Remarks

Gradient-free methods for stochastic approximation have been stud-
ied for a long time — see the bibliographic remarks at the end of
Section 5 for some references. However, relatively few results provide
regret bounds. The approach presented in this section for online convex
optimization with bandit feedback was pioneered by Flaxman et al. [79]
and Kleinberg [120]. The improved rate for the two-point model was
later shown in [6].

While the results for nonlinear bandits in the adversarial model are
still scarce, there is a far richer body of work in the stochastic model.
The result based on golden section search presented in Section 6.3 is due
to Yu and Mannor [171]. It represents only a tiny portion of the known
results in the stochastic model. In the general case of Lipschitz mean-
payoff on a compact subset of R

d, it can be shown that the minimax
regret is Ω(n

d+1
d+2 ). Thus, the rate rapidly deteriorates as the dimen-

sion increases, a phenomenon known as the curse of dimensionality.
However it was shown in [51, 122] that under a generalized version of
Equation (6.4) it is possible to circumvent the curse of dimensionality
and obtain a regret of Õ(

√
n). This result builds upon and generalizes
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a sequence of works that include the discretization approach (for the
one-dimensional case) of Kleinberg [120] and Auer et al. [26], as well
as the method of Cope [68] based on the Kiefer–Wolfowitz procedure
(a classical method of stochastic optimization). The key new algorith-
mic idea introduced in [51, 122] is to adaptively partition the set of
actions in order to exploit the smoothness of the mean-payoff function
around its maximum. We refer the reader to [52] for the details of this
result (which is much more general than what we briefly outlined, in
particular it applies for metric spaces, or even more general action sets),
as well as a more precise historical account.

Another direction for nonlinear stochastic bandits was recently
investigated in [8]. In this work the authors study the case of a convex
mean loss function, and they show how to combine the zeroth-order
optimization method of Nemirovski and Yudin [139] with a “center
point device” to obtain a regret of Õ(

√
n).

A more general version of nonlinear stochastic bandit was also
studied in [12]. In this paper the authors assume that the mean-payoff
function lies in some known set of functions F . They define a notion of
complexity for the class F , the haystack dimension HD(F), and they
show that the worst case regret in F is lower bounded by HD(F). Unfor-
tunately their upper bound does not match the lower bound, and the
authors suggest that the definition of the haystack dimension should
be modified in order to obtain matching upper and lower bounds.

Finally, a related problem in a Bayesian setting was studied in [89,
155], where it is assumed that the payoff functions are drawn from
Gaussian processes.



7
Variants

In the previous sections we explored a few fundamental variations
around the basic multi-armed bandit problem. In both the stochastic
and adversarial frameworks, these variants basically revolved around a
single principle: by adding constraints on the losses (or rewards), it is
possible to compete against larger sets of arms. While this is indeed a
fundamental axis in the space of bandit problems, it is important to
realize that there are many other directions. Indeed, we might sketch
a “bandit space” spanning the following coordinates:

• Evolution of payoffs over time: stochastic, adversarial,
Markovian, etc.

• Structure of payoff functions: linear, Lipschitz, Gaussian
process, etc.

• Feedback structure: full information, bandit, semi-bandit,
partial monitoring, etc.

• Context structure (if any).
• Notion of regret.

Clearly, such extensions greatly increase the number of potential appli-
cations of bandit models. While many of these extensions were already
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discussed in the previous sections, in the following we focus on others
(such as the sleeping bandits or the truthful bandits) so to visit more
exotic regions of the bandit space.

7.1 Markov Decision Processes,
Restless and Sleeping Bandits

Extending further the model of Markovian bandits (mentioned at the
end of Section 1), one can also define a general Markov Decision Process
(MDP) — see also Section 7.1. For example, the stochastic bandit of
Section 2 corresponds to a single-state MDP.

In full generality, a finite MDP can be described by a set of states
{1, . . . ,S}, a set of actions {1, . . . ,K}, a set {pi,s, 1 ≤ i ≤K, 1 ≤ s ≤ S}
of transition distributions over S, and a set {νi,s, 1 ≤ i ≤K, 1 ≤ s ≤ S}
of reward distributions over [0,1]. In this model, taking action i in
state s generates a stochastic reward drawn from νi,s and a Marko-
vian transition to a state drawn from pi,s. Similarly to the multi-armed
bandit problem, here one typically assumes that the reward distribu-
tions and transition distributions are unknown, and the goal is to navi-
gate through the MDP so as to maximize some function of the obtained
rewards. The field that studies this type of problem is called Reinforce-
ment Learning. The interested reader is addressed to [108, 157, 158].
Reinforcement learning results with a flavor similar to those described
in the previous sections can be found in [48, 105, 141, 172].

An intermediate model, between stochastic multi-armed bandits
and MDPs, is the one of restless bandits. As in Markovian bandits,
each arm is associated with a Markovian reward process with its own
state space. Each time an arm is chosen, the associated Markov process
generates an observable reward and makes a transition to a new state,
which is also observed. However, unlike Markovian bandits an unob-
served transition occurs for each arm that is not chosen. Using con-
centration inequalities for Markov chains — see, e.g., [127], one can
basically show that, under suitable assumptions, UCB attains a log-
arithmic regret for restless bandits as well — see [77, 160]. A more
general regret bound for restless bandits has been recently proven by
Ortner et al. [142].
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An apparently similar problem was studied by Garivier and
Moulines [84], where they assume that the reward distributions can
abruptly change at unknown time instants (and there is a small num-
ber of such change-points). Within this model, the authors prove that
the best possible regret is of order

√
n, which is matched by the Exp3.P

algorithm — see the discussion in Section 3.4.3. Thus, while the two
problems (restless bandits and bandits with change-points) might look
similar, they are fundamentally different. In particular, note that the
latter problem cannot be cast as an MDP.

Another intermediate model, with important applications, is that
of the sleeping bandits. There, it is assumed that the set of available
actions is varying over time. We refer the interested reader to [113,
112, 121, 152] for the details of this model as well as the theoretical
guarantees that can be obtained. A somewhat related problem was
also studied in [90] where it is assumed that the set of arms becomes
unavailable for a random time after each arm pull (and the distribution
of this random time depends on the selected arm).

7.2 Pure Exploration Problems

The focus of bandits, and most of their variants, is on problems where
there is a notion of cumulative rewards, which is to be maximized.
This criterion leaves out a number of important applications where
there is an online aspect (e.g., sequential decisions), but the goal is
not maximizing cumulative rewards. The simplest example is perhaps
the pure exploration version of stochastic bandits. In this model, at
the end of round n the algorithm has to output a recommendation Jn
which represents its estimate for the optimal arm. The focus here is
on the control of the so-called simple regret, introduced by Bubeck
et al. [49, 50] and defined as rn = µ∗ − EµJn .

Bubeck et al. [49] prove that minimizing the simple regret is funda-
mentally different from minimizing the pseudo-regret Rn, in the sense
that one always have rn ≥ exp(−CRn) for some constant C > 0 (which
depends on the reward distributions). Thus, this regret calls for dif-
ferent bandit algorithms. Audibert et al. [20] exhibit a simple strat-
egy with optimal performances up to a logarithmic factor. The idea
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is very simple: the strategy SR (Successive Rejects) works in K − 1
phases. SR keeps a set of active arms that are sampled uniformly in
each phase. At the end of a phase, the arm with smallest empirical mean
is removed from the set of active arms. It can be shown that this strat-
egy has a simple regret of order exp(−c n

H lnK ), where H =
∑

i�=i∗
1

∆2
i

is
the complexity measure of identifying the best arm, and c is a numer-
ical constant. Moreover, a matching lower bound (up to logarithmic
factors) was also proved. These ideas were extended in different ways
by Gabillon et al. [82], Bui et al. [55] and Bubeck et al. [54].

A similar problem was studied in a PAC model by Even-Dar
et al. [75]. The goal is to find, with probability at least 1 − δ, an arm
with mean at least ε close the optimal mean, and the relevant quan-
tity is the number of pulls needed to achieve this goal. For this prob-
lem, the authors derive an algorithm called Successive Elimination that
achieves an optimal number of pulls (up to logarithmic factors). Succes-
sive Elimination works as follows: it keeps an estimate of the mean of
each arm, together with a confidence interval. If two confidence inter-
vals are disjoint, then the arm with the lowest confidence interval is
eliminated. Using this procedure, one can achieve the (ε,δ) guarantee
with a number of pulls of order H ln K

∆ . A matching lower bound is
due to Mannor and Tsitsiklis [134], and further results are discussed
by Even-Dar et al. [76].

In some applications one is not interested in the best arm, but rather
in having a good estimate of the mean µi for each arm. In this setting
a reasonable measure of performance is given by

Ln = E

K∑
i=1

(µi − µ̂i,Ti(n))
2.

Clearly, the optimal static allocation depends only on the variances
of the arms, and we denote by L∗

n the performance of this strategy.
This setting was introduced by Antos et al. [13], where the authors
studied the regret Ln − L∗

n, and showed that a regret of order n−3/2

was achievable. This result was then refined by Carpentier et al. [59] and
Carpentier and Munos [60]. The basic idea in these papers is to resort
to the optimism in face of uncertainty principle, and to approximate
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the optimal static allocation by replacing the true variance with an
upper confidence bound on it.

7.3 Dueling Bandits

An interesting variation of stochastic bandits was recently studied by
Yue et al. [173]. The model considered in this paper is called dueling
bandits. The main idea is that the player has to choose a pair or arms
(It,Jt) at each round and can only observe the relative performances of
these two arms, i.e., the player only knows which arm had the highest
reward. More formally, in dueling bandits we assume that there exists
a total ordering � on {1, . . . ,K} with the following properties:

(1) If i � j, then the probability that the reward of arm i is larger
than the reward of arm j is equal to 1

2 + ∆i,j with ∆i,j > 0.
(2) If i � j � k, then ∆i,j + ∆j,k ≥∆i,k ≥max{∆i,j ,∆j,k}.

Upon selecting a pair (It,Jt), the player receives a random variable
drawn from a Bernoulli distribution with parameter 1

2 + ∆i,j . In this
setting a natural regret notion is the following quantity, where i∗ is the
largest element in the ordering �,

E

n∑
t=1

(∆i∗,It + ∆i∗,Jt).

It was proved in Yue et al. [173] that the optimal regret for this prob-
lem is of order K

∆ logn, where ∆ = mini�=j∆i,j . A simple strategy that
attains this rate, based on the Successive Elimination algorithm of
Even-Dar et al. [75], was proposed by Yue and Joachims [174].

7.4 Discovery with Probabilistic Expert Advice

Bubeck et al. [47] study a model with a stochastic bandit flavor (in
fact it can be cast as an MDP), where the key for the analysis is a sort
of “nonlinear” regret bound. In this model rewards represent items in
some set X which is partitioned in a subset A ⊂ X of interesting items
and in a subset X \ A of noninteresting items. The goal is to maximize
the total expected number of interesting items found after n pulls,
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where observing twice the same item does not help. A natural notion
of regret is obtained by comparing the number of interesting items F (n)
found by a given strategy to the number F ∗(n) found by the optimal
strategy. It turns out that analyzing such regret directly is difficult. The
first issue is that in this problem the notion of a “good” arm is dynamic,
in the sense that an arm could be very good for a few pulls and then
completely useless. Furthermore, a strategy making bad decisions in the
beginning will have better opportunities in the future than the optimal
strategy (which already discovered some interesting items). Taking into
account these issues, it turns out that it is easier to show that for good
strategies, F (n) is not too far from F ∗(n′), where n′ is not much smaller
than n. Such a statement — which can be interpreted as a nonlinear
regret bound — shows that the analyzed strategy slightly “lags” behind
the optimal strategy. In Bubeck et al. [47] a nonlinear regret bound is
derived for an algorithm based on estimating the mass of interesting
items left on each arm (the so-called Good-Turing estimator), combined
with the optimism in face of uncertainty principle of Section 2. We refer
the reader to Bubeck et al. [47] for more precise statements.

7.5 Many-Armed Bandits

The many-armed bandit setting was introduced by Berry et al. [38],
and then extended and refined by Wang et al. [167]. This setting cor-
responds to a stochastic bandit with an infinite number of arms. The
extra assumption that makes this problem feasible is a prior knowledge
on the distribution of the arms. More precisely, when the player asks to
“add” a new arm to his current set of active arms, one assumes that the
probability that this arm is ε-optimal is of order εβ, for some known
β > 0. Thus, the player faces a trade-off between exploitation, explo-
ration, and discovery, where the last component comes from the fact
that the player needs to consider new arms to make sure that he has an
active ε-optimal arm. Using a UCB strategy on the active arms, and
by adding new arms at a rate which depends on β, Wang et al. [167]
prove that a regret of order

n
max{ 1

2 ,
β

1+β
}

is achievable in this setting.
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7.6 Truthful Bandits

A popular application domain for bandit algorithms is ad placement on
the Web. In the pay-per-click model, for each incoming user t = 1,2, . . .
the publisher selects an advertiser It from a pool of K advertisers, and
display the corresponding ad to the user. The publisher then gets a
reward if the ad is clicked by the user. This problem is well modeled
by the multi-armed bandit setting. However, there is a fundamental
aspect of the ad placement process which is overlooked by this formu-
lation. Indeed, prior to running an ad-selection algorithm (i.e., a bandit
algorithm), each advertiser i ∈ {1, . . . ,K} issues a bet bi. This number
is how much i is willing to pay for a click. Each bidder keeps also a
private value vi, which is the true value i assigns to a click. Because
a rational bidder ensures that bi ≤ vi, the difference vi − bi defines the
utility for bidder i. The basic idea of truthful bandits is to construct a
bandit algorithm such that each advertiser has no incentive in submit-
ting a bet bi such that bi < vi. A natural question to ask is whether this
restriction to truthful algorithms changes the dynamics of the multi-
armed bandit problem. This has investigated in a number of papers,
including [29, 30, 73, 170]. Truthful bandits are part of a more general
thread of research at the interface between bandits and Mechanism
Design.

7.7 Concluding Remarks

As pointed out in the Introduction, the growing interest for bandits
arises from the large number of industrially relevant problems that
can be modeled as a multi-armed bandit. In particular, the sequential
nature of the bandit setting makes it perfectly suited to various Internet
and Web applications. These include search engine optimization with
dueling bandits, or ad placement with contextual bandits and truthful
bandits, see the references in, respectively, Sections 7.3, 4.5, and 7.6.

Multi-armed bandits also proved to be very useful in other areas.
For example, thanks to the strong connections between bandits and
Markov Decision Processes, a breakthrough in Monte Carlo Tree Search
(MCTS) was achieved using bandits ideas. More precisely, based on the
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sparse planning idea of Kearns et al. [116], Kocsis and Szepesvári [123]
introduced a new MCTS strategy called UCT (UCB applied to Trees)
that led to a substantial advancement in Computer Go performance, see
Gelly et al. [85]. Note that, from a theoretical point of view UCT was
proved to perform poorly by Coquelin and Munos [69], and a strategy
based on a similar idea, but with improved theoretical performance,
was proposed by Bubeck and Munos [48]. Other applications in related
directions have also been explored, see for example [104, 161] and many
others.

Many new domains of application for bandits problems are currently
investigated. For example: multichannel opportunistic communications,
Liu et al. [129]; model selection, Agarwal et al. [7]; boosting, Busa-
Fekete and Kegl [57], management of dark pools of liquidity (a recent
type of stock exchange), Agarwal et al. [5]; and security analysis of
power systems, Bubeck et al. [47].

Given the fast pace of new variants, extensions, and applications
coming out every week, we had to make tough decisions about what
to present in this monograph. We apologize for everything we had to
leave out. On the other hand, we do hope that what we decided to put
in will enthuse more researchers about entering this exciting field.
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[157] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.
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