Hierarchical Ensemble Methods for Structured Prediction with Applications in Computational Biology

Computer Science Department

UNIVERSITÀ DEGLI STUDI DI MILANO Anacleto Lab

Computational Biology and Bioinformatics

Marco Notaro https://homes.di.unimi.it/notaro/

Bioinformatics vs Computational Biology

• **Computational Biology**: is the study of Biology using computational techniques. The main goal of a computational biologist is to make new insights about Biology and living system. Then **Computational Biology** is about **Science**.

• **Bioinformatics**: is about the creation of new algorithms able to solve problems. The main goal of a bioinformatician is to build tools that can work on biological, medical and pharmaceutical data. Then **Bioinformatics** is about **Computer Science**.

• Bio-Ontologies (e.g. HPO, GO, DO): what are and why are useful in a bio-medical contest;

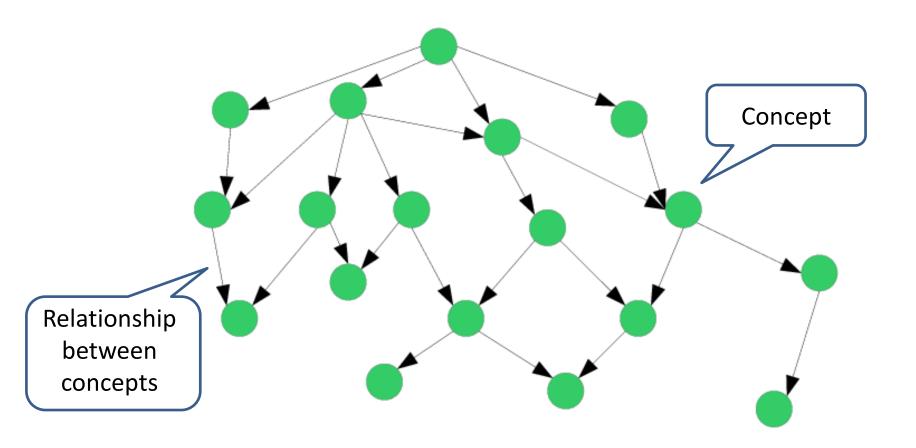
 State-of-the-art approaches ontology-based: Flat vs Hierarchyaware learning methods;

• Proposed approaches: Hierarchical Ensemble Methods (HEM);

• Behavior of HEM in a state-of-the-art scenarios: HEM vs joint-kernel structured output method;

• Ongoing and Future Developments;

An ontology is an high-level representation of a domain of knowledge that describes concepts and semantic relationships between them in a form of Directed Acyclic Graph (DAG).



- Human Phenotype Ontology (HPO): provides a standardized categorization of the abnormalities associated to human diseases;
- **Disease Ontology** (DO): describes the classification of human diseases organized by etiology;
- Gene Ontology (GO): describes the function of genes and gene products;
- **Chemical Entities of Biological Interest** (ChEBI): structured dictionary of molecular entities focused on 'samall' chemical compound;
- **MErged Disease voCabulary** (MEDIC): map the flat list of OMIM disease terms into the hierarchical nature of the MeSH vocabulary;
- Anatomical Ontologies : structured controlled vocabulary of the anatomy and development of the Zebrafish (ZFO), Xenopus (XAO), Mouse (MA);

More at OBO Foundry (Open Biological and Biomedical Ontologies): http://www.obofoundry.org/

OBO-EDIT (<u>http://oboedit.org/</u>): open source ontology editor

BIO- Ontology

Milan University, 24th May 2017

Human Phenotype Ontology

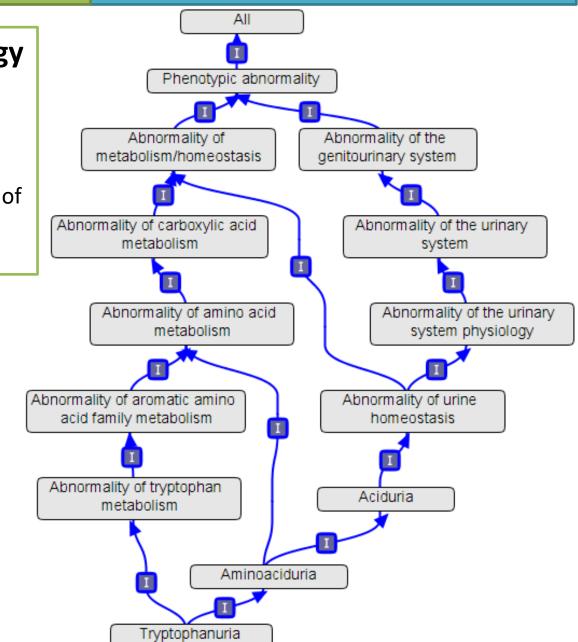
(HPO) (Köhler et al., 2017)

Link: <u>http://human-phenotype-</u> <u>ontology.github.io/</u>

What is: standardized categorization of the phenotypic abnormalities associated to human diseases

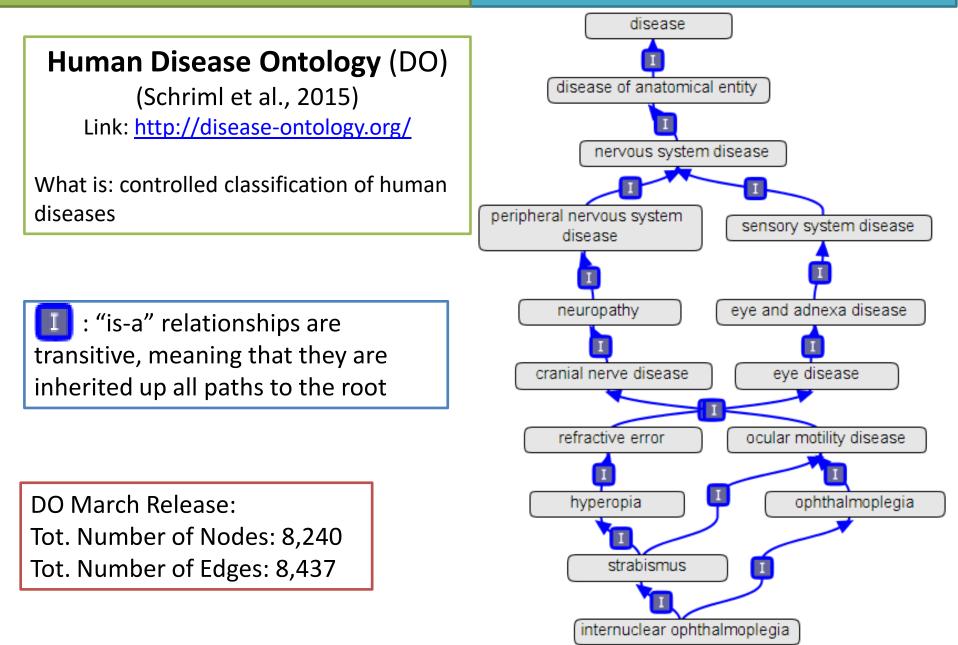
I : all relationships in the HPO are is-a relationships, i.e. simple class-subclass relationships

HPO Easter Release: Tot. Number of Nodes: 12,226 Tot. Number of Edges: 16,044



BIO- Ontology

Milan University, 24th May 2017

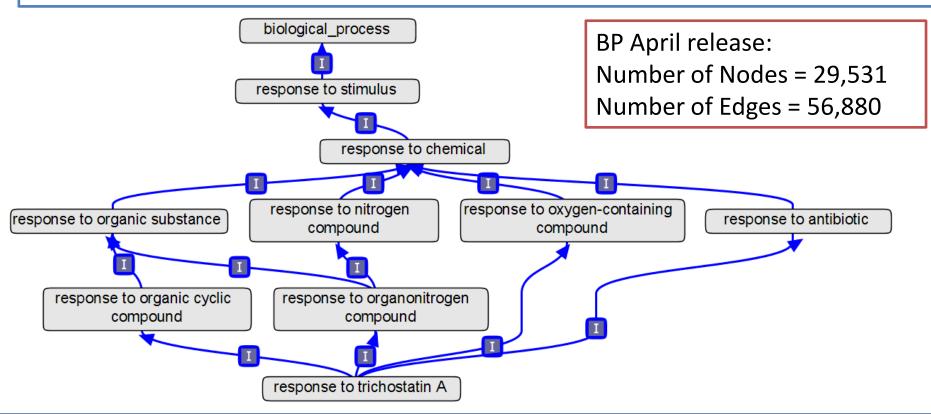


Gene Ontology (GO) (Ashburner et al., 2000)

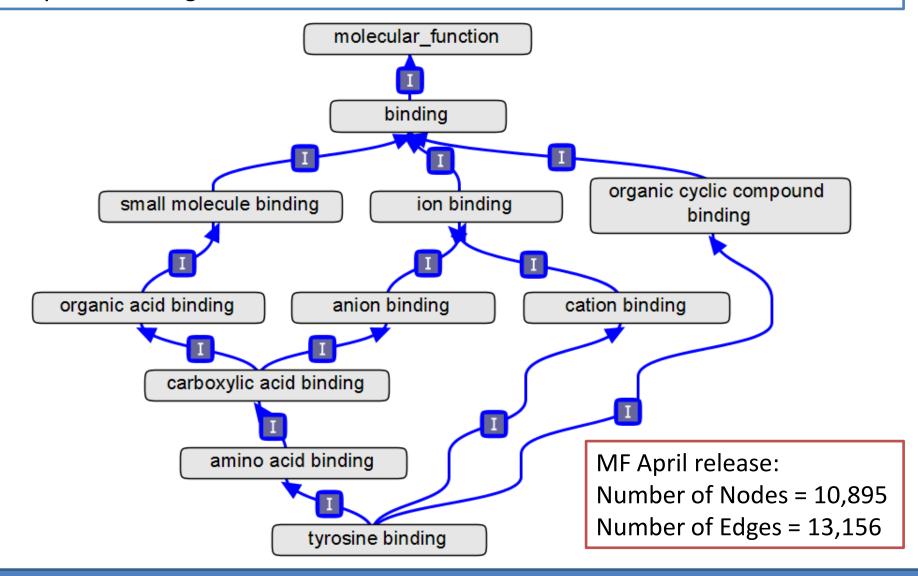
Link: <u>http://www.geneontology.org/</u>

What is: three structured ontologies that describe gene products in terms of their association with BP, MF and CC in a species-independent manner.

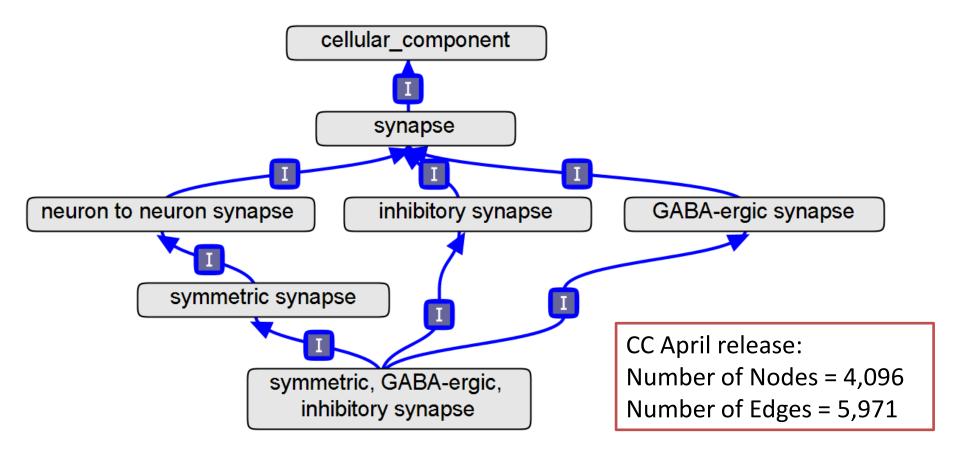
Biological Process (BP) describes a collection of events carried out by one or more molecular functions (lipid metabolic process, Krebs acid cycle, antibiotic response).



Molecular function (MF) describes activities that occur at molecular level, such as catalytic or binding activities.



Cellular component (CC) ontology describes locations, at the levels of subcellular structures or macromolecular complexes, in which a specific gene product is located (e.g. nucleus, nuclear inner membrane, ribosome, synapse).



Ontologies provide predefined taxonomies for solving several relevant computational biology problems as:

- Protein Function prediction (GO);
- Prediction of human gene abnormal phenotype associations (HP);
- Prediction of gene disease associations (DO);

In silico methods unlike *in vitro* methods are not costly in time and in money and can support the molecular biologist in solving several bio-medical problem:

- understanding the role of a protein in a BP;
- <u>annotating a new gene/protein at high level of accuracy;</u>
- solving a functional genomics problem;

AFP: complex prediction problem characterized by several issues

- **Data Preparation**: construction, selection and normalization of the input data are complex and time-consuming. *Data preparation is relevant as algorithm design*;
- Data-Fusion methods: integration of multiple heterogeneous sources of data;
- <u>Unbalanced classification</u>: low number of positive and large number of negative examples;
- Labels at different level of reliability: each annotation is labeled with an *evidence* code that indicates how the annotation to a particular term is supported:
 - IPI/IGI: Inferred from Physical/Genetic Interaction (Experimental Evidence);
 - ISS: Inferred from Sequence Similarity (Computational Analysis Evidence)
 - TAS: Traceable Author Statement (annotation made on the basis of a statement made by the authors in the reference cited)
 - ... and much more. Full set of available evidence codes at <u>GO website</u>;
- <u>Multi-class and multi-label</u>: thousand functional classes and multiple annotations for each gene/protein;
- **<u>Structured multi-label classification</u>**: terms are structured in a hierarchy ;

AFP: complex prediction problem characterized by several issues

- **Data Preparation**: construction, selection and normalization of the input data are complex and time-consuming. *Data preparation is relevant as algorithm design*;
- Data-Fusion methods: integration of multiple heterogeneous sources of data;
- Unbalanced classification: positive examples usually largely lower than negatives;

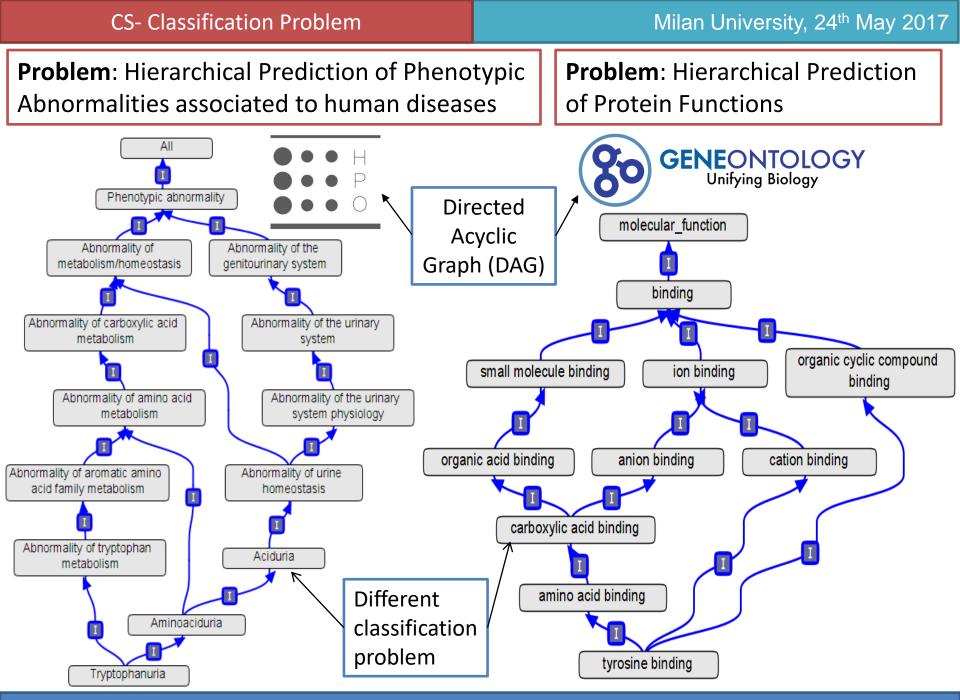
Can we design computational methods able to exploit the *e* hierarchical relationships between ontology terms to provide biologically consistent predictions?

TAS: Traceable Author Statement Vannotation made on the basis of a statement made by the authors in the statement codes at <u>GO website</u>;
... and much more. Full set of availation are codes at <u>GO website</u>;

• Multi-class and multi-label: thousand c annotations for each gene/protein;

nctional classes and multiple

• Structured multi-label classification: hierarchical relationship between classes;



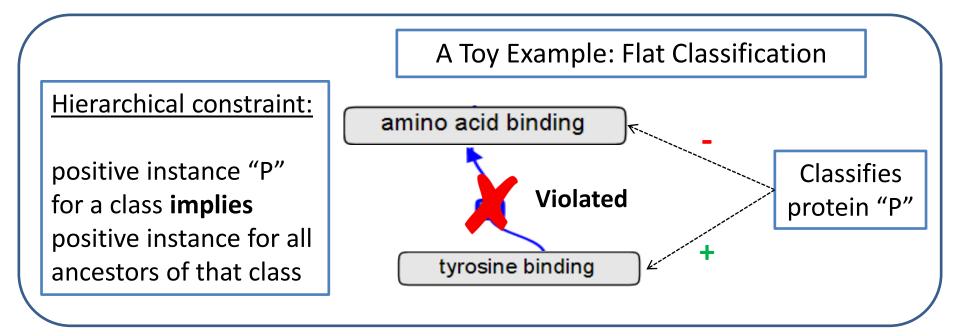
Flat Classifier: predict each class separately

Advantage: simplicity \rightarrow makes prediction just for one class/term

• a priori loss of information

Drawbacks: -

• neglect structural information between classes

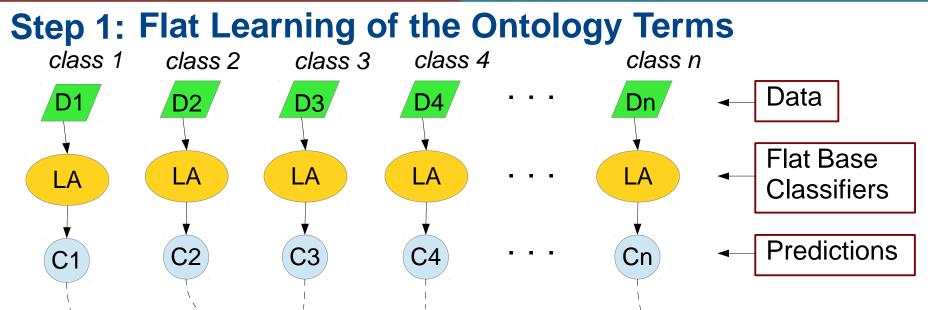


Hierarchy-aware approaches proposed in literature:

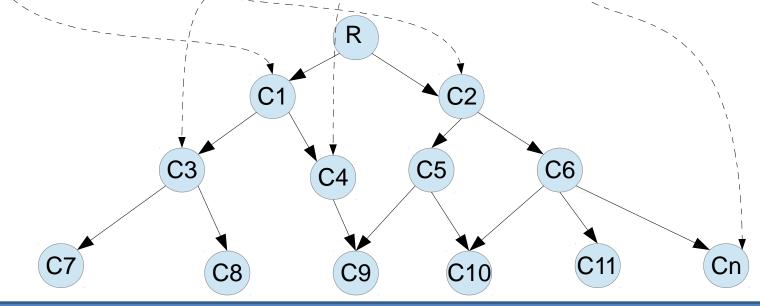
• Kernel-based structured output methods (Sokolov and Benhur 2010, Kahanda et al. 2015);

• Hierarchical Ensemble Methods (Silla et al. 2011, Valentini 2014);

CS- Hierarchical Ensemble Method



Step 2: Flat Predictions are Hierarchical Combined

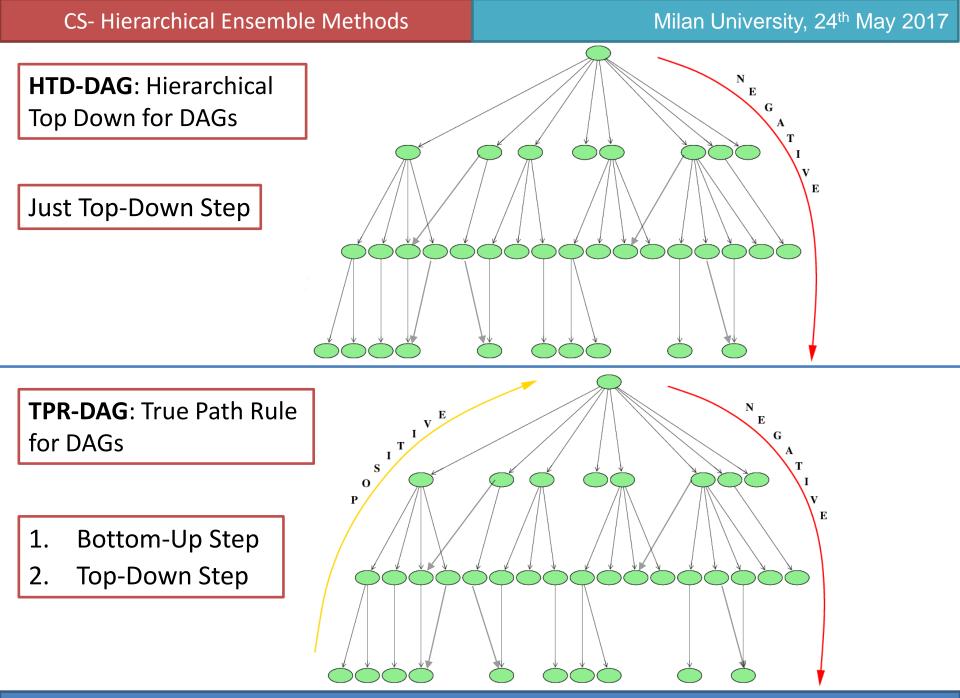


HEM for Structured Prediction in Computational Biology

M. Notaro

State-of-the-art Hierarchical ensemble methods

- Most ensembles are conceived for tree-structured taxonomies (Valentini 2011, Cesa-Bianchi et al. 2012, Paes et al. 2012, Hernandez et al. 2013);
- Only a few for DAG-structured taxonomies (Obozinski et al. 2008, Schietgat et al. 2010);
- With DAG-structured taxonomies it is difficult to achieve results comparable with flat methods (*Obozinski et al. 2008*);
- DAGs are more complex than trees:
 - more parents;
 - more edges;
 - multiple paths;
 - nodes may belong to multiple levels;

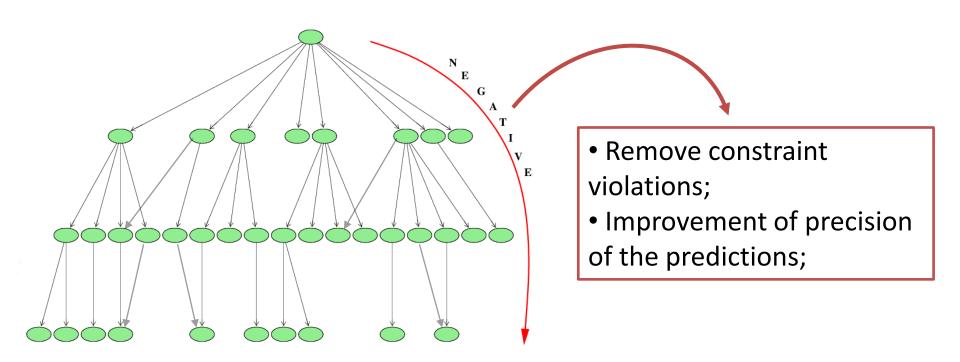


HEM for Structured Prediction in Computational Biology

M. Notaro

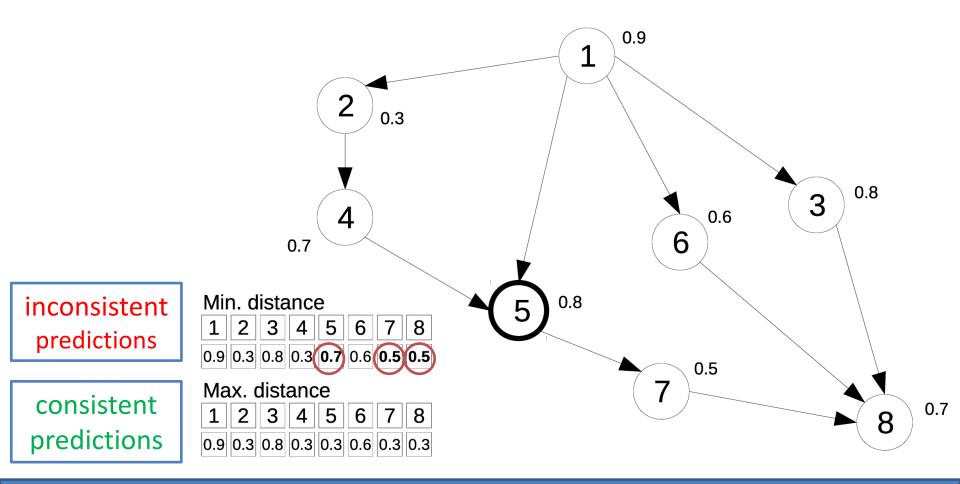
HTD-DAG is a two-step learning strategy:

- 1) Flat learning phase: a base learner learns a specific class on a perterm basis (a set of independent classification problem);
- 2) **Top-Down step**: traversing the DAG by a per-level top-down visit to propagate the *negative predictions* towards the bottom of the hierarchy



To preserve the consistency of the predictions the levels must be defined according to the maximum distance from the root :

$$\boldsymbol{y}$$
 is consistent $\iff \forall i \in V, j \in par(i) \Rightarrow y_j \geq y_i$



Input: $-G = \langle V, E \rangle$ - $\hat{\boldsymbol{y}} = \langle \hat{y}_1, \hat{y}_2, \dots, \hat{y}_{|V|} \rangle$ (flat predictions) begin algorithm 01:A. dist := ComputeMaxDist (G, root(G))02:B. Per-level top-down visit of G: 03: $\bar{y}_{root(G)} := \hat{y}_{root(G)}$ 04: for each d from 1 to ξ do 05: $N_d := \{i | dist(i) = d\}$ 06:for each $i \in N_d$ do 07: $x := \min_{j \in par(i)} \bar{y}_j$ 08:if $(x < \hat{y}_i)$ 09: $\bar{y}_i := x$ 10: else 11: $\bar{y}_i := \hat{y}_i$ 12:end for 13:end for end algorithm Output: - $\bar{y} = \langle \bar{y}_1, \bar{y}_2, \dots, \bar{y}_{|V|} \rangle$

Max.Dist.: Bellman-Ford or Topological sort algorithm

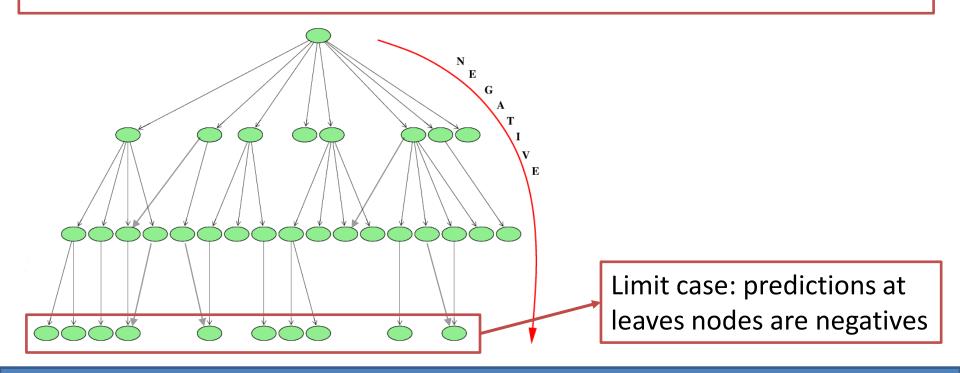
HTD: the nodes are processed by level in an increasing order and the HTD ensemble predictions are returned

HTD-DAG Computational Complexity: $\mathcal{O}(|V|+|E|)$

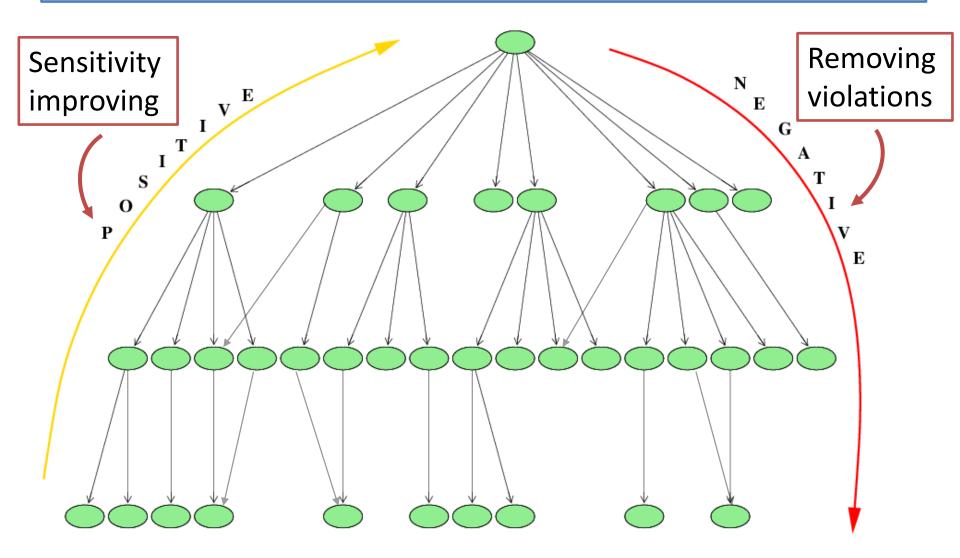
HTD-DAG:

Flat scores \hat{y}_i are hierarchically corrected to \bar{y}_i according to this simple rule:

$$\bar{y}_i := \begin{cases} \hat{y}_i & \text{if } i \in root(G) \\ \min_{j \in par(i)} \bar{y}_j & \text{if } \min_{j \in par(i)} \bar{y}_j < \hat{y}_i \\ \hat{y}_i & \text{otherwise} \end{cases}$$



TPR ensemble for DAGs: double flow of information



In the Bottom-Up Step the ensemble decision is modified in according to this simple rule:

$$\bar{y}_i := \frac{1}{1+|\phi_i|} (\hat{y}_i + \sum_{j \in \phi_i} \bar{y}_j)$$
 1)

Different strategy can be used to define the positive ϕ_i children of class *i*:

A) Adaptive Threshold Strategy: maximize \mathcal{M} on training data by internal cv

 $\phi_i := \{ j \in child(i) | \bar{y}_j > t_j^*, t_j^* = \arg\max_t \mathcal{M}(j, t) \}$

B) Threshold Free Strategy: positive nodes those that achieve a score higher than that of their parents

$$\phi_i := \{ j \in child(i) | \bar{y}_j > \hat{y}_i \}$$

TPR-DAG is a family of algorithms

2) Weighted TPR: $w \in [0,1]$ to balance the contribution between node *i* and that of its 'positive' children

$$\bar{y}_i := w\hat{y}_i + \frac{(1-w)}{|\phi_i|} \sum_{j \in \phi_i} \bar{y}_j$$

3) Descendants TPR: to enhance the contribution of the most specific nodes we can consider the descendants instead of children

$$\bar{y}_i := \frac{1}{1+|\Delta_i|} (\hat{y}_i + \sum_{j \in \Delta_i} \bar{y}_j) \qquad \Delta_i = \{j \in desc(i) | \bar{y}_j > t_j\}$$

4) Descendants-TAU: $\tau \in [0,1]$ to balance the contribution between $\phi_i \in \delta_i$

$$\bar{y}_i \coloneqq \frac{\tau}{1+|\phi_i|} (\hat{y}_i + \sum_{j \in \phi_i} \bar{y}_j) + \frac{1-\tau}{1+|\delta_i|} (\hat{y}_i + \sum_{j \in \delta_i} \bar{y}_j) \quad \delta_i = \Delta_i \setminus \phi_i$$

CS-TPR-DAG pseudo-code

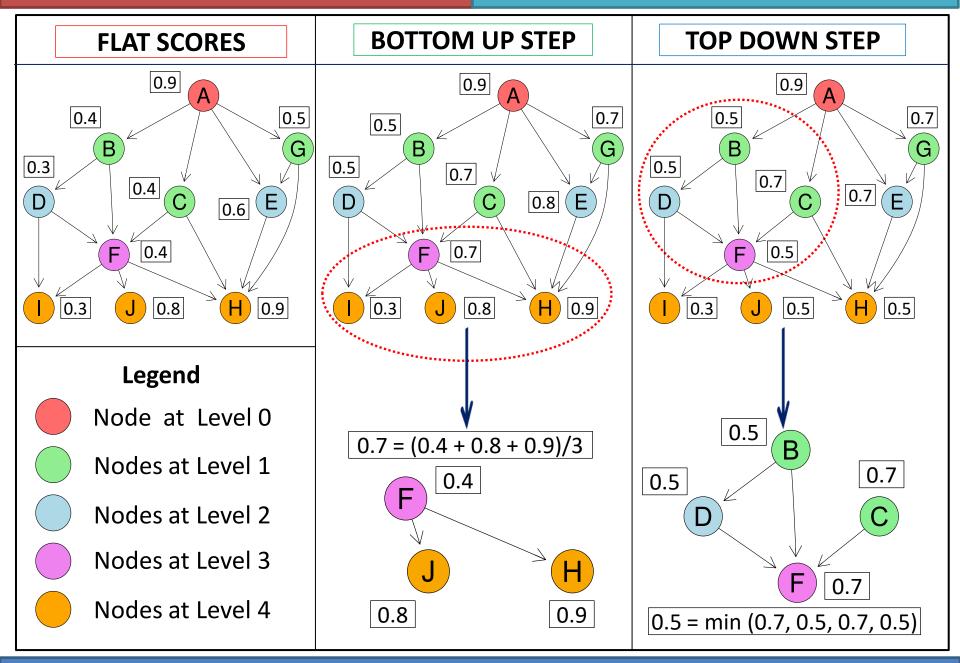
ſ	Input:							
	- $G = \langle V, E \rangle$							
	- $V = \{1, 2, \dots, V \}$							
	$- \hat{y} = \langle \hat{y}_1, \hat{y}_2, \dots, \hat{y}_{ V } \rangle, \hat{y}_i \in [0, 1]$							
	begin algorithm							
	01: A. Compute $\forall i \in V$ the max distance from $root(G)$:							
	02: $E' := \{e' e \in E, e' = -e\}$							
	03: $G' := \langle V, E' \rangle$							
	04: $dist := \text{Bellman}.\text{Ford}(G', root(G'))$							
	05:	05: B. Per-level bottom-up visit of G :						
	06:	06: for each $d \operatorname{from} \max(dist)$ to 0 do						
	07:	07: $N_d := \{i dist(i) = d\}$						
	08:	$08:$ for each $i\in N_d$ do						
	09:	Select the set ϕ_i of "positive" children						
	10:	$\bar{y}_i := \frac{1}{1+ \phi_i } (\hat{y}_i + \sum_{j \in \phi_i} \bar{y}_j)$						
	11:	end for						
	12: end for							
	13: C. Per-level top-down visit of G :							
	14: $\hat{\boldsymbol{y}} := \bar{\boldsymbol{y}}$							
	15: for each d from 1 to $\max(dist)$ do							
	16: $N_d := \{i dist(i) = d\}$							
	17: for each $i \in N_d$ do							
	18: $x := \min_{j \in par(i)} \bar{y}_j$							
	19: if $(x < \hat{y}_i)$							
	$20: \qquad \bar{y}_i := x$							
	21: else							
	22: $\bar{y}_i := \hat{y}_i$							
	23:	23: end for						
	24:	24: end for						
	end algorithm							
	Output:							
	$ $ - $ar{oldsymbol{y}}=$							

Propagation of the positive predictions towards the top of the hierarchy in order to enhance the sensitivity of the predictions

TPR-DAG scales linearly with the number of classes (since the graph is sparse)

CS- Operating mode of the TPR: toy example

Milan University, 24th May 2017



HEM for Structured Prediction in Computational Biology

M. Notaro

PG: 27

HTD-DAG provides always biologically consistent predictions:

Theorem 1. Given a DAG $G = \langle V, E \rangle$, a level function ψ that assigns to each node its maximum path length from the root and the set of HTD-DAG flat predictions $\hat{\boldsymbol{y}} = \langle \hat{y}_1, \hat{y}_2, \dots, \hat{y}_{|V|} \rangle$, the top-down hierarchical correction of the HTD-DAG algorithm assures that the set of ensemble predictions $\bar{\boldsymbol{y}} = \langle \bar{y}_1, \bar{y}_2, \dots, \bar{y}_{|V|} \rangle$ satisfies the following property:

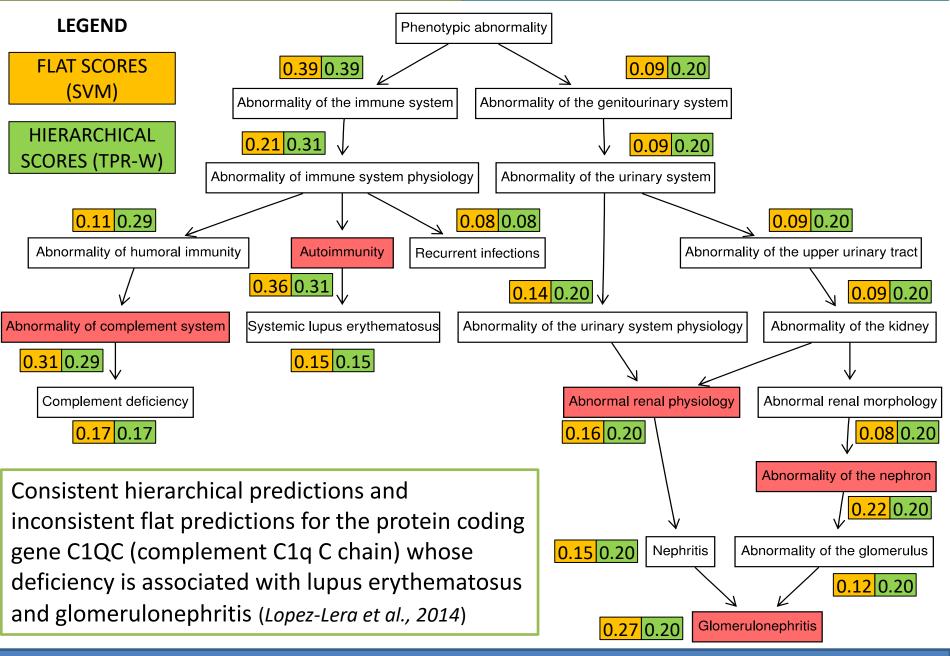
 $\forall i \in V, \ j \in par(i) \Rightarrow \bar{y}_j \ge \bar{y}_i$

TPR-DAG provides always biologically consistent predictions:

Theorem 2. Given a DAG $G = \langle V, E \rangle$, a level function ψ that assigns to each node its maximum path length from the root, a set of predictions $\tilde{\boldsymbol{y}} = \langle \tilde{y}_1, \tilde{y}_2, \ldots, \tilde{y}_{|V|} \rangle$ generated by the bottom-up step of the TPR algorithm for each class associated with its corresponding node $i \in \{1, \ldots, |V|\}$, the top-down step of the TPR algorithm assures that for the set of ensemble predictions $\bar{\boldsymbol{y}} = \langle \bar{y}_1, \bar{y}_2, \ldots, \bar{y}_{|V|} \rangle$ the following property holds:

 $\forall i \in V, \ j \in par(i) \Rightarrow \bar{y}_j \ge \bar{y}_i$

BIO- Consistency of Predictions: Example

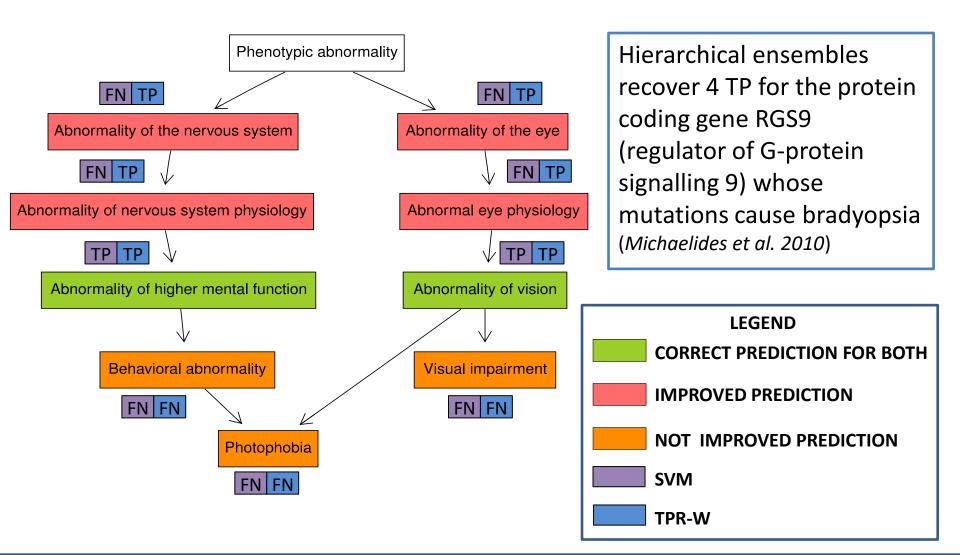


HEM for Structured Prediction in Computational Biology

M. Notaro

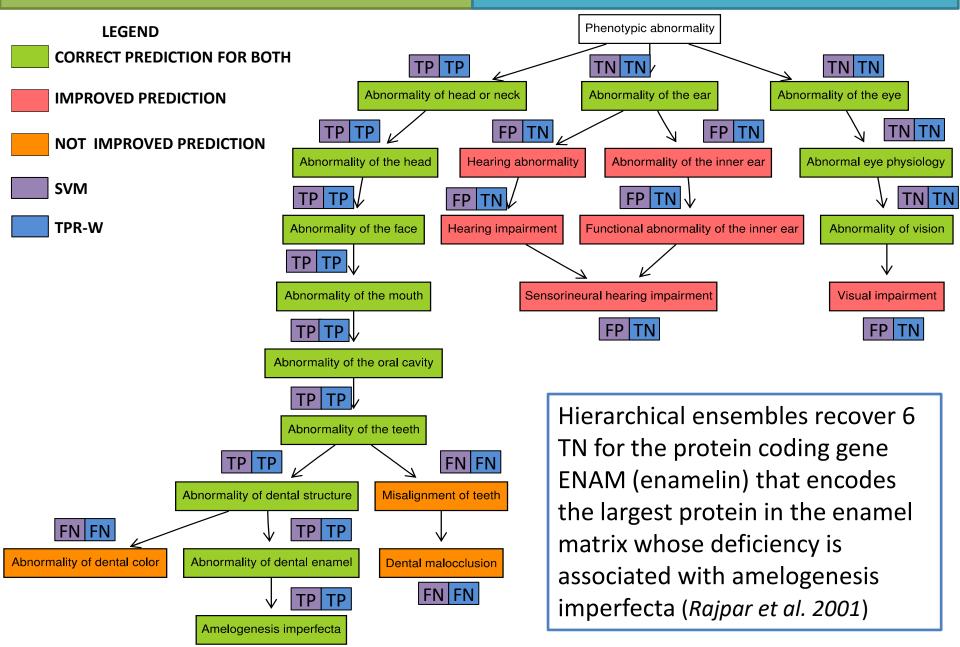
PG: 29

Hierarchical ensemble methods can improve flat predictions by reducing the number of FN and FP.



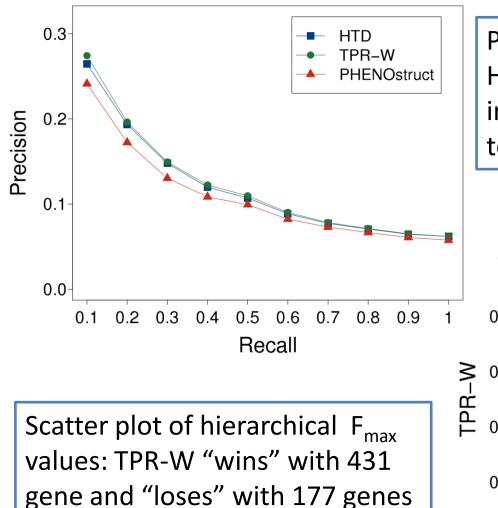
BIO- Correctness of Predictions

Milan University, 24th May 2017

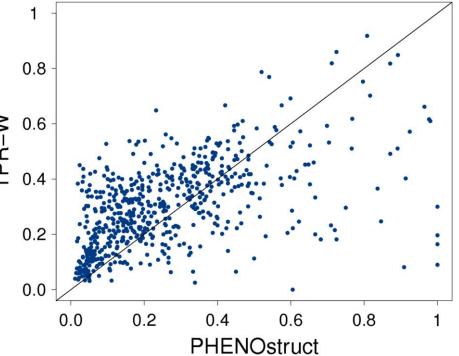


How is the behaviour of our ensemble methods in a state-of-theart scenario?

- 1. Comparison with PHENOstruct: a state-of-the-art joint-kernel structured output approach (Kahanda et. al 2015)
- Assess the capacity to predict novel HPO annotations for human genes: we used the annotation of an old HPO release (January 2014) to predict the newly annotated genes of a recent HPO release (April 2016).
 In other words we applied a classical *hold-out* procedure between two different HPO releases.



Precision-Recall curves across 2444 HPO terms: HEMs significantly improve PHENOstruct in according to Wilcoxon Sum Rank test

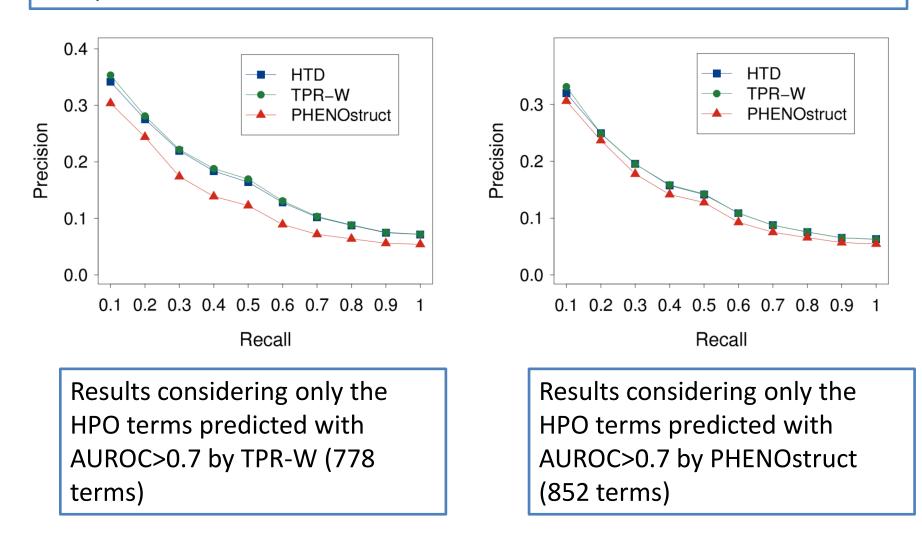


HEM for Structured Prediction in Computational Biology

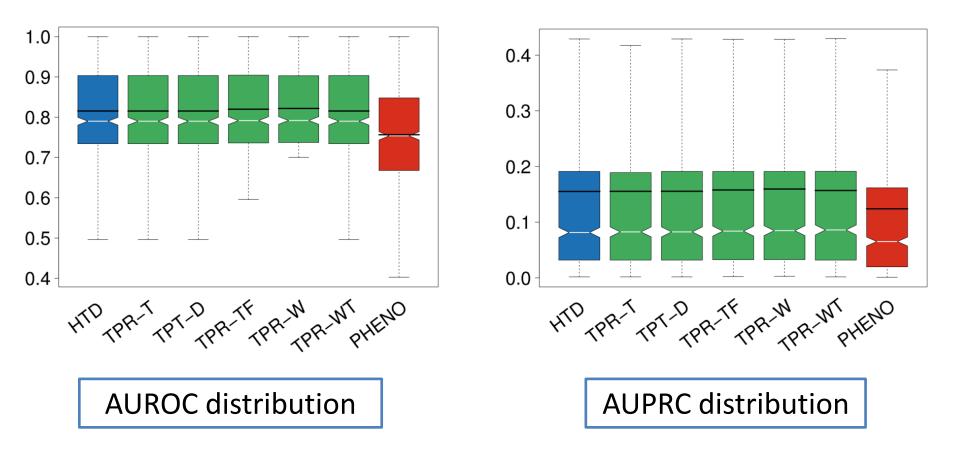
(Tot. genes test set: 608)

CS- Experimental Results -2

Precision-Recall curves of the newly annotated genes considering only the best predicted terms: AUROC > 0.7



Distribution of AUROC and AUPRC values across HPO terms between our ensemble methods and PHENOstruct



List of **novel gene-abnormal phenotype associations** predicted by our HEM and confirmed in the HPO release of March 2017 and in the most recent literature

Gene Symbol	HPO Term	AUROC	Depth	Distance from Leaves	Evidence			
XRCC2	Clubbing of Toes	1.000	9	0	HPO March 2017 Release			
LIPE	Insulin-Resistant Diabetes Mellitus	0.9934	6	0	HPO March 2017 Release			
IGF2	Neoplasm of the Adrenal Gland	0.9781	5	0	HPO March 2017 Release			
ECHS1	Abnormality of Fatty-Acid Metabolism	0.9753	4	0	Chika et al. 2015			
CFB	Systemic Lupus Erythematosus	0.9967	5	0	Grossman et al. 2016			
TGFB R3	Emphysema	0.9785	5	0	Hersh et al. 2009			
BARD1	Nephroblastoma aka Wilms Tumor	0.9615	8	0	Fu et al. 2017			
MSH3	Breast Carcinoma	0.9723	5	0	Miao et al. 2015			
CAD	Abnormality of Pyrimidine Metabolism	0.9951	4	0	Bobby et al. 2015			
COX10	Abnormal Mitochondria in Muscle Tissue	0.9967	6	0	Pitceathly et al. 2013			

Since for about half of Mendelian disease no causative genes are know (*Chong et.al 2015*), our ensemble methods may contribute to the discovery such genes and to unveil the full spectrum of phenotypes associated with them

- Genome-wide and ontology-wide experimental results show that our hierarchical ensemble method are competitive with PHENOStruct;
- Computational time significantly lower than state-of-the-art joint-kernel structured output methods (training + test of hold-out):
 - HTD: <u>12 minutes;</u>
 - TPR-W: <u>3 hours (tuning of w parameter by 5-fold-cross-validation);</u>
 - PHENOstruct: <u>18 hours;</u>

Using an Intel Xeon CPU E5-2630 2.6Hz with 128 GB of RAM

HTD-DAG and TPR-DAG:

- a) scale linearly with number of the class;
- b) can be applied to big data;
- c) provide biologically consistent predictions;
- d) improve upon flat predictions;

- 1. In principle the HEM can significantly improve any flat prediction independently of which flat approach we used: I plan to do more experiments with a large set of base learners (GO ontology and in multi-species environment)
- 2. Top-Down step: instead of HTD strategy → Isotonic Regression

Input: - $G = \langle V, E \rangle$ - $V = \{1, 2, ..., |V|\}$ - $\hat{y} = \langle \hat{y}_1, \hat{y}_2, ..., \hat{y}_{|V|} \rangle$, $\hat{y}_i \in [0, 1]$ begin algorithm 01: A. Isotonic correction: 02: $\bar{y} = \begin{cases} \min_{\bar{y}} \sum_{i \in V} (\hat{y}_i - \bar{y}_i)^2 \\ \forall i, j \in par(i) \Rightarrow \bar{y}_j \ge \bar{y}_i \end{cases}$ end algorithm Output: - $\bar{y} = \langle \bar{y}_1, \bar{y}_2, ..., \bar{y}_{|V|} \rangle$

select the closest
solution to flat
predictions in the sense
of the squared error
constraints are
maintained by
construction

- 3. TPR-DAG is a family of algorithm: I plan to design novel TPR-D variants
 - i. *linear decay* of weights with respect to the levels;
 - ii. *linear increment* of the weights (from bottom to top) in order to put more weight on predictions made on the most specific terms;
- Prediction of coding (mRNA) and non coding (lncRNA, miRNA) RNA interactions inferred from an integrated multi-ontology environment (GO, HPO, DO)
 - i. Hierarchical prediction of GO, DO, HPO terms: prediction of PCGs and NCGs performed across multi-ontology;
 - Discover novel interaction between ncRNA and PCGs using known and predicted annotation → will help us to better understand complex genetic diseases and cancer

(Joint Collaboration with Dept. of Computer Engineering of the University of Granada)

Acknowledgments

Giorgio Valentini

https://anacletolab.di.unimi.it

Peter N. Robinson

https://www.jax.org/

Leading the search for tomorrow's cures

Max Schubach

- I. M. Notaro, M. Schubach, P.N. Robinson and G. Valentini, *Prediction of Human Phenotype Ontology terms by means of Hierarchical Ensemble methods*, submitted to BMC Bioinformatics.
- II. M. Notaro, M. Frasca, M. Mesiti, M. Schubach, P.N. Robinson and G. Valentini, Ensembling Descendant Term Classifiers to Improve Gene – Abnormal Phenotype Predictions, submitted to Computational Intelligence methods for Bioinformatics and Biostatistics (CIBB 2017)
- III. P.N. Robinson, M.Frasca, S. Köhler, M. Notaro, M. Re, G. Valentini, A Hierarchical Ensemble Method for DAG-Structured Taxonomies, Lecture Notes in Computer Science, vol. 9132, pp. 15-26. Berlin: Springer, 2015.
- IV. G. Valentini, S. Köhler, M. Re, M. Notaro, P.N. Robinson, Prediction of Human Gene-Phenotype Associations by Exploiting the Hierarchical Structure of the Human Phenotype Ontology, Lecture Notes in Computer Science, vol. 9043, pp. 66–77. Cham: Springer, 2015.
- V. G. Valentini, Hierarchical Ensemble Methods for Protein Function Prediction, *ISRN Bioinformatics, vol. 2014 (2014).*
- VI. Kahanda, I., Funk, C., Verspoor, K., Ben-Hur, A.: PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources. F1000Research 4, 259 (2015).
- VII. Liang Cheng, Jie Sun, Wanying Xu, Lixiang Dong, Yang Hu, Meng Zhou, OAGH: an integrated resource for annotating human genes with multi-level ontologies, Scientific Reports, 6:34820, 2016

THANKS for YOUR ATTENTION!

ANY QUESTIONS?