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• Computational Biology: is the study of Biology using computational techniques. 
The main goal of a computational biologist is to make new insights about Biology 
and living system. Then Computational Biology is about Science.  
 
• Bioinformatics: is about the creation of new algorithms able to solve problems. 
The main goal of a bioinformatician is to build tools that can work on biological, 
medical and pharmaceutical data. Then Bioinformatics is about Computer 
Science.  

Bioinformatics   vs   Computational Biology  
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• Bio-Ontologies (e.g. HPO, GO, DO): what are and why are useful in a 
bio-medical contest; 
 
• State-of-the-art approaches ontology-based: Flat vs Hierarchy-
aware learning methods; 
 
• Proposed approaches: Hierarchical Ensemble Methods (HEM); 
 
• Behavior of HEM in a state-of-the-art scenarios: HEM vs joint-kernel 
structured output method; 
 
• Ongoing and Future Developments; 
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Concept 

Relationship 
between 
concepts 

An ontology is an high-level representation of a domain of 
knowledge that describes concepts and semantic relationships 
between them in a form of Directed Acyclic Graph (DAG). 



Milan University, 24th May 2017   BIO- Ontology 

HEM for Structured Prediction in Computational Biology   M. Notaro   PG:  4 

• Human Phenotype Ontology (HPO): provides a standardized categorization of 

the abnormalities associated to human diseases; 

• Disease Ontology (DO): describes the classification of human diseases organized 

by etiology;  

• Gene Ontology (GO): describes the function of genes and gene products; 

• Chemical Entities of Biological Interest (ChEBI): structured dictionary of 
molecular entities focused on ‘samall’ chemical compound; 

• MErged Disease voCabulary (MEDIC): map the flat list of OMIM disease terms 
into the hierarchical nature of the MeSH vocabulary; 

• Anatomical Ontologies : structured controlled vocabulary of the anatomy and 
development of the Zebrafish (ZFO), Xenopus (XAO), Mouse (MA); 

 

More at OBO Foundry (Open Biological and Biomedical Ontologies): 
http://www.obofoundry.org/   

OBO-EDIT (http://oboedit.org/): open source ontology editor 

http://www.obofoundry.org/
http://oboedit.org/


        : all relationships in the 
HPO are is-a relationships, i.e. 
simple class-subclass 
relationships 
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HPO Easter Release: 
Tot. Number of Nodes: 12,226 
Tot. Number of Edges: 16,044 

Human Phenotype Ontology 
(HPO) (Köhler et al., 2017) 

Link: http://human-phenotype-
ontology.github.io/ 

 

What is: standardized categorization of 
the phenotypic abnormalities 
associated to human diseases 

http://human-phenotype-ontology.github.io/
http://human-phenotype-ontology.github.io/
http://human-phenotype-ontology.github.io/
http://human-phenotype-ontology.github.io/
http://human-phenotype-ontology.github.io/
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Human Disease Ontology (DO) 
(Schriml et al., 2015) 

Link: http://disease-ontology.org/ 
 
What is: controlled classification of human 
diseases 

DO March Release: 
Tot. Number of Nodes: 8,240 
Tot. Number of Edges: 8,437 

        : “is-a” relationships are 
transitive, meaning that they are 
inherited up all paths to the root 

http://disease-ontology.org/
http://disease-ontology.org/
http://disease-ontology.org/
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Biological Process (BP) describes a collection of events carried out by one or more 
molecular functions (lipid metabolic process, Krebs acid cycle, antibiotic response). 

BP April release:  
Number of Nodes = 29,531  
Number of Edges = 56,880 

Gene Ontology (GO) (Ashburner et al., 2000) 
Link: http://www.geneontology.org/ 

What is: three structured ontologies that describe gene products in terms of their 
association with BP, MF and CC in a species-independent manner. 

http://www.geneontology.org/
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Molecular function (MF) describes activities that occur at molecular level, such as 
catalytic or binding activities. 

MF April release:  
Number of Nodes = 10,895  
Number of Edges = 13,156 
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Cellular component (CC) ontology describes locations, at the levels of subcellular 
structures or macromolecular complexes, in which a specific gene product is 
located (e.g. nucleus, nuclear inner membrane, ribosome, synapse). 

CC April release:  
Number of Nodes = 4,096  
Number of Edges = 5,971  
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Ontologies provide predefined taxonomies for solving several 
relevant computational biology problems as: 
• Protein Function prediction (GO); 
• Prediction of human gene – abnormal phenotype associations (HP); 
• Prediction of gene – disease associations (DO); 

In silico methods unlike in vitro methods are not costly in time and 
in money and can support the molecular biologist in solving several 
bio-medical problem: 
• understanding  the role of a protein in a BP; 
• annotating a new gene/protein at high level of accuracy; 
• solving a functional genomics problem;   

BIO- Annotation  CS- Classification 
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AFP: complex prediction problem characterized by several issues 

• Data Preparation: construction, selection and normalization of the input data are 
complex and time-consuming. Data preparation is relevant as algorithm design; 

• Data-Fusion methods:  integration of multiple heterogeneous sources of data; 

• Unbalanced classification: low number of positive and large number of negative 
examples; 

• Labels at different level of reliability: each annotation is labeled with an evidence 
code that indicates how the annotation to a particular term is supported: 

• IPI/IGI: Inferred from Physical/Genetic Interaction (Experimental Evidence); 
• ISS: Inferred from Sequence Similarity (Computational Analysis Evidence) 
• TAS: Traceable Author Statement (annotation made on the basis of a 
statement made by the authors in the reference cited) 
• … and much more. Full set of available evidence codes at GO website; 

• Multi-class and multi-label: thousand functional classes and multiple annotations 
for each gene/protein; 

• Structured multi-label classification: terms are structured in a hierarchy ; 

http://www.geneontology.org/page/guide-go-evidence-codes
http://www.geneontology.org/page/guide-go-evidence-codes
http://www.geneontology.org/page/guide-go-evidence-codes
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AFP: complex prediction problem characterized by several issues 

• Data Preparation: construction, selection and normalization of the input data are 
complex and time-consuming. Data preparation is relevant as algorithm design; 

• Data-Fusion methods:  integration of multiple heterogeneous sources of data; 

• Unbalanced classification: positive examples usually largely lower than negatives; 

• Labels at different level of reliability: each annotation is labeled with an evidence 
code that indicates how the annotation to a particular term is supported: 

• IPI/IGI: Inferred from Physical/Genetic Interaction (Experimental Evidence); 
• ISS: Inferred from Sequence Similarity (Computational Analysis Evidence) 
• TAS: Traceable Author Statement (annotation made on the basis of a 
statement made by the authors in the reference cited) 
• … and much more. Full set of available evidence codes at GO website; 

• Multi-class and multi-label: thousand of functional classes and multiple 
annotations for each gene/protein; 

• Structured multi-label classification: hierarchical relationship between classes; 

Can we design computational methods able to exploit the 
hierarchical relationships between ontology terms to provide 
biologically consistent predictions? 
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Problem: Hierarchical Prediction of Phenotypic 
Abnormalities associated to human diseases 

Problem: Hierarchical Prediction 
of Protein Functions 

Different 
classification 
problem 

Directed 
Acyclic 

Graph (DAG) 

CS- Classification Problem 
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Flat Classifier: predict each class separately 
 

Advantage: simplicity      makes prediction just for one class/term 
  
  
 
 

Drawbacks:  
 

Classifies 
protein “P” 

BIO- Example CS- Flat Methods 

•  a priori loss of information 
 
 
 

• neglect structural information between classes      

Violated 

+ 

- 
Hierarchical constraint: 
 
positive instance “P” 
for a class implies 
positive instance for all 
ancestors of that class 
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Hierarchy-aware approaches proposed in literature: 
 

• Kernel-based structured output methods (Sokolov and 

Benhur 2010, Kahanda et al. 2015); 
 

• Hierarchical Ensemble Methods (Silla et al. 2011, Valentini 

2014); 
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Step 1: 
  class 3 

D3 
. . . 

. . . LA LA LA LA LA 

. . . C2 C3 C4 Cn C1 

Step 2: Flat Predictions are Hierarchical Combined 

C1 C2 

C3 C5 C6 C4 

C7 C11 Cn C8 C9 C10 

Predictions  

Flat Base 
Classifiers 

Data 

 class 2 

D2 

  class 4 

D4 

 Flat Learning of the Ontology Terms 
 class 1 

D1 

  class n 

Dn 

R 
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• Most ensembles are conceived for tree-structured 
taxonomies (Valentini 2011, Cesa-Bianchi et al. 2012, Paes et al. 2012, Hernandez 

et al. 2013); 

• Only a few for DAG-structured taxonomies (Obozinski et al. 2008, 

Schietgat et al. 2010); 

• With DAG-structured taxonomies it is difficult to achieve 
results comparable with flat methods (Obozinski et al. 2008); 

• DAGs are more complex than trees: 
 more parents; 
 more edges; 
 multiple paths; 
 nodes may belong to multiple levels; 

State-of-the-art Hierarchical ensemble methods 
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HTD-DAG: Hierarchical 
Top Down for DAGs 

TPR-DAG: True Path Rule 
for DAGs 

Just Top-Down Step 

1. Bottom-Up Step 
 

2. Top-Down Step 
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HTD-DAG is a two-step learning strategy: 
1) Flat learning phase: a base learner learns a specific class on a per-

term basis (a set of independent classification problem); 
2) Top-Down step: traversing the DAG by a per-level top-down visit to 

propagate the negative predictions towards the bottom of the 
hierarchy 

• Remove constraint 
violations; 
• Improvement of precision 
of the predictions; 
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To preserve the consistency of the predictions the levels must be defined 
according to the maximum distance from the root :  
 
 

inconsistent 
predictions 

consistent 
predictions 
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HTD-DAG Computational Complexity: 
 
 

Max.Dist.: Bellman-Ford or 
Topological sort algorithm 

HTD: the nodes are processed by 
level in an increasing order and the 
HTD ensemble predictions are 
returned 
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HTD-DAG: 
Flat scores        are hierarchically corrected to        according to this simple 
rule: 
 
 
 
 
 

Limit case: predictions at 
leaves nodes are negatives 
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TPR ensemble for DAGs: double flow of information 

Removing 
violations 

Sensitivity  
improving  
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In the Bottom-Up Step the ensemble decision is modified in according to this 
simple rule:  

 

 

 

 

 

 

  

 

 

Different strategy can be used to define the positive        children of class i: 

A) Adaptive Threshold Strategy: maximize        on training data by internal cv         
 
 
 
 
 
 

B) Threshold Free Strategy: positive nodes those that achieve a score higher 
than that of their parents 
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1) 
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2) Weighted TPR: w ∈ [0,1] to balance the contribution between node i and that 
of its ‘positive’ children 

 
 
 
 
 
 
 
 

3) Descendants TPR: to enhance the contribution of the most specific nodes 
we can consider the descendants instead of children 

 
 
 
 
 
 
 
 
 

4) Descendants-TAU:       ∈ [0,1] to balance the contribution between        e           
 
 
 

 

TPR-DAG is a family of algorithms 
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Propagation of the positive 
predictions towards the top of 
the hierarchy in order to 
enhance the sensitivity of the 
predictions 

TPR-DAG scales linearly with 
the number of classes (since 
the graph is sparse) 
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0 

00 
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HTD-DAG provides always biologically consistent predictions: 
 
 
 
 
 
 

  1. 

TPR-DAG provides always biologically consistent predictions: 
 
 
 
 
 
 
 

  2. 
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Consistent hierarchical predictions and 
inconsistent flat predictions for the protein coding 
gene C1QC (complement C1q C chain) whose 
deficiency is associated with lupus erythematosus 

and glomerulonephritis (Lopez-Lera et al., 2014) 

HIERARCHICAL 
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FLAT SCORES 
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FN TP FN TP 

FN TP 

TP TP TP TP 

FN FN 

FN FN 

FN TP 

FN FN 

CORRECT PREDICTION FOR BOTH 

NOT  IMPROVED PREDICTION 

IMPROVED PREDICTION 

SVM 

TPR-W 

LEGEND 

Hierarchical ensembles 
recover 4 TP for the protein 
coding gene RGS9 
(regulator of G-protein 
signalling 9) whose 
mutations cause bradyopsia 
(Michaelides et al. 2010) 

Hierarchical ensemble methods can improve flat predictions by reducing the 
number of FN and FP. 
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FP TN 
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FP TN FP TN 
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TN TN 

FP TN FP TN 

CORRECT PREDICTION FOR BOTH 

NOT  IMPROVED PREDICTION 

IMPROVED PREDICTION 

SVM 

TPR-W 

LEGEND 

Hierarchical ensembles recover 6 
TN for the protein coding gene 
ENAM (enamelin) that encodes 
the largest protein in the enamel 
matrix whose deficiency is 
associated with amelogenesis 
imperfecta (Rajpar et al. 2001) 
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How is the behaviour of our ensemble methods in a state-of-the-
art scenario? 
 
1. Comparison with PHENOstruct: a state-of-the-art joint-kernel 

structured output approach (Kahanda et. al 2015) 

 
2. Assess the capacity to predict novel HPO annotations for 

human genes: we used the annotation of an old HPO release 
(January 2014) to predict the newly annotated genes of a 
recent HPO release (April 2016).   
In other words we applied a classical hold-out procedure 
between two different HPO releases. 
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Scatter plot of hierarchical  Fmax  
values: TPR-W “wins” with 431 
gene and “loses” with 177 genes 
(Tot. genes test set: 608) 

Precision-Recall curves across 2444 
HPO terms: HEMs significantly 
improve PHENOstruct in according 
to Wilcoxon Sum Rank test 
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Precision-Recall curves of the newly annotated genes considering only the 
best predicted terms: AUROC > 0.7  

Results considering only the 
HPO terms predicted with 
AUROC>0.7 by TPR-W (778 
terms) 

Results considering only the 
HPO terms predicted with 
AUROC>0.7 by PHENOstruct 
(852 terms) 
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Distribution of AUROC and AUPRC values across HPO terms 
between our ensemble methods and PHENOstruct 

AUROC distribution AUPRC distribution 
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Since for about half of Mendelian disease no causative genes are know 
(Chong et.al 2015), our ensemble methods may contribute to the discovery 
such genes and to unveil the full spectrum of phenotypes associated with 
them 

BIO- Predicted Genes 

List of novel gene-abnormal phenotype associations predicted by our HEM 
and confirmed in the HPO release of March 2017 and in the most recent 
literature 
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HTD-DAG and TPR-DAG: 
a) scale linearly with number of the class; 
b) can be applied to big data; 
c) provide biologically consistent predictions; 
d) improve upon flat predictions; 

• Genome-wide and ontology-wide experimental results show that our 
hierarchical ensemble method are competitive with PHENOStruct; 

• Computational time significantly lower than state-of-the-art joint-kernel 
structured output methods (training + test of hold-out):  

• HTD: 12 minutes; 
• TPR-W: 3 hours (tuning of w parameter by 5-fold-cross-validation); 
• PHENOstruct: 18 hours; 

Using an Intel Xeon CPU E5-2630 2.6Hz with 128 GB of RAM 
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1. In principle the HEM can significantly improve any flat prediction 
independently of which flat approach we used: I plan to do more 
experiments with a large set of base learners (GO ontology and in 
multi-species environment) 
 

2. Top-Down step: instead of HTD strategy           Isotonic Regression 

 

 

 

 

 

 

 

 

 

• select the closest 
solution to flat 
predictions in the sense 
of the squared error 
• constraints are 
maintained by 
construction 
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3. TPR-DAG is a family of algorithm: I plan to design novel TPR-D variants 
i.  linear decay of weights with respect to the levels; 
ii.  linear increment of the weights (from bottom to top) in order to 

put more weight on predictions made on the most specific terms; 

4. Prediction of coding (mRNA) and non coding (lncRNA, miRNA) RNA 
interactions inferred from an integrated multi-ontology environment 
(GO, HPO, DO) 

i. Hierarchical prediction of GO, DO, HPO terms: prediction of PCGs 
and NCGs performed across multi-ontology; 

ii. Discover novel interaction between ncRNA and PCGs using known 
and predicted annotation        will help us to better understand 
complex genetic diseases and cancer 

 
 
 

(Joint Collaboration with Dept. of Computer Engineering of the University of 
 Granada) 
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