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Hopfield Networks

● A paper by John Hopfield in 1982 was the catalyst 
in attracting the attention of many physicists to 
"Neural Networks".

● His aim:
How is one to understand  the incredible 
effectiveness of a brain in tasks such as 
recognizing a particular face in a complex 
scene?

● Like all computers,  a brain is a dynamical 
system that carries out its computations by 
the change of its  'state' with time.



Hebb's rule

● A Hopfield network (HN) is based on the Hebbian rule

– Hebb’s ruleHebb’s rule states that if neuron i is near enough to excite  states that if neuron i is near enough to excite 
neuron j and repeatedly participates in its activation, the neuron j and repeatedly participates in its activation, the 
synaptic connection between these two neurons is synaptic connection between these two neurons is 
strengthened and neuron j becomes more sensitive to strengthened and neuron j becomes more sensitive to 
stimuli from neuron i.stimuli from neuron i.

– If two neurons on either side of a connection  are activated If two neurons on either side of a connection  are activated 
synchronously, then the weight of that connection is synchronously, then the weight of that connection is 
increasedincreased

– If two neurons on either side of a connection are activated If two neurons on either side of a connection are activated 
asynchronously, then the weight of that connection is asynchronously, then the weight of that connection is 
decreaseddecreased      



Neuron



Hopfield Networks
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- Dynamic model in which at each 
time t each neuron i has an 
activation value (state) x

i
 ∈{1, 0 (-1)} 

and activation threshold i⋅



Update rule

● The state of the network x(t)=(x
1
(t), x

2
(t), …, x

n
(t)) at each 

time t is the vector of the neuron activation values at time t.
● The neurons are subject to the asynchronous rule for 

updating one neuron at a time:   

Pick a unit i at random and set

If the input at neuron  i  is greater than i, turn it on  

otherwise turn it off  

● Moreover, Hopfield assumes symmetric weights: w
ij 
= w

ji

x i(t+ 1)=Sgn(∑
j=1

i−1

w ij x j(t+ 1)+ ∑
k =i+ 1

n

w ik x k (t)−θi)



Energy function

● Hopfield defined the state function called “energy 
function”:

               E(x) = - ½ ij xixjwij + i xii

● If we pick unit i and the firing rule (previous slide) does 
not change its state xi, it will not change E
 

● Theorem: the dynamics from the initial state follows a 
trajectory to an equilibrium state, which is (local) 
minimum of the energy function  



Convergence

● xi: 0 to 1 transition

– It means xi initially equals 0, and jwijxj  i

– The corresponding change in E is 

E = (1-0) (- ½ j (wijxj + wjixj) + i )

       = - (j wijxj - i) (by symmetry)

         0  (since the neuron passed from state 0 to state 1) 



Convergence

● xi: 1 to 0 transition 

– It means xi initially equals 1, and jwijxj  i

– The corresponding change in E is 

E = (0-1) (-½ j (wijxj + wjixj)+ i )= (j wijxj - i)    0
On every updating we have E  0
  

– Hence the dynamics of the net tends to move E toward a 
minimum

– We stress that there may be different such states — they 
are local minima.  Global minimization is not 
guaranteed.  



Convergence

● The symmetry condition wij = wji is crucial for E   0

● Without this condition ½  j(wij + wji) sj - i cannot be 
reduced to ( j wijsj - i),  so that Hopfield's updating 
rule cannot be guaranteed to yield a passage to 
energy minimum

– It might instead yield a limit cycle



HN as local optimizer

● To design Hopfield nets to solve optimization 
problems:  

– choose weights for the network so that E is a 
measure of the overall constraint violation.  

– A famous example is the traveling salesman 
problem.
● [HBTNN articles:Neural Optimization; Constrained Optimization and the 

Elastic Net. See also TMB2 Section 8.2.]



Gene Function Prediction

Genome sequencing
● Main problem: understanding biological

functions of new genes

● Taxonomy: hierarchical definition of gene
properties

–     Gene Ontology(GO), FunCat

● Annotation: established involvement of a gene
in the biological mechanism represented by a
functional class (term)

– Classes are often highly unbalanced



Gene Function Prediction 
Problem

Input:
● V  genes

V
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Input:
● V  genes

● W  symmetric matrix

● S, U bipartition of V
– S labeled genes 

– U unlabeled genes

● Sp, Sn bipartition of S
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Input:
● V  genes

● W  symmetric matrix

● S, U bipartition of V
– S labeled genes 

– U unlabeled genes

● Sp, Sn bipartition of S

Output:
● Up,Un bipartition of U

V

S

U

Gene Function Prediction 
Problem



Data bank for annotations: the 
Gene Ontology 

(http://www.geneontology.org/)

Downloading 
annotations



Downloading annotations for S.cerevisiae organism (yeast)

Opening the file

Data bank for annotations: the 
Gene Ontology 

(http://www.geneontology.org/)



Data bank for gene-gene 
interactions/similarities

- BioGRID : protein-protein interactions

- Pfam, InterPro :   protein domain data

- STRING : interaction networks including several source of 
                   Information about genes and their products

Etc.



Machine learning methods 
for GFP

● Inductive methods
– Learn  a model to infer functions for all genes 

● Support Vector Machines [Lanckriet et al 2004]

● Transductive methods
– Infer functional predictions only for genes in test  set

● MRF [Deng et al 2002],

● Neural  networks [Karaoz et al 2003 ], 

● Functional Linkage Networks  [Marcotte 1999]

● Label propagation [Zhu et al 2003, Mostafavi 2008-2010].



Gene Annotation using 
Integrated Networks (GAIN)

● Karaoz et al. (2003) 

● Discrete Hopfield network  

Genes     Neurons

Similarity                            Weights

                                     (thresholds = 0)

Bipartitions                        Initial state

                                                          Dynamics

Inference                          Equilibrium state



GAIN

● Initial state for each neuron i : 

                    x
i 
(0) =   1, -1,      0 

positive label     negative label

?, Unlabeled

x i(t+ 1)=Sgn(∑
j=1

i−1

w ij x j(t+ 1)+ ∑
k =i+ 1

n

w ik x k (t))



● Energy function 

● Minimizing E means maximizing the weighted sum of 
consistent edges (i.e. connecting nodes at the same state)

● The equilibrium state x = (s, u) characterizes the bipartition 

of U
Up = {i  ∈ U | u

i
 = 1} 

Un = {i  ∈ U | u
i
 = -1}

E (x )=−
1
2
⋅∑

i=1

n

x i(∑
j=1

n

x j wij )

GAIN



● ”Same relevance” for positive and negative
examples

● Data imbalance not managed   

● GAIN tries to find a global minimum x of E
assuming that the initial state s of labeled nodes is 
a part of x,  i.e.      

  x = (s, u)             

● In many cases s is not a part of a minimum
● No coherence with the prior knowledge  

Drawbacks of GAIN



COSNet [1,2]

GAIN:
● Positive labels     :=     1
● Nagative labels   :=     -1
● Thresholds          :=     0

COSNet: 
● Positive labels     :=     sinα              parameters to
● Nagative labels   :=     -cosα               be learned!
● Thresholds          :=     γ

Parametrized  DHN: < W, γ, α>



●   H = < W, γ, α>          DHN on nodes in V

–   W connection matrix

–   γ = (γ
1
 , γ

2
 , ..., γ

n
) vector of activation thresholds

–   α ∈ ] 0, π/2 [ , neuron values are sinα, -cosα  

●   In GAIN 
–   γ = 0 

–   α = π/4 

COSNet 



Sub Network

Two Subnetworks: H|
S,U

p           and             H|
U,S

p 

S U
Labeled         Unlabeled

Deal with Data Imbalance and 
prior knowledge ”coherence” 

Preserve prior knowledge 



Sub-network property

● Given

–   DHN H < W, γ, α> with neurons V 

–   S, U bipartition of V

–   Sp, Sn  bipartition of S 

–   Up, Un bipartition of U

It holds: if x = (s, u) is an energy global minimum H, 

    then u is an energy global minimum of H|
U,S

p 



● Having a part s of a minimum of energy of H, it's possible to 
discover the hidden part u  by minimizing the energy of H|

U,S 
p 

 

H

                                          u = ?s

H|
U,S 

p

                                          us

H

Sub-network property



Sketch of COSNet

● INPUT: W similarity matrix; S, U  bipartiton of V; Sp, Sn 

               bipartiton of S 

● OUTPUT: Up ,Un  bipartition of  U 

1.  Generate a temporary solution Up ,Un 

2.  Find the couple (α , γ ) such that the initial state of the
 network H|

S,U
p is as close as possible to an equilibrium state 

●  Extend the parameters (α , γ ) to the network H|
U,S

p 

3.  Run the network H|
U,S

p 



Step 1: generating a 
temporary solution

 p
s
 positive rate in S 

 p
u
 positive rate in US U

Sp 

Procedure:
●   Generate k according to binomial distribution B(|U|,      )
●   Up := k elements randomly chosen in U
●   Un := U \ Up 

∣S p
∣

∣S∣

FACT:
∣S p

∣

∣S∣
=argmax

x
Prob{ pu= x∣ps=

∣S p∣
∣S∣ }

Up=?



 Step2: finding the optimal 
parameters

        S                         Set of labeled points in R2 
                                                   Lp : positive points
                                                   Ln : negative points

                                 P
i
 ≡ (               ,                 )

AIM: ”optimal” separation of Lp from Ln by a straight line
             y = tanα x + q  according to the F-score criterion

i ∑
j∈S p

∪U p

wij ∑
j∈S n

∪U n

wij

Label of P
i
 = label of i



F-score

TP := Positive predicted as positive 

FP := Negative predicted as positive

FN := Positive predicted as negative 

● F-score := 2TP / (2TP + FN + FP)



 γ = -q cosα

 

 we chose the

 same γ for each

 neuron

y = tanα + q

x

y

Fact: Fscore (opt) = 1             the corresponding state of
     H|

S,U
p   is   an   equilibrium

    point

 Step2: finding the optimal 
parameters



Data imbalance 
management

x

y

x

y

|Sp|<<|Sn|,    α > π/4

               |sinα|>|cosα| 

|Sp|>>|Sn|,    α < π/4

           |sinα|<|cosα| 

Constraint:
α ∈ ]0, π/2[



Step 3: finding the final 
solution   

● Dynamics of the sub-network H|
U,S

p with the
found parameters until fixed point u is reached

● Infer bipartition of U as follows:

● Up = {i  ∈ U | u
i
 = sinα}  

● Un = {i  ∈ U | u
i
 = -cosα}



Extending the number of 
parameters [3]

● In COSNet all neurons have the same activation 

values: in principle many types of neurons may be 

adopted

● We consider now neurons of two types:

Type 1: activation values {sinα1, -cosα1}, threshold 0

Type 2:  activation values {sinα2, -cosα2}, threshold 0



Set of parameters

● Parameters to be learned:
– Bipartition (G

1
, G

2
) of V, where

● G
1
 set of neurons of type 1

● G2 set of neurons of type 2

The bipartition is described by b ∈ {0, 1}|V|, the characteristic
vector of G

1
 

NOTE: this partition may be passed as input to the model,
         hence in such case we do not learn the parameter b

– α1  and α2 



Neuron internal energy

● Network of labeled neurons (subset S)

                                                   Internal energy A
i
:

                                                   A
i
 := f

i
(α1, α2,b

s) 

                      non linear function
i

(+, type1) (+, type2)

(-, type2)

(-, type1)



Learning:  F-score

● Fixed α1 , α2  and bs :

– TP(α1 , α2, bs) := {i | A
i
 > 0 , i positive }

– FN(α1 , α2, bs) := {i | A
i
 ≤ 0 , i positive }

– FP(α1 , α2, bs) := {i | A
i
 > 0 , i negative }

● Fscore(α1 , α2, bs) =

● FACT: Fscore(α1 , α2, bs) = 1 sse Network of labeled

neurons with parameters (α1 , α2, bs ) is in an equilibrium 

state

2TP
2TP+ FP+ FN



Learning parameters

● Our Problem

argmax α
1
 , α2, bs  Fscore(α1 , α2, bs)

● Strategy: continuous parameters are optimized
 separately by the discrete ones

– Fixed bs ∈ {0, 1}|S|, compute  

α
1
 , α

2
 = argmaxα

1
 , α2

 Fscore(α1 , α2, bs)

– Fixed α1 = α1
, α2 = α

2
, optimize bs by local search 

procedure on hypercube {0,1}|S| 



Extending parameters to 
Subnetwork H

U

● Extending the bipartition  type 1 and type 2 to U

– Learning two bivariate normal distributions N
2
(

1
,

1
),                  N

2
(

2
,

2
)

where, for j = 1, 2, j and j  sample mean vector and  
covariance matrix neurons of type j 

– Each sample Pr , with r  ∈ S, is a point in the plane given by the 
sum of  positive and negative connections in its lebeled 
neighborhood 

● If k ∈  U, we set bk = 1 iif  the probability of Pk , according to

 N
2
(

1
,

1 
), is greater than the probability of Pk , according to N

2
(

2
,

2
)



Inferring the solution

● After extended the bipartition type 1 and type 2 to U

– Run the subnetwork of the unlabeled nodes with the learned
 parameters until the equilibrium state u is reached 

● The equilibrium u characterizes the classification of U in
 positive Up and negative neurons Un:

Up = {i  ∈ U | u
i
 > 0} 

Un = {i  ∈ U | u
i
 ≤ 0}



More categories: HoMCat 
(Hopfield Multi-Category) [4]

● With m>1 categories we have m different couples of  activation 
values {sinαi , -cosαi}

● The partion in categories is given in input 

V
1 V

2

V
3 V

i Activation values 
{sinαi , -cosαi}

      Positive
      
      Negative



Homcat: neuron internal 
energy

● Network of labeled neurons (subset S)

                                                    Internal energy:

                                                    A
i
 := f

i
(α1, …, αm, γ, b) 

                                                     non linear function

Our Problem

argmax α
1
 ,...., αm

, γ    Fscore(α1,…, αm, γ, bs)

i

(+, V1) (+, Vm)

(- , V1)

(-, Vm)

...

...



Homcat and multi-species 
protein function prediction

● A possible application of HoMCat is in predicting the
 protein functions in multi-species protein networks

– The network contains proteins from different species

– Proteins in different species are connected through 

homology

– Each category of the model contains the proteins in one 

species

– Intra-species and inter-species connections are retrieved 

from different data banks

                                                   



Conclusions

● We studied:
– A Cost-Sensitive method  based on neural network for

 predicting labels in graph

● Better performance w.r.t. the state-of-the-art methods
● The time complexity O(|S|*log|S| + |W|) allows

the application to nets with thousands of nodes

● We increased the number of parameters by considering
 two or more categories of neurons

– Learned by the model or received in input as argument



Possible developments

● Increase the number of parameters
● Different threshlolds for neurons or different slopes

● Find optimal number of parameters

● Multi task extension
● Use hierarchical relationship between terms
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