

What is a Random Walk

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor;
- Then we select a neighbor of this node and move to it, and so on;
- The (random) sequence of nodes selected this way is a random walk on the graph

An example

0	1	0
0	0	1
1	1	0

Adjacency matrix W

0	1	0
0	0	1
$1 / 2$	$1 / 2$	0

Transition matrix \mathbf{Q}

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overviewु

An example

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

An example

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

Slide from Purnamitra Sarkar, Random Walks on Graphs: An Overview

Random Walk algorithm

Input:

- the adjacency matrix \boldsymbol{W} of a graph $G=<V, E>$
- A subset of nodes V_{C} having property C
- Initialization of nodes:
if $v \in V_{C}$ then $p_{v}^{0}=1 /\left|V_{c}\right| \quad$ else $p_{v}^{0}=0$
- Set transition matrix: $\boldsymbol{Q}=\boldsymbol{D}^{-1} \boldsymbol{W}$
where \boldsymbol{D} is a diagonal matrix with $d_{i i}=\sum w_{i j}$
- Iteratively update until convergence or until $t=k$

$$
\boldsymbol{p}^{t}=\boldsymbol{Q}^{T} \boldsymbol{p}^{t-1}
$$

Output: \boldsymbol{p}^{t}

Random walking algorithm to rank genes w.r.t to a functional class C

- Having a set V of genes, a subset V_{c} of genes are "a priori" known to belong to a given functional class C (i.e. a Gene Ontology class)
- Can we rank the other genes in the set $V \backslash V_{C}$ w.r.t their likelihood to belong to V_{c} ?

Random walk algorithm

