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Starting point

e The experimental setup [affymetrics slide]
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e Variation in the measurements comes from
“nuisance” variation in repeated experiments
— “interesting” variation across different experiments

e Statistical methods are required to characterize either type of
variation



Topics from statistics

e Elementary concepts, methods
— population, observation, random variable, random sample
— statistics, variance, covariance, correlation
— model, likelihood, likelihood principle, max likelihood
— exponential family of distributions, examples
— central limit theorem, implications
— data transformations

e Measures of confidence
— confidence intervals

e Significance testing
— statistical tests, test statistics
— p-values, power of a test



Elementary concepts

e Population
— the set of items we are interested in studying

— (a large number of) repetitions of the same experiment
— collection of different experiments (nutrient content/type, tem-
perature, cell-cycle)

Elements in the population in these cases correspond to individual
experiments



Elementary concepts

e Observations
— interpreted, coded

For example, we almost never directly observe the quantities of
interest
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Elementary concepts

e Random sample
— a set of random draws from the population (with replacement)

For example, cell cycle measurements at three time points

Are these ever random draws?



Elementary concepts

e Random variable
— a mapping from (experimental) outcomes to numerical values

Example: X4 is a random variable corresponding to the expression
level of gene 1

:ng) is a realization of X7 in experiment 2

Experiment 1 EXxperiment 2 ..
Gene 1 181 1 137

Gene 2 499 229 218
Gene 3 167 147 120
296 110 380

Note: P(X7 = 181) is a statement about the population, not
about the observed data



Elementary concepts

e Statistics
— any function computed from the observed data (random sam-

ple)
For example, mean expression level of gene 1

_ 1 &
Ty =— )Y a:gt) (1)
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where :I;gt) is the observed value of the random variable X; in
experiment t.



Elementary concepts

e Correlation
— measures linear relations between variables

Sample correlation between two genes (1 and 2) across n exper-
iments

Sample covariance > 1-
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where 02, 1 = 1,2 are sample variances
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Elementary concepts

e Scatter plots of (hypothetical) genes
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Statistical models

e Statistical models attempt to characterize the population of in-
terest

e A generative model aims to be able to recreate the observed data
(or population of interest)

e A multivariate Gaussian model

Z: ~ N(0,1) (4)
X = AZ+yp (5)
> = B[(X — (X — )] (6)
= E[(AZ)(AZ)"] (7)
= E[Azz' AT (8)
= AE[zz11AT (9)
= AAl (10)
e A multivariate Gaussian model
1

1 Ts—1
0) = exp{ ——(x — > — 11
X ~ N(p,X) (12)
where p is the mean vector and 2 is the covariance matrix



Statistical models

e Statistical models attempt to characterize the population of in-
terest

e A generative model aims to be able to recreate the observed data
(or population of interest)

e A multivariate Gaussian model

Pl = (27r)p/2|2|1/2 xp —5(e =) @ =)} (19)
X ~ N(ux) (16)

where u is the mean vector and 2 is the covariance matrix




Likelihood functions

e Assume we have a probability model p(z|0) with parameter 6 (0
can be a vector of parameters)

e Given observed data D =

{:c(l), e ,:c(”)} we wish to ) hﬂﬁ‘%f;&g ol
. ) ) RN s AR
find an appropriate setting of LRI L

model “best” accounts for
the observed data

the parameters 6 so that the -

e A likelihood function is the likelihood of the observed data as a
function of 6 (the parameters)

mn
Lz, ... 2Me) = T] pzP]0) (17)
t=1
and is sufficient for adjusting the parameters 6.



Maximum likelihood principle: Binomial

Maximum likelihood principle: we find the parameter 8 that max-
imize the likelihood of the observed data
6 = arg max Lz, ... 2|9 (18)

The Maximum likelihood estimate (MLE) for the Binomial PMF
IS

P(kyl0) = ( NSO (19)
logP(ky|0) = (k)—l-klogG—I-(N—k)log(l—Q) (20)
dP(kyl0) _ k N-—k (21)

do o0 1-—0
0 = _N—Fk (22)

0 1-—0
6 = k/N (23)



Maximum likelihood principle: Gaussian

e All the information is in the likelihood function

n
Lz, ... 2M™jg) = [ p(=1|0) (8)

t=1
e Maximum likelihood principle: we find the parameters 0 (mean
and covariance) that maximize the likelihood of the observed data

~

0 = arg mgax L(:c(l), e ,x(")|9) (9)

bad setting of parameters good setting
(low likelihood) (high likelihood)



Maximum likelihood estimation

e A multivariate Gaussian model

1 1 Ts—1
0) = —(z— )T — 10
p(z|0) TS expq{ 2(93 1) (z—p)}  (10)
e Given observed data D = {z(1), ... (")} the maximum likelihood

estimates of the parameters are:

1. Sample mean

n=1 S 2W (11)
Ni=1
2. Sample covariance
.1 _ _
Si=— 3 (@) = i — i) (12)



Exponential family of distributions

Binomial, multinomial
Poisson

Gaussian

Exponential

Gamma

— For exponential distributions, sample statistics (mean, vari-
ance, covariance) are the maximum likelihood estiates for the
model parameters

— Thus, for all sufficient statistics, simply calculate the statistic
from the sample to fit the distribution



Exponential family of distributions
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Central limit theorem

Let X1 ... X)) pe independent (vector valued) random vari-
ables corresponding to any distribution with mean pu and covari-
ance >, then for large n,

V(X —p) ~N(0,X) (13)

where X is the mean

i x @) (14)

t=1

:IH



Statistical tests

e Possible things that we might want to test:

1. whether a gene is cell cycle related
2. if a gene has a differential response to a pathogen
etc.

e For the purposes of illustration, we try to test whether the ob-
served correlation between two genes is significant



Statistical tests

e [esting involves several steps:

1. Select the hypotheses such as

Hg two genes are uncorrelated
H{ they have a non-zero correlation

2. Choose a test statistic T'(X)
— need to define how we will measure differences between the
hypothesis
. Observe a random sample D = {z(1), ... z(")}
4. Compute the observed value for the test statistic

W

T, =Tz, ... (™) (18)

5. Compute the significance level (P-value) for rejecting the null
hypothesis Hg

p=Prob(T(XM) ... xMy>T, | Hy) (19)

6. The P-value is the probability we reject Hy when Hg is true



Statistical tests: example

e Defining the hypothesis:

Let X7 and X- are the random variables corresponding to the
expression levels of the two genes

The null hypothesis Hp: X7 and X» are uncorrelated:

l(alds) e
)

The alternative hypothesis Hq: X7 and X5 can be correlated:

X1 p1 211 212
FIRFlES s @

where X ;; is the covariance between X; and X (022 =3;)




Statistical tests: example

e [ he alternative hypothesis Hq{ is more expressive in terms of ex-
plaining the observed data
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e We need to find a way of testing whether this difference is sig-
nificant



Test statistic

e Likelihood ratio statistic

P(x® . xMH)
P(xL), . .., x@)|Hp)
Larger values of T imply that the model corresponding to the
null hypothesis Hp is much less able to account for the observed
data

T(x®, ... xMy = 2]og (23)

e [0 evaluate the P-value, we also need to know the sampling
distribution for the test statistic

In other words, we need to know how the test statistic (X (1), ... x (1)
varies if the null hypothesis Hg is correct



Test statistic cont’d

e For the likelihood ratio statistic, the sampling distribution is X2
with degrees of freedom equal to the difference in the number of
free parameters in the two hypotheses
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e Once we know the sampling distribution, we can compute the
P-value

p= Prob(T(XM) ... xMy>T, | Hy) (24)



e How many degrees of freedom do we have in the two models?
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Maximum a Posterior Estimators (MAP)

Assume that we know something about a coin before we observe
N trials

Prior knowledge can take on many forms

— Assumptions (MRNA levels are never negative)

— Data (other experiments suggests that protein A regulates
gene B)

— Estimates (our best estimate of the parameters so far)

How do we express this knowledge so that it can be used in a
principled way?

Represent this knowledge as a distribution over model parameters
— In the case of a coin, as a distribution over 6



Bayes’ Rule

e Key to Bayesian analysis is Bayes’ Rule

P(A,B) = P(A|B)P(B) = P(B|A)P(A) (31)
peals) — PBIMPMA)

P(B) (32)




Bayesian Inference

e If we believe that Gene A can be in low, medium, or high state
of expression, and it influences Gene B as follows, and the prior
on A is as given:

— P(B|A;) =0.2 and P(A;) =0.4
— P(B|A);) = 0.4 and P(A);) = 0.4
— P(B|Ay) = 0.8 and P(Ay) = 0.2

e Given that gene B is turned on, what is the probability that gene
A is in the high state?

P(B|Ag)P(An)

B P(B|Ag)P(Afg) 24
P(An|B) = P(B|AL)P(AL) + P(B|Ay) P(Apyp) +P(B|AH)P(g4J1:Ir\
P(AH B) _ 0.8 x 0.2 (35)

0.2 x 0.4+ 0.4x0.440.8x0.2
P(Ag|B) = 0.4 (36)




Maximum a Posterior Estimators (MAP)

Bayesians use prior knowledge when analyzing data
— This can lead to different conclusions from the same data,
depending on your prior

Frequentists believe that conclusions from data should always be
the same

Using Bayes’ Rule in our Binomial example:

P(ky|0)P(0)

P(0|ky) Plen) (37)

Let's represent P(60) as:
PO) = C(a)f*r 11 —g)1 (38)
a1 = pS+1 (39)

ar = (1-p)S+1 (40)



Dirichlet Distributions

e P(0) is a Dirichlet distribution, and is a conjugate distribution to
the Binomial distribution:

PO = C(a)d™171(1—9)*"1 (41)
a; = pS+1 (42)
ar = (1-p)S+1 (43)

e [ his binomial form of the Dirichlet distribution is called the Beta
distribution.

e Now:
N k+pSc1 _ o) (N=k)+(1-p)S

_(R)C(a)errrS(1 —0)
P(Olky) = POE) (44)
dP@ky) _ k+pS (N—k) +(1-p)S (45)

do 2 1—46

- k+ pS

Orvap = TP (46)

N+ S



