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Machine Learning and Computational Biology represent my main re-

search area. My main current research lines can be schematically summa-

rized as follows:

1. Machine Learning for Personalized Genomic Medicine

2. Machine Learning for biomolecular network analysis and Network

Medicine

3. Hierarchical ensemble methods for the prediction of biomolecular

function and property of proteins and genes using structured on-

tologies

4. Big-data analysis in Computational Biology using parallel and sec-

ondary memory-based technologies

5. Machine Learning for the integration of complex biomolecular data

Machine Learning for Personalized Genomic Medicine

The identification of genetic variants associated with human diseases rep-

resents one of the core challenges in precision medicine, and requires the

design and application of a new generation of machine learning-based
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prediction methods able to prioritize potential “deleterious’́ variants (i.e.

causative or otherwise linked with disease risk) among the huge amount

of neutral variants that represent natural genetic variation present in indi-

viduals.

Most of state-of-the-art ML-based methods do not adopt specific imbalance-

aware learning techniques to deal with imbalanced data that naturally

arise in several genome-wide variant scoring problems, thus resulting in

a significant reduction of sensitivity and precision. We developed hy-

perSMURF (hyper-ensemble of SMOTE under-sampled random forests),

a novel method that adopts imbalance-aware learning strategies based

on resampling techniques and a hyper-ensemble approach to deal with

highly imbalanced genomic data [1, 2]. This machine learning approach

has been successfully applied as part of Genomiser, a software tool that

uses both genotypic and phenotypic information, to discover variants in

both coding and non coding regulatory regions associated with specific

genetic Mendelian diseases [3].

Fine tuning of learning parameters of hyperSMURF may lead to sig-

nificantly better results [4], and we are developing a High Performance

Computing parallel version of this hyper-ensemble method in the context

of the LISA project HyperGeV - Detection of Deleterious Genetic Variation

through Hyper-ensemble Methods.

Machine Learning for biomolecular network analysis and

Network Medicine

Most of the methods proposed for the analysis of graphs adopt local or

global learning strategies to rank node labels or predict edges. On the con-

trary, we explored learning strategies based on the integration of both local

and global learning strategies through kernelized score functions able to

efficiently exploit the global topology of the network by using carefully

designed graph kernels [5, 6, 7, 8]. Another issue in node label rank-

ing and classification of graphs is represented by the unbalance between

positive and negative examples (this is particularly relevant for protein
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function prediction problems). To this end we designed a novel class of

parametrized Hopfield networks able to learn from the data the network

parameters (neuron states and thresholds) taking into account the unbal-

ance between positive and negative examples [9, 10, 11, 12, 13].

Methods based on kernelized score functions and parametrized Hop-

field networks have been applied to the analysis of complex biomolecular

networks for gene function prediction problems [7, 14, 15], gene disease

prioritization and drug repositioning (discovery of novel therapeutic in-

dications for drugs originally designed for different pathologies) [6, 16].

Another ongoing research line is represented by the application of Game

Theory concepts to structured node label ranking problems in computa-

tional biology. For instance, we were able to learn the set of GO terms

associated with a protein as a whole , by representing protein function

prediction as a graph-transduction game, where both the functional and

structural similarities between proteins and the similarities between GO

terms are taken into account and embedded in the same semi-supervised

learning problem [17].

In the context of phenotype and outcome prediction problems using

a set of selected biomarkers (e.g. gene expression signatures or allelic

configurations of SNPs), supervised inductive models do not explicitly

take into account the functional or the genetic relationships between in-

dividuals. To overcome this problem, I am exploring a novel “Network

Medicine” based approach by modeling networks in the “patient space”

instead of the “biomarker space”, by constructing networks of patients

on the basis of their functional or genetic similarities (e.g. by considering

their expression profiles or their allelic configurations of SNPs), and then

by applying semi-supervised transductive method to predict the pheno-

type or the clinical outcome of patients, and to select statistically relevant

biomarkers [18].

Another research line is represented by novel approaches for the web

visualization and analysis of biomolecular networks [19].
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Hierarchical ensemble methods for the prediction of biomolec-

ular function and property of proteins and genes using

structured ontologies

The characterization of protein and gene functions is based upon specific

ontologies, such as the Gene Ontology or the Human Phenotype Ontol-

ogy [20].

The prediction of the protein function is a problem characterized by

several issues [21], but one of the main is represented by the hierarchi-

cal structure of the taxonomies currently used to classify proteins and

genes. To solve these complex classification problems I designed ensem-

ble methods able to exploit the hierarchical nature of AFP problems. The

first one is based on the ”True Path Rule” that governs hierarchical on-

tologies in biology and other application domains. Through carefully de-

signed heuristics the method bottom-up propagates ”positive predictions”

from the leaves to the root of the tree-structured ontology, and top-down

from root to leaves propagates ”negative predictions”, resulting in a two-

way flow of information [22]. The second one is based on a classifier

”bayesian-optimal” with respect to a hierarchical loss function. This ap-

proach allows to exchange information between classifiers associated to

the nodes of the hierarchy according to a ”message passing” strategy that

simulates the optimal Bayesian classifier for this type of hierarchical prob-

lems [23]. I showed also that the synergy between hierarchical approaches,

cost-sensitive and data integration methods is a key issue to solve complex

AFP problems [24].

Another significant application of hierarchical ensemble methods is

represented by the prediction of abnormal human phenotypes using the

Human Phenotype Ontology. In this context we proposed novel heirarchi-

cal ensemble methods for DAG-structured ontologies that achieved state-

of-the-art results in this field [25, 26, 27, 28]. Preliminary results of the

application of the the same methods to the GO ontology showed very

promising results [29].
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Big-data analysis in Computational Biology using par-

allel and secondary memory-based technologies

A novel research line for ”Big Data” analysis based on novel algorithmic

approaches and on the exploitation of novel technologies for relevant ap-

plications in computational biology and medicine represents anothee re-

search line in this context. In particular I am studying algorithms and tech-

nologies based on computer secondary memory to process huge graphs

that cannot be loaded in primary memory, with the objective of analyz-

ing huge ”omics” data stored in large public databases with relevant ap-

plication in basic molecular biology and medicine. Experimental results

yielded promising results in the context of multi-species protein function

prediction problems [30, 31, 32]. Another ongoing research line uses GPU

technology to speed-up computation and improve results in big biomolec-

ular networks [33] with application to GO terms prediction using STRING

networks constructed by putting together multiple species [34].

Machine Learning for the integration of complex biomolec-

ular data

In several domains, including bioinformatics, the integration of multiple

and structured sources of data plays a key role. To this end we proposed

several approaches for the construction and integration of networked data

that have been applied to the automated function prediction of proteins,

gene disease prioritization and drug ranking and repositioning [35, 36, 37,

6, 8, 38, 39, 40].

Other research lines lead to the development of supervised ensemble

methods for the integration of multiple sources of biomolecular data in

the context of cellular location [41] and gene function prediction prob-

lems [42, 43, 44], and mathematical and semantic models and clustering

and networks integration and visualization algorithms for other applica-

tions in computational biology [45, 46, 47, 48, 49, 50].
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