
Characterization of lung tumor subtypes through

gene expression cluster validity assessment ∗

Giorgio Valentini, Francesca Ruffino

DSI - Dipartimento di Scienze dell’Informazione
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Abstract

The problem of assessing the reliability of clusters patients identified

by clustering algorithms is crucial to estimate the significance of sub-

classes of diseases detectable at bio-molecular level, and more in general

to support bio-medical discovery of patterns in gene expression data. In

this paper we present an experimental analysis of the reliability of clus-

ters discovered in lung tumor patients using DNA microarray data. In

particular we investigate if subclasses of lung adenocarcinoma can be de-

tected with high reliability at bio-molecular level. To this end we apply

cluster validity measures based on random projections recently proposed

by Bertoni and coworkers. The results show that at least 2 subclasses

of lung adenocarcinoma can be detected with relatively high reliability,

confirming and extending previous findings reported in the literature.

Keywords: Cluster validity; clustering algorithms; bio-molecular taxonomy of

tumors; DNA microarray data analysis.

1 Introduction

An open problem in microarray data analysis is the assessment of the reliability

of clustering results, since clustering algorithms may find clusters even if no

structure is present. Indeed a quantitative data-driven estimate of the reliability

of the discovered clusters can support bio-medical researchers in the validation
∗The authors would like to emphasize that any reference to lung tumors or any other

disease should be interpreted in apotropaic sense.

1



of novel subgroups identified at bio-molecular level. In particular the definition

of a more refined bio-molecular taxonomy of tumoral diseases could improve

the prediction of patient outcome, the selection of therapies targeted to the

bio-molecular characteristics of patients and the search for molecular targets

for chemotherapy [1]. In this context the assessment of the validity of clusters

discovered in DNA microarray data plays a fundamental role [14, 3].

Different measures and indices have been proposed in the literature to es-

timate the reliability of clusters discovered by unsupervised learning methods.

Classical indices are usually based on the ratio between intercluster and intra-

cluster distances [16, 13, 7]; however, they focus on the validity of the number

of the discovered clusters, without providing an estimate of the validity of each

individual cluster. An exception is represented by the ”silhouette index” that

provides an estimate of the reliability of single clusters as well as an estimate of

the membership of each example to a specific cluster [27].

Some recent approaches to estimate cluster reliability are based on the con-

cept of stability with respect to perturbations [23, 25, 28, 26]. In the context

of gene expression data, that are usually characterized by relatively high level

of noise [12], stability may be considered an important property. Indeed we

may study the impact of ”small” perturbations of the original data on the char-

acteristics and composition of the discovered clusters to get insights into their

stability: a cluster is considered reliable if ”stable” with respect to data pertur-

bations. The perturbations may be introduced by adding noise [25], or using

subsamples of the original data [23, 26] or random subsets of the original feature

space [28].

Recently Bertoni and coworkers proposed reliability indices for individual

clusters and clusterings based on random projections of the original data [5, 6,

4]. Their method is related to the Smolkin and Gosh [28] approach based on

an unsupervised version of the random subspace method [19]. Extending the

unsupervised random subspace approach to more general random projections,

they proposed cluster stability measures based on similarity between randomly

projected data [5]. The proposed reliability measures are well suited to very

high dimensional data, as gene expression data usually are [6].

In this paper we apply the stability measures based on random projections

to the analysis of the reliability of subclasses discovered in lung tumor patients

using high-dimensional gene expression data. The traditional lung tumor clas-

sification is based on clinicopathological features, but it has been shown that

lung pathologists agreed on lung adenocarcinoma in less than 50% of cases [29].

Moreover there is clinical evidence of different prognostic classes that do not
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correspond to known histopathological subclassification of lung cancer [10]. For

these reasons we try to investigate if a bio-molecular unsupervised analysis of

lung cancer and in particular of lung adenocarcinoma may reveal subclasses not

detectable with a traditional histopathological approach.

In the next section we summarize the main characteristics of the measures

based on random projections for cluster validity assessment. Then in Sect. 3 we

provide an extensive experimental analysis of the validity of clusters discovered

in lung tumor patients, by applying hierarchical, c-mean and PAM clustering

algorithms. In Sect. 4 we discuss the experimental results, showing the effective-

ness of random projection-based validity measures for supporting the discovery

of novel subclasses of lung adenocarcinoma.

2 Measures based on random projections for clus-

ter validity assessment

2.1 Random projections and cluster reliability

The measures based on random projections estimate the reliability of individual

clusters exploiting the redundancy inherent to microarray gene chips. Indeed

the number of genes in a chip is usually much larger than the number of sam-

ples, and we may reasonably expect that using subsets of genes to perform

clustering of tissues, we may obtain meaningful clusters of data. The main idea

behind this approach consists in evaluating the stability of the clusters discov-

ered in the original high dimensional space comparing them with the clusters

discovered in randomly projected lower dimensional subspaces. In this con-

text the concept of reliability is tied to the concept of stability: a cluster is

considered reliable if it is stable, that is if that cluster is maintained in the

projected space without too large changes. To properly evaluate the reliability

of the clusters, the random projections should not induce too large modifica-

tions of the distances between the examples in the projected space. To this

end, the concept of random projections with bounded metric distortions, ac-

cording to the Johnson-Lindenstrauss (JL) theory [21], is used. It has been

shown that random projections that obey the Johnson Lindenstrauss lemma

do not induce too large distortions [6]. In particular the JL lemma shows

that the bounds of the distortion induced by JL lemma-compliant projections

depend only on the logarithm of the cardinality of the available data and on

the dimensionality of the projected subspace, while, quite surprisingly, does

not depend on the dimensionality of the original space [21]. For more details
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on random projections and the JL lemma see the original Johnson and Lin-

denstrauss paper [21], the Bertoni’s paper [6] or the web-site of clusterv, an R

package that implements the reliability measures based on random projections

(http://homes.dsi.unimi.it/∼valenti/SW/clusterv).

2.2 Stability measures

The procedure to measure cluster reliability can be divided into several steps [6]:

1. Multiple random projections of the data are generated, choosing a sub-

space dimension in concordance with the JL lemma.

2. Each instance of the projected data is given as input to a suitable cluster-

ing algorithm.

3. The resulting clusters are compared with that obtained in the original

high dimensional space.

4. The stability measure of an individual cluster is computed by counting how

many pairs of elements of the cluster in the original space are preserved

in the clusters obtained in the projected space.

Fig. 1 summarizes the procedures needed to compute the stability measures:

given a data set S with n examples (Original data), and a set < O1, O2, . . . , Ok >

of clusters Oi ∈ S, 1 ≤ i ≤ n generated through a clustering algorithm C,

the random projections µ : Rd → Rd′ from the original d-dimensional data set

generate m d’-dimensional projected data sets P1, P2, . . . , Pm. Then a clustering

algorithm C is applied to the projected data sets Pr, 1 ≤ r ≤ m, giving rise

to m clusterings < Ar1, Ar2, . . . , Ark >, 1 ≤ r ≤ m, where Ars, 1 ≤ r ≤
m, 1 ≤ s ≤ k represents the sth cluster of the rth clustering. The m clusterings

are finally compared with the original clustering < O1, O2, . . . , Ok > obtained

by applying the clustering algorithm C to the original high dimensional data.

The comparison and the estimate of the reliability measures (boxes inside the

dotted line of Fig. 1) are implemented through a pairwise similarity matrix.

More precisely, the elements M
(r)
ij of the n × n symmetric similarity matrix

M (r), computed at the rth iteration of the clustering on the projected subspace,

store the memberships of examples pairs i, j to the same cluster [15]:

M
(r)
ij =

k∑
s=1

χArs [i] · χArs [j] (1)

where i, j ∈ {1, 2, . . . , n}, Ars ⊆ Pr is a cluster returned by a clustering algo-

rithm, k the number of clusters, and χArs ∈ {0, 1}n is the characteristic vector
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Figure 1: Schematic representation of the procedures needed to compute the stability

measures based on random projections.

of Ars, i.e. χArs [i] = 1 if i ∈ Ars, otherwise χArs [i] = 0. In other words M
(r)
ij

denotes if elements i and j belong to the same cluster. Using multiple random

projections of the data we generate multiple instances of projected data that

are used by a clustering algorithm to provide multiple sets of clusters (cluster-

ings). Then multiple similarity matrices (one for each clustering) are built, and

averaging between them, a similarity matrix M that stores the memberships

of examples pairs i, j to the same cluster across multiple clusterings is finally

obtained.

Using the previously computed similarity matrix, the stability index s for an

individual cluster O is:

s(O) =
1

|O|(|O| − 1)

∑

(i,j)∈O×O,i 6=j

M ij (2)

The index s(O) estimates the stability of a cluster O by measuring how much

the projections of the pairs (i, j) ∈ O×O occur together in the same cluster in

the projected subspaces. The stability index has values between 0 and 1: low

values indicate no reliable clusters, high values denote stable clusters. An overall

measure of the stability of the clustering may be obtained averaging between

the stability indices:

S(k) =
1
k

k∑
r=1

s(Or) (3)
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In this case also we have that 0 ≤ S(k) ≤ 1, where k is the number of clusters.

Finally, the Assignment-Confidence (AC) index estimates the confidence of the

assignment of an example i to a cluster O, by measuring the frequency by which

i appears with the other elements of the cluster O:

AC(i, O) =
1

|O| − 1

∑

j∈O,j 6=i

M ij (4)

3 Experimental analysis of the validity of clus-

ters discovered in lung tumor patients

In this section we apply the measures based on random projections to evaluate

the reliability of the clusters discovered in gene expression data obtained from

lung tumor patients. In particular we try to understand if and at which extent

we can characterize subtypes of lung tumors at bio-molecular level. To this

end we analyze the results obtained with different clustering algorithms, largely

applied for unsupervised analysis of gene expression data within the community

of bioinformaticians and bio-medical researchers. At first we provide a validity

analysis of clusters discovered with agglomerative hierarchical clustering [24, 31],

then we propose the same analysis with PAM (Prediction Around Medoids) [22]

and c-mean clustering algorithms [18].

3.1 Experimental environment

The lung tumor data set [8] collects 203 histologically defined specimens: 186

lung tumors, subdivided in 139 lung adenocarcinoma (AD), 21 squamous cell

lung adenocarcinoma (SQ), 20 pulmonary carcinoids (COID), 6 small-cell lung

adenocarcinoma (SMCL) and 17 normal lung (NL) specimens [8]. Each U95A

Affymetrix oligonucleotide array provides the gene expression levels of 12600

genes.

From the 12600 original genes of the U95A Affymetrix oligonucleotide array

3312 passed the filter (genes with standard deviation units less than 50 have

been excluded), according to the procedures described in [8] and then the gene

expression levels have been normalized with respect to the mean and standard

deviation. We implemented the pre-processing procedures with R scripts.

Then we evaluated the reliability of the clusters discovered with hierar-

chical, c-mean and PAM clustering algorithms by using 50 Plus-Minus-One

(PMO) random projections [6] with a maximum predicted distortion equal to

1.1. (ε = 0.1), according to the JL lemma. This choice of the ε value assures
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that the euclidean distances between the samples are very likely to be pre-

served within the bounds of a 10% distortion. For each clustering algorithm we

analyzed the reliability of clusterings and individual clusters for a number of

clusters ranging from 2 to 20. In particular we computed the overall stability

index (eq. 3), the stability indices for each cluster (eq. 2) and the Assignment-

Confidence index (eq. 4) for each sample, using the clusterv R package [30]

to write the R software applications needed for the cluster validity analyses.

A summary of the reliability analysis of clusters discovered with hierarchical,

PAM and c-means algorithms is summarized in the following sections. Full

experimental results, such as the values of the stability indices for different ε-

level distortions induced by PMO projections, and detailed information about

the composition of the obtained clusters, as well as the R source code used for

the experiments, are available from the Supplementary Information web-page:

http://homes.dsi.unimi.it/∼valenti/SW/web-lung-validity.

3.2 Validity analysis of clusters discovered with hierarchi-

cal clustering

We applied our stability measures using PMO projections and the Ward’s hi-

erarchical clustering [31] to analyze the reliability of the discovered subclasses.

The results summarized in Tab. 1 and Fig. 2 partially confirmed that the clus-

ters defined by established histological classes [8] are quite reliable. At first,

the overall stability indices suggest that pulmonary carcinoid tumors (COID)

constitute a well-defined and separated cluster among the different subclasses of

lung tumors. Indeed the highest overall stability index is obtained with K = 2

clusters, and the first cluster, that collects all the COID patients, shows an indi-

vidual stability index very close to 1. Moreover, also with K = 3 clusters the first

COID cluster is highly supported by the s index (Tab. 1). Note that the third

cluster, that groups together both normal (NL), lung adenocarcinoma (AD)

and squamous cell lung adenocarcinomas (SQ), shows a stability index largely

lower than that of the other two clusters (0.692 against 0.998 and 0.836); this

fact witnesses the low reliability of the third heterogeneous cluster. Anyway,

also partitions characterized by larger number of clusters show relatively high

values of the overall stability index, supporting the Bhattacharjee et al. thesis

of distinct subclasses of lung adenocarcinoma [8]. For instance, with K = 4

clusters, the COID and normal lung (NL) subclasses are classified as reliable

by the s index, the big second cluster characterized by several adenocarcinomas

(AD) with Small-Cell-Lung-adenocarcinoma (SMCL) and some normal exam-

ples is scored as relatively quite reliable (s = 0.8168), while the fourth cluster
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Table 1: Estimate of cluster stability achieved with hierarchical clustering

Overall Stability indices S of the clusterings

Number of clusters: 2 3 4 5 6 7 8 9 10 20

S value: 0.999 0.842 0.879 0.833 0.851 0.820 0.859 0.846 0.844 0.831

Stability indices s of individual clusters

2 clusters: 1 2

s value: 0.998 1.000

3 clusters: 1 2 3

s value: 0.998 0.836 0.692

4 clusters: 1 2 3 4

s value: 0.998 0.816 0.931 0.772

5 clusters: 1 2 3 4 5

s value: 0.998 0.642 0.910 0.950 0.664

6 clusters: 1 2 3 4 5 6

s value: 0.998 0.833 0.883 0.908 0.875 0.607

7 clusters: 1 2 3 4 5 6 7

s value: 0.806 0.833 0.864 0.908 0.839 0.772 0.723

8 clusters: 1 2 3 4 5 6 7 8

s value: 1.000 0.996 0.822 0.863 0.908 0.830 0.769 0.684

9 clusters: 1 2 3 4 5 6 7 8 9

s value: 1.000 0.996 0.821 0.859 0.908 0.740 0.749 0.723 0.820

10 clusters: 1 2 3 4 5 6 7 8 9 10

s value: 1.000 0.996 0.811 0.859 0.908 0.774 0.825 0.738 0.715 0.815

20 clusters: 1 2 3 4 5 6 7 8 9 10

s value: 1.000 1.000 1.000 0.986 0.805 0.840 0.931 0.873 1.000 0.738

11 12 13 14 15 16 17 18 19 20

s value: 0.715 0.656 0.976 0.698 0.990 0.520 0.909 0.570 0.727 0.681

that groups together adenocarcinoma and squamous cell lung adenocarcinomas

(SQ) is scored as less reliable (s = 0.7157) (Tab. 1 and Fig. 2). With K = 8

the first two subclasses of COID patients are highly reliable (s ' 1), and quite

reliable also the other ones, up to the sixth cluster (normal lung). Interestingly

enough, the cluster 3,4,5 could be interpreted as three distinct subclasses in-

side adenocarcinoma patients, with a relatively high individual cluster stability

(Tab. 1, K = 8). A clinical follow-up study could confirm if these distinct clus-

ters may correspond to different prognostic subtypes. Cluster 7 also represents

another cluster of adenocarcinomas with also SQ and SMCL specimens inside,

even if its individual stability index is quite smaller (s = 0.7692). In the Bhat-

tacharjee et al. paper, it has been shown that several adenocarcinomas express

high levels of squamous-associated genes such as keratin SQ-markers, displaying

also histological evidence of squamous features. In our experiments the cluster

8 that groups together most of the squamous cell lung adenocarcinoma (SQ)

patients is not strongly supported by the s index, even if we consider K = 5

or K = 6 clusters, supporting the hypothesis that this group shares common

characteristics with other lung adenocarcinoma patients. Note that some ade-
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nocarcinoma patients belong to this cluster and other SQ specimens belong to

AD(III) adenocarcinoma cluster (Fig. 2); these results support the hypothesis

that squamous cell lung adenocarcinoma and a subclass of adenocarcinoma may

be part of the same disease at bio-molecular level.

3.3 Validity analysis of clusters discovered with PAM clus-

tering

The validity analysis of the clusters discovered with PAM (Prediction Around

Medoids) [22] clustering algorithm are summarized in Tab. 2. In this case 2, 3

and 4 clusters are considered highly reliable (S > 0.95), approximately at the

same degree.

Moreover the overall stability indices show that all the clusterings, at least

to 10 clusters, are quite reliable. When two clusters are considered, we have that

the second one collects the pulmonary carcinoid samples (COID) and a single

small-cell lung adenocarcinoma sample (SMCL), and the first one all the other

samples. Both are highly reliable, and the first bigger one shows the highest

Table 2: Estimate of cluster stability achieved with PAM clustering

Overall Stability indices S of the clusterings

Number of clusters: 2 3 4 5 6 7 8 9 10 20

S value: 0.971 0.975 0.962 0.940 0.905 0.879 0.888 0.812 0.827 0.749

Stability indices s of individual clusters

2 clusters: 1 2

s value: 1.000 0.943

3 clusters: 1 2 3

s value: 0.991 0.980 0.953

4 clusters: 1 2 3 4

s value: 0.950 0.949 0.949 1.000

5 clusters: 1 2 3 4 5

s value: 0.913 0.904 0.941 0.977 0.966

6 clusters: 1 2 3 4 5 6

s value: 0.880 0.836 0.921 0.829 0.970 0.993

7 clusters: 1 2 3 4 5 6 7

s value: 0.842 0.664 0.904 0.864 0.937 0.970 0.975

8 clusters: 1 2 3 4 5 6 7 8

s value: 0.840 0.769 0.895 0.885 0.940 0.825 0.970 0.981

9 clusters: 1 2 3 4 5 6 7 8 9

s value: 0.771 0.638 0.932 0.836 0.940 0.634 0.826 0.963 0.766

10 clusters: 1 2 3 4 5 6 7 8 9 10

s value: 0.720 0.535 0.908 0.806 0.944 0.693 0.830 0.948 1.000 0.883

20 clusters: 1 2 3 4 5 6 7 8 9 10

s value: 0.814 0.576 0.450 0.377 0.485 0.430 0.732 0.302 0.623 0.888

11 12 13 14 15 16 17 18 19 20

s value: 0.977 0.892 0.758 1.000 1.000 1.000 0.981 0.847 0.866 0.981
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stability (s = 1). With 3 clusters a third highly reliable cluster (s = 0.980) is

added: it includes all the normal samples plus some adenocarcinoma samples

(AD). Two distinct subclasses of AD samples are detected with 4 clusters: the

first contains 118 samples, with some SMCL and SQ samples, the second one 43

samples with some added SQ samples. Analyzing the Assignment-Confidence

index of the samples, we see that its value for several SQ samples is lower

than 0.5, showing that the membership of some SQ samples to AD subclasses

is low. The cluster with normal samples (the third) is better defined and the

fourth cluster that comprises now only COID samples has the highest reliability

(s = 1). With 5 clusters we register the same previous clusters, but the cluster

of COID samples is split into two reliable clusters. With 6 clusters two AD

subclusters are also detected with relatively high reliability; moreover a new

cluster characterized by squamous cell lung adenocarcinomas (SQ) is found as

quite reliable (s = 0.829); note that this cluster includes also 3 AD samples,

but the AC index is low for at least one of them (AC = 0.5). Three and

four subclasses of adenocarcinoma patients are detected respectively with 7

and 8 clusters. Note that in both cases the overall stability index (close to

0.9), supports the structures found in the data. Anyway, the second subcluster

of AD samples shows a relatively low reliability (s = 0.664 and s = 0.769

respectively with 7 and 8 clusters), while the other are quite stable (s ∼ 0.85).

When 10 clusters are considered, we find four subclasses of adenocarcinoma

(cluster n.1,2,4 and 6), but they are less supported by the stability index. A

fifth AD subclass that includes also SMCL samples is quite stable (s = 0.830).

The last three clusters refer to 3 subclasses of COID, with a high stability index

(respectively 0.948, 1.000 and 0.883). With 20 clusters the overall stability index

is quite low (S = 0.749) and most of the cluster are poorly reliable, apart from

COID clusters and some small cluster of AD and SCLC patients.

Summarizing, the results support the hypothesis of different subtypes inside

lung adenocarcinoma, but the number and the limits between the subclasses are

not clearly defined.

3.4 Validity analysis of clusters discovered with c-means

clustering

The values of the overall stability computed with the c-means clustering algo-

rithm are not so high as those computed with PAM. This fact reflects the larger

instability of c-means with respect to PAM algorithm. However with c-means

we have relatively large values of the overall stability index for a large range

of clusters, from 2 to at least 8 (Tab. 3). With 2 clusters we have the largest
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value of the overall stability index (S = 0.969); the second cluster that includes

all the COID samples and a single SMCL sample achieves the highest stability

(s = 1), but also the first cluster with all the remaining samples is highly re-

liable (s = 0.939). With 3 clusters, two subclasses of adenocarcinoma samples

are detected, even if the second one is less reliable than the first (s = 0.811 vs.

s = 0.981), and these subclasses are maintained also with 4 clusters, where a

reliable cluster of normal samples (s = 0.944) is also present. With 5 clusters

a third cluster of mixed AD and SQ samples is added (s = 0.842), but with

6 clusters c-means finds 4 AD subclasses (cluster 1,2,3 and 4), but only the

second is reliable (s = 0.874). Considering 7 clusters, the number of the AD

subclasses is reduced but their stability is reduced, as well as the value of the

overall stability index (S = 0.7). With 8 clusters we come back to more AD

subclasses, but at least 3 of them show a very low reliability. When more than 8

clusters are generated, the overall stability decreases, as well as the reliability of

the adenocarcinoma subclasses: only the SQ, COID and normal clusters show

an high stability index.

Table 3: Estimate of cluster stability achieved with c-mean clustering

Overall Stability indices S of the clusterings

Number of clusters: 2 3 4 5 6 7 8 9 10 20

S value: 0.969 0.929 0.887 0.874 0.792 0.702 0.743 0.668 0.672 0.706

Stability indices s of individual clusters

2 clusters: 1 2

s value: 0.939 1.000

3 clusters: 1 2 3

s value: 0.981 0.811 0.996

4 clusters: 1 2 3 4

s value: 0.941 0.736 0.944 0.929

5 clusters: 1 2 3 4 5

s value: 0.922 0.685 0.957 0.842 0.963

6 clusters: 1 2 3 4 5 6

s value: 0.586 0.874 0.747 0.636 0.996 0.910

7 clusters: 1 2 3 4 5 6 7

s value: 0.502 0.429 0.421 0.740 0.822 1.000 1.000

8 clusters: 1 2 3 4 5 6 7 8

s value: 0.592 0.474 0.576 0.874 0.813 0.955 0.729 0.931

9 clusters: 1 2 3 4 5 6 7 8 9

s value: 0.505 0.457 0.662 0.447 0.771 0.480 0.984 0.796 0.914

10 clusters: 1 2 3 4 5 6 7 8 9 10

s value: 0.421 0.495 0.489 0.449 0.823 0.698 0.719 0.913 0.843 0.872

20 clusters: 1 2 3 4 5 6 7 8 9 10

s value: 0.598 0.485 0.477 0.494 0.735 0.685 0.477 0.617 0.504 0.683

11 12 13 14 15 16 17 18 19 20

s value: 0.535 0.833 0.932 0.783 0.691 0.867 1.000 0.985 0.913 0.830
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4 Discussion

The analysis of the reliability of clusters based on random projections of the orig-

inal data depends on the choice of the clustering algorithm. This is common to

all the methods based on perturbations [28, 23, 25, 6]. In this paper we pre-

sented the stability results obtained with different clustering algorithms, largely

used between the community of bioinformaticians. Indeed, on one hand it is

well-known that different clustering algorithms can identify different features

and characteristics of the data [20], and on the other hand patterns consistently

identified by different clustering algorithms and supported by high values of

validity indices can be considered robust and reliable [9].

Comparing the results obtained with different clustering algorithms and us-

ing the validity indices based on random projections, we may get insights into

the most significant clusters of patients and we can perform a quantitative eval-

uation of the reliability of the discovered clusters. For instance, with 2 clusters

all the clustering algorithms find the same two clusters: a clusters of COID ex-

amples and a larger one collecting all the other examples. In all cases the overall

stability index and the individual stability index of each discovered cluster is

very high (equal to 1 or very close to 1). This is not surprising, because it is

known from bio-molecular cancer research that pulmonary carcinoids cases are

divergent from malignant lung tumors [2]. With 3 clusters the PAM algorithm

finds a first highly reliable cluster, similar to the third found by the hierarchical

clustering algorithm, that shows a significantly lower stability index, because

hierarchical clustering includes in this clustering normal samples too (even if

with a relatively low AC index), while PAM separates normal samples in the

second highly reliable cluster.

Considering different number of clusters, the overall results confirm the hy-

pothesis of distinct subclasses among lung adenocarcinoma. Indeed at least two

subclasses are clearly detected by all the three clustering algorithms with high

reliability (see Sect. 3 and Supplementary Information). Moreover other two

subclasses are detected by both PAM and c-means clustering algorithms, even

if their reliability is lower (especially with c-means). Hierarchical clustering

finds only three different AD subclasses (Fig. 2), quite consistent and reliable.

However, the bounds between AD subclasses are not clearly defined: we have

different sample composition of the subclasses if we consider different cluster-

ing algorithms. Anyway, analyzing the AC indices (eq. 4) of the examples that

belong to the different subclasses we may understand which are the examples

more responsible for the uncertainty of clusters bounds.

From these results, we could hypothesize a hierarchical structure of the ade-
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nocarcinoma subclasses, considering two quite well defined subclasses (clearly

detected e.g. with PAM when 4 clusters are considered), and two other ones

(less reliable) derived from the previous two when SQ samples segregated in a

highly reliable separated cluster (see the 8-clusters PAM clustering in Supple-

mentary Information and Tab. 2). Note that a reliable separated cluster with

SQ samples is found by all the three clustering algorithms, as well as a reliable

cluster with normal samples. In all cases (except in part for clusters discov-

ered with hierarchical clustering) if we try to find finer structures using more

subdivisions of the available data (e.g. more that 10 clusters), the reliability of

the overall clustering decreases, and only some small clusters can be considered

reliable according to their stability indices: in other words we cannot find signif-

icant structures in the data (see Supplementary Information and Tab. 1, 2 and

3). Summarizing, the stability analysis across different clustering algorithms

confirm the hypothesis of distinct subclasses among lung adenocarcinoma [8]:

from 2 to 4 distinct subclasses are detected at different degree of reliability (ac-

cording to the stability index of each individual cluster). These classes, defined

without using any a priori information about the examples, need to be clinically

validated, and follow-up studies could be considered in order to evaluate if they

can be considered relevant for prognosis and outcome prediction purposes.

5 Conclusions

We evaluated the reliability of clusters discovered by hierarchical, c-mean and

PAM clustering algorithms in lung adenocarcinoma patients, showing that the

reliability measures based on random projections can support bio-medical re-

searchers in the identification of stable clusters of patients and in the discovery

of new subtypes of diseases characterized at bio-molecular level. In particular we

detected from 2 to 4 lung adenocarcinoma subclasses, with different degrees of

reliability and we found also other reliable clusters, such as squamous cell lung

adenocarcinomas mixed with subgroups of lung adenocarcinomas, confirming

at bio-molecular level the histological evidence of squamous features in subsets

of AD samples. Note that in previous studies [8], using only DNA microarray

data of lung adenocarcinoma patients, 4 subclasses of adenocarcinomas have

been detected by using hierarchical clustering and a probabilistic model-base

clustering [11]. Subclasses of AD patients have been hypothesized also in an-

other study of lung adenocarcinoma [17]. Our analysis confirms and extends

these results, providing also a quantitative estimate of the reliability of the dis-

covered subclasses using stability measures based on random projections. A
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future work could consists in clinical follow-up studies to understand if the dis-

covered subclasses corresponds to relevant clinically distinct diseases detectable

at bio-molecular level.
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